Part I
 Total Value: 50\%

Instructions: Shade the letter of the correct answer on the computer scorable answer sheet provided.

1. Which observation can be explained using the kinetic molecular theory?
$\checkmark \quad(\mathrm{A}) \quad$ A basketball is inflated with air.
(B) Butane $\mathrm{C}_{4} \mathrm{H}_{10}$ burns faster than pentane $\mathrm{C}_{5} \mathrm{H}_{12}$.
(C) Powdered coal is more explosive than lumps of coal.
(D) Silver metal reacts slower than aqueous silver nitrate.
2. Which factor best explains why the combustion of candle wax, $\mathrm{C}_{25} \mathrm{H}_{52}$, is slower than the combustion of decane, $\mathrm{C}_{10} \mathrm{H}_{22}$?
(A) concentration
(B) nature of reactants
(C) pressure
(D) temperature
3. For the diagram below, what is the activation energy for the reverse reaction?

(A) 20 kJ
(B) 30 kJ
(C) 40 kJ
(D) 50 kJ
4. What is the rate determining step in the mechanism below?

(A) A
(B) B
(C) C
(D) D
5. Using the mechanism below, which species is the catalyst?

Step 1:	$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$	\rightarrow	$2 \mathrm{NO}_{2}(\mathrm{~g})$
Step 2:	$2 \mathrm{NO}_{2}(\mathrm{~g})$	\rightarrow	$2 \mathrm{NO}(\mathrm{g})+2 \mathrm{O}(\mathrm{g})$
Step 3:	$2 \mathrm{O}(\mathrm{g})+2 \mathrm{O}_{2}(\mathrm{~g})$	\rightarrow	$2 \mathrm{O}_{3}(\mathrm{~g})$

(A) $\quad \mathrm{NO}(\mathrm{g})$
(B) $\quad \mathrm{NO}_{2}(\mathrm{~g})$
(C) $\quad \mathrm{O}(\mathrm{g})$
(D) $\quad \mathrm{O}_{2}(\mathrm{~g})$
6. Given the table below, order the reaction trials from fastest to slowest.

Trial \#	Concentration (mol/L)	Temperature $\left({ }^{\circ} \mathrm{C}\right)$
1	0.020	30
2	0.020	20
3	0.20	50
4	0.20	40

$$
\text { fastest } \rightarrow \text { slowest }
$$

(A) $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$
(B) $2 \rightarrow 1 \rightarrow 4 \rightarrow 3$
(C) $3 \rightarrow 4 \rightarrow 1 \rightarrow 2$
(D) $4 \rightarrow 3 \rightarrow 2 \rightarrow 1$
7. Which change will affect the value of K in the equilibrium system below?

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=54 \mathrm{~kJ}
$$

(A) decreasing temperature
(B) decreasing volume
(C) increasing [NO]
(D) increasing $\left[\mathrm{NO}_{2}\right]$
8. Which change in the equilibrium below would result in the highest concentration of IF_{3} ?

$$
3 \mathrm{I}_{2}(\mathrm{~g})+4 \mathrm{~F}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{IF}_{3}(\mathrm{~g})+\mathrm{I}_{4} \mathrm{~F}_{2}(\mathrm{~g})+34.2 \mathrm{~kJ}
$$

(A) decreasing [I_{2}]
(B) decreasing volume
(C) increasing $\left[\mathrm{I}_{4} \mathrm{~F}_{2}\right]$
(D) increasing temperature
9. Which is true, for the equilibrium as written, if the system changes from blue to pink when placed in an ice bath?

$$
\begin{aligned}
\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+}(\mathrm{aq})+4 \mathrm{Cl}^{-}(\mathrm{aq}) \rightleftharpoons & \mathrm{CoCl}_{4}^{2-}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\ell) \\
\text { pink } & \text { blue }
\end{aligned}
$$

	Reaction Type	ΔH
$\boldsymbol{\sim} \quad$ (A)	endothermic	negative
(B)	endothermic	positive
(C)	exothermic	negative
(D)	exothermic	positive

