Part I
 Total Value: 50\%

Instructions: Shade the letter of the correct answer on the computer scorable answer sheet provided.

1. Which theory is based on the concept that all matter consists of particles in constant motion?
(A) Arrhenius
(B) Bohr
(C) collision
(D) kinetic molecular
2. Which factor explains why potassium usually reacts faster than sodium?
(A) concentration
$\checkmark \quad$ (B) nature of reactants
(C) surface area
(D) temperature
3. What increases the rate of a chemical reaction without being consumed?
(A) activated complex
\checkmark (B) catalyst
(C) reactant
(D) reaction intermediate

Use the potential energy diagram below to answer the next two questions.

4. What is the activation energy for the forward reaction?
(A) 100 kJ
(B) 300 kJ
(C) 600 kJ
(D) 700 kJ
5. What is the heat of reaction for the reverse reaction?
(A) -600 kJ
(B) -200 kJ
(C) 200 kJ
(D) 600 kJ
6. Which are equal in a dynamic equilibrium?
(A) activation energy of the forward and reverse reactions are equal
(B) concentration of reactants and products are equal
(C) moles of reactants and products are equal
(D) rate of the forward and reverse reactions are equal
7. Which will affect the value of K ?
(A) adding a catalyst
(B) adding reactants
(C) decreasing temperature
(D) decreasing volume
8. When the concentration of A is increased in the equilibrium below, it takes 100 minutes to reestablish the equilibrium. Which best describes the equilibrium system 60 minutes after substance A was added?

$$
\mathrm{A} \rightleftarrows \mathrm{~B}
$$

(A) $[\mathrm{A}]>[\mathrm{B}]$
(B) $[\mathrm{A}]<[\mathrm{B}]$
(C) forward rate $>$ reverse rate
(D) forward rate < reverse rate
9. What is the equilibrium expression for the following system?

$$
4 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

(A) $\mathrm{K}_{e q}=\left[\mathrm{O}_{2}\right]^{3}$
(B) $\quad \mathrm{K}_{e q}=\frac{1}{\left[\mathrm{O}_{2}\right]^{3}}$
(C) $\quad \mathrm{K}_{e q}=\frac{\left[\mathrm{Fe}_{2} \mathrm{O}_{3}\right]^{2}}{[\mathrm{Fe}]^{4}\left[\mathrm{O}_{2}\right]^{3}}$
(D) $\quad \mathrm{K}_{e q}=\frac{\left[2 \mathrm{Fe}_{2} \mathrm{O}_{3}\right]}{[4 \mathrm{Fe}]\left[3 \mathrm{O}_{2}\right]}$
10. Which will cause the equilibrium below to shift to the right?

$$
\mathrm{CH}_{3} \mathrm{Cl}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

(A) adding KCl
(B) adding NaOH
(C) removing $\mathrm{CH}_{3} \mathrm{Cl}$
(D) removing OH^{-}
11. Given the equilibrium concentrations below, what is the value of K_{eq} for $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g}) ?$

$$
\left[\mathrm{N}_{2}(\mathrm{~g})\right]=0.10 \mathrm{~mol} / \mathrm{L}, \quad\left[\mathrm{O}_{2}(\mathrm{~g})\right]=0.20 \mathrm{~mol} / \mathrm{L},[\mathrm{NO}(\mathrm{~g})]=0.0030 \mathrm{~mol} / \mathrm{L}
$$

(A) 2.2×10^{-4}
(B) 4.5×10^{-4}
(C) 1.5×10^{-1}
(D) 3.0×10^{-1}
12. Temperature is gradually decreased then held constant in the equilibrium below. Which graph represents the change in the reverse reaction rate?

$$
\mathrm{A}+\mathrm{B} \rightleftarrows \mathrm{C}+\text { energy }
$$

(A)

(B)

(C)

(D)

