Adult Basic Education Science

Science 3103 Electricity

Study Guide

Prerequisite: Science 3102
Credit Value: 1
Text: Nelson Physics 12: College Preparation; Hirsch, Alan J.; Nelson Thomson Canada; 2004.

Science Courses [General College Profile]

Science 2100A
Science 2100B
Science 2100C
Science 3101
Science 3102
Science 3103
Science 3104
Science 3105
Science 3106

Table of Contents

To the Student v
Introduction to Science 3103 v
Use of Study Guides vi
Recommended Evaluation vii
Unit 1 - Introduction to Electricity Page 1
Unit 2 - Electrical Circuits Page 4
Unit 3 - Electrical Power and Safety Page 7
Appendix Page 10

To the Student

I. Introduction to Science 3103

Science 3103 is the second of two Science courses in the General College Profile that covers concepts in the area of Physics. While the course is available to all students, it is specifically designed for students who plan to pursue post-secondary education in the area of industrial trades.

Science 3102 is a prerequisite to Science 3103.

In this course, you are introduced to some of the basic concepts of electrical circuits. You learn about the components of circuits and how to draw simple circuit diagrams. You are introduced to electric current, potential difference, resistance, and power. You learn how to analyze series and parallel circuits. You then analyze electrical power usage in common devices. Proper safety procedures to follow when working with electric circuits are discussed and employed in this course.

You will complete one required lab to explore the properties of series and parallel circuits. You will also be required to complete one assignment dealing with circuits and power. Your instructor may require you to complete additional lab activities and/or assignments.

The textbook that you will need for the course is Nelson Physics 12: College Preparation; Hirsch, Alan J.; Nelson Thomson Canada; 2004.

To the Student

II. Use of Study Guides

Before beginning this course, ensure you have the text and any other resources needed (see the information in the Introduction to this course for specifics).

As you work through the Study Guide, you will see that it is divided according to the Units listed in the Table of Contents. When you open a unit it will have the following components:

Reading for this Unit:

Here you will find the chapters, sections and pages of the text you will use to cover the material for this unit. Skim the sections of the textbook, look at the titles of the sections, scan the figures and read any material in the margins. Once you have this overview of the unit, you are ready to begin. Do not be intimidated by the content. You will work through the text, section by section, gaining knowledge and understanding of the material as you go.

To the Student

III. Recommended Evaluation

Written Notes	10%
Labs/Assignments	20%
Test(s)	20%
Final Exam (entire course)	$\underline{50 \%}$
	100%

Unit 1 - Introduction to Electricity

To fulfill the objectives of this unit, students should complete the following:
Reading for this unit: Nelson Physics 12: College Preparation;
Chapter 7: \quad Sections 7.1-7.3: pages 316-326
Section 7.4: pages 328-329

References and Notes	Work to Submit	
Study pages 316-318. Then answer questions 1.1-1.8	Writing:	
Note: Remember that all matter is made of atoms and that the electron, the negative (-) particle that is outside the nucleus, is the only one that moves.	1.1	Define current electricity and electrical circuit.
	1.2	a) What are the three main parts of a simple electrical circuit?
		b) Describe the function of each of these parts and give an example of each.
		a) What is the optional part of a simple electrical circuit?
		b) Describe its function and give an example.
Note: You will need to use Table 6, Appendix C, on page 576 of your text to help you with the questions on circuit diagrams.	1.4	Explain the difference between an open and closed circuit.
	1.5	a) What is a short circuit? b) What are the dangers of a short circuit?
	1.6	Copy the circuit diagram in Figure 4 on page 317 into your notebook and identify each part of the diagram.