10. Which K value indicates the highest concentration of reactants?
(A) 1.9×10^{-8}
(B) 1.3×10^{-7}
(C) 2.6×10^{7}
(D) 3.9×10^{8}
11. What is the equilibrium constant expression for the system below?

$$
2 \mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

(A) $\frac{\left[\mathrm{CH}_{4}\right]\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}$
(B) $\frac{\left[\mathrm{CH}_{4}\right]\left[\mathrm{CO}_{2}\right]}{[\mathrm{C}]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}$
(C) $\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{\left[\mathrm{CH}_{4}\right]\left[\mathrm{CO}_{2}\right]}$
(D) $\frac{[\mathrm{C}]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{\left[\mathrm{CH}_{4}\right]\left[\mathrm{CO}_{2}\right]}$
12. $\quad 0.100 \mathrm{~mol}$ of $\mathrm{PCl}_{3}, \mathrm{Cl}_{2}$, and PCl_{5} are each introduced into the same 1.0 L evacuated flask. What is true of the concentration of each substance as the equilibrium below is established?

$$
\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{5}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{eq}}=0.45
$$

	$\left[\mathrm{PCl}_{3}\right]$	$\left[\mathrm{Cl}_{2}\right]$	$\left[\mathrm{PCl}_{5}\right]$
(A)	decreases	decreases	increases
(B)	decreases	increases	decreases
(C)	increases	decreases	increases
(D)	increases	increases	decreases

13. Which pH value would best describe a substance that tastes sour?
(A) 6.8
(B) 7.0
(C) 7.2
(D) 14.0
14. What is the conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq})$?
$\checkmark \quad(\mathrm{A}) \quad \mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq})$
(B) $\quad \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$
(C) $\mathrm{OH}^{-}(\mathrm{aq})$
(D) $\mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})$
15. Which substance is amphoteric?
(A) $\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$
(B) $\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$
(C) $\quad \mathrm{HCO}_{3}^{-}(\mathrm{aq})$
(D) $\quad \mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})$
16. Which is an acid-base conjugate pair?

$$
\mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{HNO}_{2}(\mathrm{aq}) \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{NO}_{2}^{-}(\mathrm{aq})
$$

		Acid
	Conjugate Base	
(A)	HCO_{3}^{-}	$\mathrm{H}_{2} \mathrm{CO}_{3}$
(B)	HCO_{3}^{-}	NO_{2}^{-}
(C)	HNO_{2}	$\mathrm{H}_{2} \mathrm{CO}_{3}$
$\boldsymbol{\gamma}$	(D)	HNO_{2}

17. Which best describes a $10.0 \mathrm{~mol} / \mathrm{L}$ solution of hydrofluoric acid?
(A) strong and concentrated
(B) strong and dilute
(C) weak and concentrated
(D) weak and dilute
18. The pH of a sample of rainwater has changed from 5.4 to 4.4. What is true of the rainwater?

	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	Factor
(A)	decrease	1
(B)	decrease	10
(C)	increase	1
$\boldsymbol{\gamma}$	(D)	increase

19. What is the pH of a $0.00946 \mathrm{~mol} / \mathrm{L}$ solution of barium hydroxide, $\mathrm{Ba}(\mathrm{OH})_{2}$?
(A) 1.723
(B) 2.024
(C) 11.976
(D) 12.277
20. What is the pH of a solution made by diluting 10.0 mL of a $0.214 \mathrm{~mol} / \mathrm{L}$ solution of nitric acid, $\mathrm{HNO}_{3}(\mathrm{aq})$, to a volume of 200.0 mL ?
(A) 0.670
(B) 1.971
(C) 12.029
(D) 13.330
21. What is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of a solution with a pH of 2.00 ?
(A) $0.0010 \mathrm{~mol} / \mathrm{L}$
(B) $0.010 \mathrm{~mol} / \mathrm{L}$
(C) $0.020 \mathrm{~mol} / \mathrm{L}$
(D) $\quad 2.0 \mathrm{~mol} / \mathrm{L}$
22. Which is representative of the weakest acid?
$\checkmark \quad(\mathrm{A}) \quad \mathrm{K}_{\mathrm{a}}=6.9 \times 10^{-8}$
(B) $\mathrm{K}_{\mathrm{a}}=3.6 \times 10^{-6}$
(C) $\mathrm{K}_{\mathrm{a}}=2.6 \times 10^{-4}$
(D) $\mathrm{K}_{\mathrm{a}}=1.9 \times 10^{-2}$
23. Which acid would be expected to have the lowest K_{a} value?