13. Which instrument would be used to monitor the rate of the reaction below in a closed system?

$$
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

(A) analytical balance
(B) buret
(C) pH meter
(D) volumetric flask
14. Which is true of an Arrhenius base?
(A) accepts a proton
(B) donates a proton
(C) produces $\mathrm{H}^{+}{ }_{(\text {aq })}$
(D) produces $\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$
15. Which represents the equilibrium expression for the ionization of water?
(A) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\left[\mathrm{OH}^{-}\right]$
(B) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]-\left[\mathrm{OH}^{-}\right]$
(C) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$
(D)
$\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{OH}^{-}\right]}$
16. Which statement is true about titrations?
(A) The endpoint is the same as the equivalence point.
(B) The endpoint occurs when equal moles of substances react.
(C) The equivalence point occurs when equal moles of substances react.
(D) The equivalence point occurs when the indicator changes color.
17. Which K_{a} value represents the strongest acid?
(A) 2.3×10^{-13}
(B) 6.2×10^{-8}
(C) 1.7×10^{-5}
(D) 1.2×10^{-2}
18. Solid sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, is used to determine the concentration of a $\mathrm{HBr}(\mathrm{aq})$ by titration. What is the role of sodium carbonate in this titration?
(A) catalyst
(B) indicator
$\checkmark \quad$ (C) primary standard
(D) proton donor
19. What is the conjugate acid of $\mathrm{HAsO}_{4}{ }^{2-}$?
(A) $\mathrm{AsO}_{4}{ }^{3-}$
(B) $\mathrm{AsO}_{4}{ }^{2-}$
(C) $\quad \mathrm{H}_{2} \mathrm{AsO}_{4}^{-}$
(D) $\mathrm{H}_{2} \mathrm{AsO}_{4}{ }^{2-}$
20. Which substance causes red litmus to turn blue?
(A) $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$
(B) $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{aq})$
(C) $\mathrm{HCl}(\mathrm{aq})$
(D) $\mathrm{KOH}(\mathrm{aq})$
21. Which best describes a basic solution?
\checkmark
(A) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0$
(B) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]$
(C) $\left[\mathrm{OH}^{-}\right]=0$
(D) $\left[\mathrm{OH}^{-}\right]<\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
22. Which acid forms a $0.10 \mathrm{~mol} / \mathrm{L}$ solution with the highest pH ?
$\checkmark \quad$ (A) acetic acid
(B) nitrous acid
(C) oxalic acid
(D) phosphoric acid
23. Which is a suitable indicator for the titration below?

(A) indigo carmine
(B) methyl red
(C) orange IV
(D) thymolphthalein
24. What is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]$ in a solution with $\mathrm{pH}=6.50$?
(A) $3.2 \times 10^{-8} \mathrm{~mol} / \mathrm{L}$
(B) $3.2 \times 10^{-7} \mathrm{~mol} / \mathrm{L}$
(C) $3.2 \times 10^{6} \mathrm{~mol} / \mathrm{L}$
(D) $3.2 \times 10^{7} \mathrm{~mol} / \mathrm{L}$
25. Which diagram represents the titration of carbonic acid, $\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$ with a solution of potassium hydroxide, $\mathrm{KOH}(\mathrm{aq})$?
(A)

(B)

(C)

(D)

26. Consider the following equilibrium for the chemical indicator phenol red, HInd, at $\mathrm{pH}=7.3$.

$$
\begin{aligned}
& \text { HInd }+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\underset{\text { red }}{\text { yellow }} \mathrm{Ind}^{-}
\end{aligned}
$$

If 10.0 mL of $0.10 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}(\mathrm{aq})$ is added, how will the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ be affected, and what is the color of the resulting solution?
$\checkmark \quad(\mathrm{A})$
(B)

$\left[\mathbf{H}_{3} \mathbf{O}^{+} \mathbf{(a q)}\right]$	colour
decreased	red
decreased	yellow
increased	red
increased	yellow

27. What is the pH of $3.0 \mathrm{~mol} / \mathrm{L} \mathrm{KOH}(\mathrm{aq})$?
(A) 0.48
(B) 11.00
(C) 13.52
(D) 14.48
28. What happens to $\left[\mathrm{OH}^{-}\right]$and pH of a solution if $1.0 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$ is added at $25^{\circ} \mathrm{C}$?
(A) $\left[\mathrm{OH}^{-}\right]$decreases and pH decreases.
(B) $\left[\mathrm{OH}^{-}\right]$decreases pH increases.
(C) $\left[\mathrm{OH}^{-}\right]$increases and pH decreases.
(D) $\left[\mathrm{OH}^{-}\right]$increases and pH increases.
29. What is a measure of the average kinetic energy of particles?
(A) heat capacity
(B) joules
(C) specific heat
(D) temperature
30. Which is the correct order of increasing energy changes in terms of magnitude and energies involved?