Unit 1 - Introduction to Electricity

References and Notes	Work to Submit	
	Writing:	
	1.7	a) Draw a circuit diagram showing a 3-cell battery connected by wires to a fixed resistor with a fuse as part of the circuit.
		b) Draw a circuit diagram showing an AC generator being used to run a motor.
		Complete question 3 in Applying Inquiry Skills on page 318.
Study pages 319-323. Then answer questions 1.9-1.14 \square	1.9	Define electric current.
	1.10	What is the SI unit of measurement (and the symbol) for electric current?
	1.11	Explain the difference between direct current (DC) and alternating current (AC).
	1.12	Complete question 1 in Understanding Concepts on page 320.
	1.13	What instrument is used to measure electric current and how is it connected in a circuit?
	1.14	Complete question 6 in Practice on page 322 and question 2 and 3 in Section 7.2 Questions on page 323 .
Study pages 324-327. Then answer questions 1.15-1.18 \square 回	1.15	Define: electric potential rise electric potential drop electric potential difference.

Unit 1 - Introduction to Electricity

Unit 2 - Electrical Circuits

To fulfill the objectives of this unit, students should complete the following:
Reading for this unit: Nelson Physics 12: College Preparation;
Chapter 7: Section 7.4: pages 330-331
Section 7.6: pages 334-343 (omit pages 341342)

Section 7.7: pages 344-345

References and Notes	Work to Submit	
Study pages 330-331. Then answer questions 2.1-2.4	Writing:	
	2.1	State Ohm's law.
		Write the equation for Ohm's law using words and symbols.
Study pages 334-336, paying close attention to the Sample Problems. Then answer questions $2.5-2.8 \square \square$		Complete Practice questions 5, 6, 7, and 8 on page 331. (Show your working for each question and make sure that you clearly understand how to do these before you move on.)
		Complete questions 2, 3, 4, and 5 in Section 7.4 Questions on page 332.
	2.5	What is the major difference between series and parallel circuits?
	2.6	State Kirchhoff's Current Rule (KCR).
	2.7	State Kirchhoff's Voltage Rule (KVR).

Unit 2 - Electrical Circuits

References and Notes	Work to Submit
Note: Applying Kirchhoff's rules means that for a series circuit - the current (I) is always the same throughout, no matter how many resistors are involved, $\mathrm{I}_{\mathrm{T}}=\mathrm{I}_{1}=\mathrm{I}_{2}=\mathrm{I}_{3} \ldots \ldots .=\mathrm{I}_{\mathrm{n}}$	2.8 Complete Practice questions 1, 2, and 3 on page 337. (Show your workings for each question and make sure that you clearly understand how to do these before you move on.)
but the voltage will vary for each resistor, and individual voltages are added together to get the total	Hint: When doing problems where you are solving for current or voltage, the acronyms PIC and SIV might help.
$\Delta \mathrm{V}_{\mathrm{T}}=\Delta \mathrm{V}_{1}+\Delta \mathrm{V}_{2}+\Delta \mathrm{V}_{3} \ldots \ldots+\Delta \mathrm{V}_{\mathrm{n}}$	PIC stands for parallel individual currents. In other words, in a parallel circuit you need to calculate
The opposite is true for a parallel circuit	individual current for each resistor, and the voltage doesn't change.
- the current will vary for each resistor, depending on the amount of resistance, and individual currents are added together to get the total, $\mathrm{I}_{\mathrm{T}}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3} \ldots . .+\mathrm{I}_{\mathrm{n}}$	SIV stands for series individual voltages. In other words, in a series circuit, you need to calculate individual voltage for each resistor, and the current doesn't change.
but the voltage will stay the same throughout, $\Delta \mathrm{V}_{\mathrm{T}}=\Delta \mathrm{V}_{1}=\Delta \mathrm{V}_{2}=\Delta \mathrm{V}_{3} \ldots . .=\Delta \mathrm{V}_{\mathrm{n}}$	
Study pages 337-338, paying close attention to the Sample Problem 3. Then answer questions 2.9-2.11回	2.9 a) What is meant by equivalent resistance?
	b) What symbol is used to represent equivalent resistance?