(A) nuclear \rightarrow chemical \rightarrow physical
(B) nuclear \rightarrow physical \rightarrow chemical
(C) physical \rightarrow chemical \rightarrow nuclear
(D) physical \rightarrow nuclear \rightarrow chemical
31. What is the symbol used for the energy required to melt one mole of a substance?
(A) $\Delta \mathrm{H}^{\mathrm{o}}{ }_{\text {comb }}$
(B) $\Delta \mathrm{H}_{\text {fus }}^{\circ}$
(C) $\Delta \mathrm{H}_{\text {soln }}^{0}$
(D) $\Delta \mathrm{H}_{\text {vap }}^{\circ}$
32. How is the molar enthalpy change calculated for a chemical reaction?
(A) $\quad \Sigma \mathrm{PE}_{\text {products }}-\Sigma \mathrm{PE}_{\text {reactants }}$
(B) $\quad \Sigma \mathrm{PE}_{\text {products }}+\Sigma \mathrm{PE}_{\text {reactants }}$
(C) $\quad \Sigma P E_{\text {reactants }}-\Sigma P E_{\text {productsts }}$
(D) $\quad \Sigma \mathrm{PE}_{\text {reactants }}+\Sigma \mathrm{PE}_{\text {products }}$
33. Which is true about all exothermic chemical reactions?
(A) Energy is absorbed.
(B) Energy is released.
(C) $\Delta \mathrm{H}$ of reaction is positive.
(D) The reaction vessel cools down.
34. How much energy is required to raise the temperature of 7.60 g of copper from $20.0^{\circ} \mathrm{C}$ to $25.0^{\circ} \mathrm{C}$? ($\left.\mathrm{C}_{\mathrm{Cu}}=0.385 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)$
(A) 0.585 J
(B) 13.5 J
(C) 14.6 J
(D) 98.7 J
35. What is $\Delta \mathrm{H}^{\mathrm{o}}{ }_{\text {comb }}$ of propanol, $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$, if burning 10.0 g of propanol releases 336 kJ of energy?
$\checkmark \quad$ (A) $\quad-2020 \mathrm{~kJ} / \mathrm{mol}$
(B) $-55.9 \mathrm{~kJ} / \mathrm{mol}$
(C) $-33.6 \mathrm{~kJ} / \mathrm{mol}$
(D) $\quad-0.0298 \mathrm{~kJ} / \mathrm{mol}$
36. Given in the thermochemical reaction below, determine the molar enthalpy of formation for $\mathrm{N}_{2} \mathrm{O}(\mathrm{g})$?

$$
2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+163.3 \mathrm{~kJ}
$$

(A) $-163.3 \mathrm{~kJ} / \mathrm{mol}$
(B) $\quad-81.6 \mathrm{~kJ} / \mathrm{mol}$
(C) $81.6 \mathrm{~kJ} / \mathrm{mol}$
(D) $163.3 \mathrm{~kJ} / \mathrm{mol}$
37. Which best describes the change in potential energy of water when it undergoes evaporation and condensation?

		evaporation	condensation
	(A)	decrease	decrease
	(B)	decrease	increase
\boldsymbol{J}	(C)	increase	decrease
	(D)	increase	increase

38. Given the $\Delta \mathrm{H}^{\circ}{ }_{f}$ values below, determine the $\Delta \mathrm{H}_{\text {comb }}{ }^{\circ}$ for $\mathrm{C}_{2} \mathrm{H}_{2}$, ?

$$
\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{5}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

(A) $-801 \mathrm{~kJ} / \mathrm{mol}$

Substance	$\Delta \mathrm{H}_{\mathrm{f}}{ }^{(}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$	-228
$\mathrm{CO}_{2}(\mathrm{~g})$	-394
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-241

(B) $-407 \mathrm{~kJ} / \mathrm{mol}$
(C) $+407 \mathrm{~kJ} / \mathrm{mol}$
(D) $\quad+801 \mathrm{~kJ} / \mathrm{mol}$
39. Which enthalpy diagram represents the reaction below?

$$
\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+\frac{13}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+2871 \mathrm{~kJ}
$$

(A)

(B)

(C)

(D)

40. In the experiment below, solid lead at $100^{\circ} \mathrm{C}$ is added to a container of ice at $0^{\circ} \mathrm{C}$. Which equation can be used to determine the approximate specific heat capacity of lead?

(A) $\quad(\mathrm{mc} \Delta \mathrm{T})_{\text {lead }}=(\mathrm{mc} \Delta \mathrm{T})_{\text {water }}$
(B) $\quad(\mathrm{mc} \Delta \mathrm{T})_{\text {lead }}=-(\mathrm{n} \Delta \mathrm{H})_{\text {water }}$
(C) $\quad(\mathrm{n} \Delta H)_{\text {lead }}=(\mathrm{mc} \Delta T)_{\text {water }}$
(D) $\quad(\mathrm{n} \Delta \mathrm{H})_{\text {lead }}=-(\mathrm{n} \Delta \mathrm{H})_{\text {water }}$
41. How does an Fe atom change into an Fe^{2+} ion?
(A) oxidizes and gains 2 electrons
(B) oxidizes and loses 2 electrons
(C) reduces and gains 2 protons
(D) reduces and loses 2 protons
42. What is the oxidation number of magnesium in MgSO_{4} ?
(A) - 2
(B) -1
(C) +1
(D) +2
43. Which is an example of a primary electrochemical cell?
(A) car battery
(B) dry cell
(C) $\quad \mathrm{H}_{2} / \mathrm{O}_{2}$ fuel cell
(D) rechargeable
44. Which process separates water into hydrogen and oxygen?
(A) combustion
(B) electroplating
$\checkmark \quad(\mathrm{C}) \quad$ electrolysis
(D) fusion
45. Which species can be both an oxidizing agent and reducing agent?
(A) $\mathrm{Co}^{3+}(\mathrm{aq})$
(B) $\mathrm{Co}(\mathrm{s})$
$\checkmark \quad$ (C) $\quad \mathrm{Sn}^{2+}(\mathrm{aq})$
(D) $\quad \mathrm{Sn}(\mathrm{s})$
46. Which atom in the reaction below has a decrease of 3 in oxidation number?

$$
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O}+\mathrm{S} \rightarrow \mathrm{KOH}+\mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{SO}_{2}
$$

(A) Cr
(B) K
(C) O
(D) S
47. What is true for the reaction, $\mathrm{Sn}^{4+}+2 \mathrm{Cl}^{-} \rightarrow \mathrm{Sn}^{2+}+\mathrm{Cl}_{2}$?

		$\mathbf{E}^{\mathbf{0}}$ cell (V)	reaction
	(A)	-1.51	non-spontaneous
$\boldsymbol{\checkmark}$	(B)	-1.21	non-spontaneous
	(C)	1.51	spontaneous
	(D)	1.21	spontaneous

48. If the half reaction below is balanced in acidic solution, how many moles of hydrogen ions are required to balance the overall equation?

$$
\mathrm{Ti} \rightarrow \mathrm{TiO}_{2}^{2-}
$$

(A) 1
(B) 2
(C) 3
(D) 4
49. Which represents a redox reaction?
(A) $\mathrm{H}_{2}+\mathrm{I}_{2} \rightarrow 2 \mathrm{HI}$
(B) $\mathrm{HCl}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}$
(C) $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$
(D) $2 \mathrm{NaI}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{PbI}_{2}+2 \mathrm{NaNO}_{3}$
50. Ag^{+}reacts spontaneously with Ru but not with Pd. Rank the metals in terms of their strength as reducing agents.

Instructions: Complete ALL questions in the space provided. Show calculations for numerical problems.

Value

51. Use the table below to answer the following questions.

Reaction Mechanism	Rate of Reaction	Sign of ΔH

Step 1	$\mathrm{OCl}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow$	$\mathrm{HOCl}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$	fast	negative
Step 2	$\mathrm{HOCl}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{HOI}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$	slow	positive	
Step 3	$\mathrm{HOI}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{OI}^{-}(\mathrm{aq})$	very fast	negative	

(a) (i) Write the equation for the overall reaction.
overall: $\quad \mathrm{OCl}^{-}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{OI}^{-}(\mathrm{aq})$
(ii) Identify any reaction intermediates and/or catalysts present.