Unit 2 －Electrical Circuits

References and Notes	Work to Submit	
	Writing：	
	2.10	What is the equation for equivalent resistance in a series circuit？
		Complete Practice questions 4，5，and 6 on page 339．（Show your workings for each question and make sure that you clearly understand how to do these before you move on．）
Study pages 339－340，paying close attention to the Sample Problem 4. Then answer questions 2．12－2．14回回		What is the equation for equivalent resistance in a parallel circuit？
		Complete Practice question 7 on page 340. （Show your workings and make sure that you clearly understand how to do this question before you move on．）
	2.14	Complete questions $1,2,3,4$ ，and 6 in Section 7．6 Questions on page 343.
Follow the instructions on pages 344 － 345 to complete the Lab work \square 回	Laboratory：	
	2.15	Complete the Investigation，Resistors in Series and Parallel，pages 344－345 of your text．Pass your Lab Report in to your instructor for marking．
Note：See your instructor to discuss what is expected from you for your Lab Report．		
The assignment is found in the Appendix of this Study Guide．Read the questions carefully and show all workings． \square	Assignment：	
	2.16	Complete Part I，questions 1－16 of the Assignment，Circuits \＆Power．

Unit 3 - Electrical Power and Safety
To fulfill the objectives of this unit, students should complete the following:
Reading for this unit: Nelson Physics 12: College Preparation;

Chapter 7: \quad| | Section 7.8: | pages 346-350 |
| :--- | :--- | :--- |
| | Section 7.9: | pages 351-353 |

References and Notes	Work to Submit	
	Writing:	
questions 3.1-3.4 $\square^{\text {a }}$		Briefly describe the possible human reactions to electric currents.
	3.2	What is an overloaded circuit?
		Name two things that could cause a short circuit in your home. (You may need to refer back to your definition of short circuit from Unit 2.)
Study pages 351-353, paying close attention to the Sample Problem 1.		Name two devices commonly used in household circuits to protect the circuit from overheating.
Then answer questions 3.5-3.8 \square^{\square}		Define electrical power.
Note: A definition for power is introduced in Section 3.1 of the text. Since that section is not covered in this course, you may find the glossary helpful in defining electrical power.	3.6	a) Give the equation used to find power in electrical systems. b) What unit is used to measure electrical power?

Unit 3 - Electrical Power and Safety

References and Notes	Work to Submit	
		Complete Practice questions 1, 2, 3, and 4 on page 353. (Show your workings for each question and make sure that you clearly understand how to do these before you move on.)
		Complete questions 2, 3, and 4 in Section 7.6 Questions on page 356.
The assignment is found in the Appendix of this Study Guide. Read	Assignment:	
workings with your answers. \square 回		Complete Part II, questions 17-21 of the Assignment, Circuits \& Power.
Note: This is the end of Unit 3. You should check with your instructor to see if there is review work or any other additional work that you need to complete.		

Appendix

Name:
Date: \qquad

Assignment - Circuits \& Power

Part I

1. Draw the following electrical circuits:
a. A single cell, light bulb and switch are placed together in a circuit such that the switch can be opened and closed to turn the light bulb on.
b. A three-pack of cells is placed in a circuit to power a flashlight bulb.
c.

d.