Reaction Intermediate(s): HOCI, HOI , $\mathbf{O H}^{-}$
Catalyst(s): $\quad \mathbf{H}_{2} \mathbf{O}$
3\% (b) Using the information from the table, and given that the overall reaction is exothermic, draw one possible potential energy diagram for the reaction. On your diagram label:

(i)	both axes	$1 / 2$ mark
(ii)	the overall activated complex	$1 / 2$ mark
(iii)	the overall activation energy	$1 / 2$ mark
(iv)	ΔH for the overall reaction	$1 / 2$ mark
		$\mathbf{1}$ mark for shape

Value
51.(c) The system below is initially at equilibrium.

$$
\mathrm{HCHCO}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \Delta \mathrm{H}=+5.26 \mathrm{~kJ}
$$

(i) Explain how a decrease in temperature will affect $\left[\mathrm{H}_{2}(\mathrm{~g})\right]$?

Rxn is endothermic (energy a reactant); thus shifts left to produce the
energy removed by decreasing the temp. (1 mark)
This shift result in H_{2} consumed thus a decrease in the $\left[\mathrm{H}_{2}\right]$ (1 mark)
\qquad
\qquad
\qquad
(ii) Explain how increasing the volume of the reaction vessel will affect [$\mathrm{HCHCO}(\mathrm{g})$]?

Increase in volume ; a decrease in pressure will cause the system to shift to
produce more gas molecules; shift right. (1 mark)
This shift results in more HCHCO being formed thus an increase in the
[HCHCO] (1 mark)
(d) The equilibrium constant expression for a reaction is:

$$
\mathrm{Keq}=\frac{[\mathrm{HOCl}(\mathrm{~g})]}{\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\right]\left[\mathrm{C1}_{2} \mathrm{O}(\mathrm{~g})\right]}=9.0 \times 10^{-2}
$$

typo: [HOCl] should be squared in the expression ie: $[\mathrm{HOCl}]^{2}$
(i) What is the equation for this equilibrium?
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{Cl}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons 2 \mathrm{HOCl}(\mathrm{g})$
(ii) A 1.0 L flask was found to contain $2.0 \times 10^{-2} \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}), 3.0 \times 10^{-2}$ mol of $\mathrm{Cl}_{2} \mathrm{O}(\mathrm{g})$, and $4.0 \times 10^{-3} \mathrm{~mol}$ of $\mathrm{HOCl}(\mathrm{g})$. Is the system at equilibrium? Justify your answer.
$\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right]=2.0 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$
$\left[\mathrm{Cl}_{2} \mathrm{O}(\mathrm{g})\right]=3.0 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$
$[\mathrm{HOCl}(\mathrm{g})]=4.0 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$
$K=\frac{\left(4.0 \times 10^{-3} \mathrm{~mol} / \mathrm{L}\right)^{2}}{\left(2.0 \times 10^{-2} \mathrm{~mol} / \mathrm{L}\right)\left(3.0 \times 10^{-2} \mathrm{~mol} / \mathrm{L}\right)}=0.027 \quad(1 \mathrm{mark})$

Not at $\mathrm{eq}^{\mathrm{bm}}, \mathrm{K} \neq 9.0 \times 10^{-2} \quad$ (1 mark)
52.(a) Ink can be prepared by soaking purple cabbage in water. This ink disappears if it is sprayed with dilute vinegar solution.
(i) How could you make the ink reappear?

Add a basic material

(ii) Write a general equilibrium equation for the cabbage indicator (HCb). Include observed colours.

$$
\underset{\text { purple }}{\mathrm{Colorless}} \mathrm{HCb}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \underset{(1 / 2 \text { mark })}{\mathrm{Cb}^{-}}+\mathrm{H}_{3} \mathrm{O}^{+} \underset{(1 / 2 \text { mark })}{\left(\mathrm{H}^{-}\right.}
$$

(b) (i) Write an equation for the Bronsted-Lowry reaction between sodium nitrite and potassium hydrogen sulfate?

species present:	Na^{+}	$\mathrm{NO}_{2}{ }^{-}$	K^{+}	$\mathrm{HSO}_{4}{ }^{-}$	$\mathrm{H}_{2} \mathrm{O}$	
	neutral	B	neutral	A or B	A or B	(1 mark)
strongest		SB		SA		

auto-ionzed: $\mathrm{NO}_{2}{ }^{-}+\mathrm{HSO}_{4}{ }^{-} \rightleftharpoons \mathrm{HNO}_{2}+\mathrm{SO}_{4}{ }^{2-} \quad$ (1 mark)
(ii) Does the equilibrium favor reactants or products?
products
(c) A 25.00 ml sample of $0.200 \mathrm{~mol} / \mathrm{L}$ hydrochloric acid is titrated with a 0.400 $\mathrm{mol} / \mathrm{L}$ solution of sodium hydroxide.
(i) What is the pH after 6.00 ml of sodium hydroxide solution has been added?
$\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{NaCl}(\mathrm{aq}) \quad(1 / 2$ mark)
$\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$n_{(H C I)}=\mathbf{c v}=(0.200 \mathrm{M})(0.0250 \mathrm{~L})=5.00 \times 10^{-3} \mathrm{~mol} \quad(1 / 2 \mathrm{mark})$
$\mathbf{n}_{\text {(NaOH) }}=\mathbf{c} v=(0.400 \mathrm{M})(0.00600 \mathrm{~L})=2.40 \times 10^{-3} \mathrm{~mol}$
Ratio: $\mathrm{HCl}: \mathrm{NaOH}$ is $1: 1$ ($1 / 2$ mark)
Excess HCl : $2.40 \times 10^{-3} \mathrm{~mol}$ of NaOH reacts with $2.40 \times 10^{-3} \mathrm{~mol}$ of HCl leaving $2.60 \times 10^{-3} \mathrm{~mol} \mathrm{HCl}$ ($1 / 2$ mark)

$$
\begin{aligned}
& \mathrm{c}_{(\mathrm{HCl})}=\frac{\left.2.60 \times 10^{-3} \mathrm{~mol}\right]}{0.0310 \mathrm{~L}}=0.0839 \mathrm{~mol} / \mathrm{L}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \quad(1 / 2 \text { mark }) \\
& \mathbf{p H}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.076 \quad(1 / 2 \mathrm{mark})
\end{aligned}
$$

(ii) What volume of sodium hydroxide is required to reach the equivalence point?
($1 / 2$ mark)
$\mathrm{v}=\frac{\mathrm{n}}{\mathrm{c}}=\frac{5.00 \times 10^{-3} \mathrm{~mol}}{0.400 \mathrm{~mol} / \mathrm{L}}=0.0125 \mathrm{~L}=\underset{(1 / 2 \mathrm{mark})}{12.5 \mathrm{~mL}}$

Value

3\%
52.(d) A $0.100 \mathrm{~mol} / \mathrm{L}$ solution of a weak acid, HA, has a percent ionization of 5.2%. What is K_{b} of the conjugate base, A^{-}?

	HA	$+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons$	$\mathrm{H}_{3} \mathrm{O}^{+}$	\mathbf{A}^{-}
I	0.100		0	0
C	- \boldsymbol{X}		+ \boldsymbol{x}	+ \boldsymbol{x}
E	0.100-x		+ \boldsymbol{x}	+ \boldsymbol{x}
[HA]	0.100	1/L) (5.2 \%)	nol/L $=x$	${ }_{(1 / 2 \text { mark) }}^{(1 / 2 \text { mark) }}$
$\begin{aligned} & {[\mathrm{HA}]_{\mathrm{eq}}} \\ & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]} \end{aligned}$	$\begin{aligned} & 100-x= \\ & {\left[\mathbf{A}^{-}\right]=x} \end{aligned}$	$\begin{aligned} & 100-0.0052= \\ & 0.0052 \mathrm{~mol} / \mathrm{L} \end{aligned}$	$8 \mathrm{~mol} / \mathrm{L}$	(1/2 mark)
$\mathbf{K}_{\mathrm{a}}=$	$\frac{\left.{ }^{+}\right]\left[A^{-}\right]}{\text {IA] }]}$	$\frac{(0.0052)^{2}}{0.0948}$		(1 mark)
one method: $\mathrm{K}_{\mathrm{b}}=\underset{\mathrm{K}_{\mathrm{a}}}{\mathrm{K}_{\mathrm{w}}}=\frac{1.00 \times 10^{-14}}{2.9 \times 10^{-4}}=3.5 \times 10^{-11}$				($1 / 2$ mark)