2. Calculate the value of the resistance in each case:
a. $\quad \mathrm{V}=12 \mathrm{~V}, \mathrm{I}=0.25 \mathrm{~A}$
b. $\quad \mathrm{V}=1.5 \mathrm{~V}, \mathrm{I}=30 \mathrm{~mA}$
c. $\quad \mathrm{V}=2.4 \times 10^{4} \mathrm{~V}, \mathrm{I}=6.0 \times 10^{-3} \mathrm{~A}$
3. Find the unknown quantities:
a. $\quad \mathrm{R}=30 \Omega, \mathrm{I}=0.45 \mathrm{~A}, \mathrm{~V}=$?
b. $\quad \mathrm{R}=2.2 \mathrm{k} \Omega, \mathrm{I}=1.5 \mathrm{~A}, \mathrm{~V}=$?
c. $\quad \mathrm{V}=6.0 \mathrm{~V}, \mathrm{R}=18 \Omega, \mathrm{I}=$?
d. $\quad \mathrm{V}=52 \mathrm{mV}, \mathrm{R}=26 \Omega, \mathrm{I}=$?
4. What current is drawn by a vacuum cleaner from a 115 V circuit having a resistance of 28Ω ?
5. Calculate the maximum rating (in volts) of a battery used to operate a toy electric motor which has a resistance of 2.4Ω, and runs at top speed with a current of 2.5 A .
6. A walkie-talkie receiver operates on a 9.0 V battery. If the receiver draws 300 mA of current, what is its resistance?
7. An electric can opener used in a 120 V circuit has a resistance of 110Ω. How much current does it draw?
8. An electric razor has a resistance of 20Ω and draws a current of 250 mA . What is the potential drop across the razor?
9. Find the total resistance when three resistors, having values of $5.0 \Omega, 10 \Omega$, and 30Ω, are connected
a. in series; and
b. in parallel.
10. Find the total resistance when the following resistors are connected in series:
a. $\quad 2.7 \Omega, 9.8 \Omega$
b. $\quad 10 \Omega, 10^{2} \Omega, 10^{3} \Omega$
c. $\quad 1.0 \Omega, 10^{-1} \Omega, 10^{-2} \Omega$
11. Find the total resistance when the following resistors are connected in parallel:
a. $\quad 4.0 \Omega, 4.0 \Omega$
b. $\quad 100 \Omega, 100 \Omega$
c. $\quad 300 \Omega, 300 \Omega, 300 \Omega$,
d. $\quad 150 \Omega, 600 \Omega, 600 \Omega$
12. In the series circuit shown in the diagram, $\Delta \mathrm{V}_{1}=20 \mathrm{~V}, \mathrm{R}_{1}=10 \Omega$, and $\mathrm{I}_{1}=2.0 \mathrm{~A}$. Find values for the following:
a. $\quad \mathrm{I}_{2}$
b. $\quad \Delta \mathrm{V}_{2}$
c. $\quad R_{t}$
d. $\quad \mathrm{R}_{2}$
e. $\quad I_{t}$

13. In the parallel circuit shown in the diagram, $\Delta \mathrm{V}_{\mathrm{t}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{t}}=4.0 \mathrm{~A}$, and $\mathrm{I}_{1}=1.0 \mathrm{~A}$. Calculate values for the following:
a. $\quad \Delta \mathrm{V}_{1}$
b. $\quad \mathrm{R}_{1}$
c. $\quad \mathrm{I}_{2}$
d. $\quad \Delta \mathrm{V}_{2}$
e. $\quad R_{2}$

14. In the circuit shown below, find the following values:
a. $\quad \mathrm{I}_{2}$
b. $\quad \Delta \mathrm{V}_{2}$
c. $\quad R_{t}$
d. $\quad R_{2}$
e. $\quad I_{t}$

15. In the circuit shown below, calculate the following values:
a. $\quad \Delta \mathrm{V}_{1}$
b. $\quad \mathrm{I}_{1}$
c. $\quad R_{t}$
d. $\quad \mathrm{R}_{1}$
e. $\quad \Delta \mathrm{V}_{2}$
f. $\quad \mathrm{R}_{2}$
g. $\quad I_{t}$

16. In the circuit shown, $R_{1}=20 \Omega$. The potential drop across R_{1} is 10 V ; across R_{2}, it is 20 V. Determine the following:
a. The total potential rise of the source
b. The current through R_{1}
c. The current through R_{2}
d. The resistance of R_{2}

Part II

17. Calculate the power of each appliance:
a. A 120 V electric sander draws 2.9 A of current.
b. An electric can opener, used in a 120 V circuit, operates at 2.2 A .
c. A portable radio, using four 1.5 V cells in series, draws a current of 610 mA .
18. Calculate the electric potential drop across a 0.90 W calculator that draws a current of 100 mA .
19. Calculate the electric potential drop across a 34.5 kW welder that draws a current of 150 A.
20. What is the current drawn by a 1.5 kW electric kettle in a 120 V household circuit?
21. What is the current drawn by a 5.06 kW baseboard heater in a 230 V household circuit?