(e) Explain, using appropriate equations, why $\mathrm{HCO}^{3-}(\mathrm{aq})$ is considered amphoteric? typo: should be $\mathbf{H C O}_{3}$
amphoteric means $\mathrm{HCO}_{3}{ }^{-}$can act as an acid (donate a proton) or as a base (accept a proton) (1 mark)
as an acid: $\quad \mathrm{HCO}_{3}{ }^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$ (1⁄2 mark)
as a base: $\quad \mathrm{HCO}_{3}{ }^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$ (1⁄2 mark)

5\% 53(a). Using the data below, calculate the energy change when 25.0 g of methane, $\mathrm{CH}_{4}(\mathrm{~g})$, undergoes complete combustion.

Overall reaction: $\quad \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
\begin{array}{ll}
\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta \mathrm{H}=-241.8 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=393.5 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g}) & \Delta \mathrm{H}=-74.6 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

$\mathrm{CH}_{4}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g})$	$\Delta \mathrm{H}=74.6 \mathrm{~kJ} / \mathrm{mol}$ (1 mark)
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$	$\Delta \mathrm{H}=-393.5 \mathrm{~kJ} / \mathrm{mol}(1 \mathrm{mark})$
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	$\Delta \mathrm{H}=-483.6 \mathrm{~kJ} / \mathrm{mol}(1 \mathrm{mark})$

$$
\begin{aligned}
& \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\text {comb }}=-802.5 \mathrm{~kJ} / \mathrm{mol} \\
& \text { (1 mark) } \\
& \mathrm{n}=\frac{25.0 \mathrm{~g}}{16.05 \mathrm{~g} / \mathrm{mol}}=1.56 \mathrm{~mol} \quad \begin{aligned}
& \mathrm{q}=\mathrm{n} \Delta \mathrm{H} \\
&(1 / 2 \mathrm{mark})
\end{aligned} \quad \begin{aligned}
& =(1.56 \mathrm{~mol})(-802.5 \mathrm{~kJ} / \mathrm{mol}) \\
& =-1250 \mathrm{~kJ}
\end{aligned} \\
& \text { (1/2 mark) }
\end{aligned}
$$

Value

3\%

$$
\begin{aligned}
& \text { 53.(b) Explain kinetic and potential energy changes that occur in zinc as it is being } \\
& \text { warmed from } 200^{\circ} \mathrm{C} \text { to } 700^{\circ} \mathrm{C} \text {. (melting point of } \mathrm{Zn}=420^{\circ} \mathrm{C} \text {, boiling point of } \\
& \mathrm{Zn}=907^{\circ} \mathrm{C} \text {) } \\
& \text { (c) } 1.26 \mathrm{~g} \text { of benzoic acid, } \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{~s})\left(\Delta \mathrm{H}_{\text {comb }}=3225 \mathrm{~kJ} / \mathrm{mol}\right) \text {, is burned in a } \\
& \text { bomb calorimeter. The temperature of the calorimeter and its contents increases } \\
& \text { from } 23.62{ }^{\circ} \mathrm{C} \text { to } 27.14{ }^{\circ} \mathrm{C} \text {. Calculate the heat capacity of the calorimeter. } \\
& \mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}}=\frac{1.26 \mathrm{~g}}{122.13 \mathrm{~g} / \mathrm{mol}}=0.0103 \mathrm{~mol} \quad(1 / 2 \text { mark }) \\
& \mathbf{q}_{\mathrm{cal}}=\mathbf{C} \Delta \mathrm{T} \\
& =\left(\mathrm{C}_{\text {cal }}\right)\left(27.14^{\circ} \mathrm{C}-23.62^{\circ} \mathrm{C}\right) \\
& =\left(\mathrm{C}_{\mathrm{cal}}\right)\left(3.52^{\circ} \mathrm{C}\right) \\
& \text { (} 112 \text { mark) } \\
& \mathbf{q}_{\mathrm{rxn}}=\mathbf{n} \Delta \mathbf{H}_{\text {comb }} \\
& =(\mathbf{0 . 0 1 0 3} \mathbf{~ m o l})(-3225 \mathrm{~kJ} / \mathrm{mol}) \\
& =-33.4 \mathrm{~kJ} \\
& \text { (1 mark) } \\
& \mathrm{q}_{\text {sys }}=-\mathrm{q}_{\text {surr }} \\
& \mathrm{q}_{\mathrm{rxn}}=-\mathrm{q}_{\mathrm{cal}} \\
& -33.4 \mathrm{~kJ}=-\left(\mathrm{C}_{\mathrm{ca}}\right)\left(3.52^{\circ} \mathrm{C}\right) \\
& \mathrm{C}_{\text {cal }}=\underline{-33.4 \mathrm{~kJ}}=9.45 \mathrm{~kJ} /{ }^{\circ} \mathrm{C} \quad(1 \text { mark) } \\
& -3.52^{\circ} \mathrm{C}
\end{aligned}
$$

2\% 53.(d) Give two reasons why a bomb calorimeter is a better instrument than a soft drink can for determining enthalpies of reaction?

Closed system

| - no heat loss \quad (1 mark) |
| :--- | :--- |
| - no mass loss (1 mark) |

\qquad
\qquad

Value

August 2004 54a) i)

(iii) What is E^{0} for this cell?

$$
\begin{aligned}
& \mathrm{Cr}_{(\mathrm{s})} \rightarrow \mathrm{Cr}^{2+}{ }_{(\text {aq) }}+2 \mathrm{e}^{-} \quad \mathscr{E}=+0.91 \mathrm{~V} \\
& \mathbf{P b}^{2+}{ }_{\text {(aq) }}+2 \mathrm{e}^{-} \xrightarrow{(\mathrm{aq})} \mathrm{Pb}_{(\mathrm{s})} \quad \frac{\mathscr{E}=-0.13 \mathrm{~V}}{\mathscr{E}_{\text {cell }}=+0.78 \mathrm{~V}}
\end{aligned}
$$

4\% (b) What current must be applied to an electrolytic cell, containing a solution of $\mathrm{NiCl}_{2}(\mathrm{aq})$, to produce $1.50 \times 10^{4} \mathrm{~g}$ of pure $\mathrm{Ni}(\mathrm{s})$ in 24 hours?

$$
\begin{aligned}
& \mathrm{n}(\mathrm{Ni})=\frac{\mathrm{m}}{\mathrm{M}}=\frac{1.50 \times 10^{4} \mathrm{~g}}{58.71 \mathrm{~g} / \mathrm{mol}}=256 \mathrm{~mol} \\
& \text { (1⁄2 mark) } \\
& \mathbf{N i}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}_{(\mathrm{s})} \\
& \text { (1⁄2 mark) } \\
& \mathrm{n}\left(\mathrm{e}^{-}\right)=\mathbf{2 5 6} \mathbf{~ m o l ~ N i} \times 2 \mathrm{~mole} \mathrm{e}^{-}=512 \mathrm{~mol} \mathrm{e}^{-} \\
& \text {(1⁄2 mark) } \\
& 1 \mathrm{~mol} \mathrm{Ni} \\
& Q=n_{e-} F=\left(512 \mathrm{~mol} \mathrm{e}^{-}\right)(96500 \mathrm{C} / \mathrm{mol} \mathrm{e})=4.94 \times 10^{7} \mathrm{C} \quad(1 / 2 \mathrm{mark}) \\
& \begin{array}{c}
I=\frac{Q}{t}=\frac{\left(4.94 \times 10^{7} \mathrm{C}\right)}{(24 \mathrm{~h} \mathrm{x} \mathrm{3600} \mathrm{s/h)}}=\frac{\left(4.94 \times 10^{7} \mathrm{C}\right)}{86400 \mathrm{~s}}=572 \mathrm{~A} \quad(1 / 2 \mathrm{mark}) \\
(1 / 2 \text { mark })
\end{array}
\end{aligned}
$$