	Volume (mL)	pH	Conductivity
(A)	50.2	3.25	poor
(B)	40.5	3.25	good
(C)	20.7	5.50	good
$\boldsymbol{\tau}$ (D)	15.0	5.50	poor

24. What is the K_{a} of a weak acid, HA , if the pH at equilibrium for the acid is 2.20 and the equilibrium concentration of HA is $0.930 \mathrm{~mol} / \mathrm{L}$?
(A) 4.3×10^{-5}
(B) 6.8×10^{-3}
(C) 1.5×10^{2}
(D) 2.3×10^{4}
25. The blood's natural buffering system $\left(\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) / \mathrm{HCO}_{3}^{-}(\mathrm{aq})\right)$ allows it to maintain a pH of 7.35 . When a small amount of base enters the blood, with what species does it react?
(A) $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
(B) $\mathrm{HCO}_{3}^{-}(\mathrm{aq})$
(C) $\quad \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$
(D) $\mathrm{H}_{2} \mathrm{O}(\ell)$
26. A solution was tested with three indicators to give the results shown. What is the approximate pH of the solution?

Indicator	Final Colour
bromocresol green	blue
indigo carmine	blue
thymolphthalein	blue

(A) 5.00
(B) 9.00
(C) 10.8
(D) 11.6
27. Which term describes the colour change when an acid-base indicator is used?
(A) end point
(B) equilibrium point
(C) equivalence point
(D) neutralization point
28. If the K_{a} expression for an acid is $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}$, what is the K_{b} expression for its conjugate base?
(A)

(B)

$\checkmark \quad(\mathrm{C})$

(D)

29. What is a measure of the average kinetic energy of particles?
(A) heat capacity
(B) molar enthalpy
(C) specific heat
(D) temperature
30. What is the molar enthalpy change for the reaction below?

$$
\mathrm{MgCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{MgO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Chemical	$\Delta \mathrm{H}_{\mathrm{f}}^{\circ}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{MgCO}_{3}(\mathrm{~s})$	-1113
$\mathrm{MgO}(\mathrm{s})$	-602
$\mathrm{CO}_{2}(\mathrm{~g})$	-394

(A) $\quad-2109 \mathrm{~kJ} / \mathrm{mol}$
(B) $\quad-117 \mathrm{~kJ} / \mathrm{mol}$
(C) $117 \mathrm{~kJ} / \mathrm{mol}$
(D) $2109 \mathrm{~kJ} / \mathrm{mol}$
31. A piece of ice was dropped into liquid water to determine the molar heat of fusion of water. What is the best interpretation of the results as shown in the graph below?

(A) The ice finishes melting at 2 minutes and heat enters the container.
(B) The ice finishes melting at 2 minutes and heat leaves the container.
(C) The ice finishes melting at 5 minutes and heat enters the container.
(D) The ice finishes melting at 5 minutes and heat leaves the container.
32. If it takes 588 J of energy to change the temperature of a 28.7 g strip of copper from $26.3^{\circ} \mathrm{C}$ to $79.5^{\circ} \mathrm{C}$, what is the specific heat capacity of copper?
(A) $0.258 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
(B) $0.385 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
(C) $2.60 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
(D) $\quad 20.5 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
33. Which phase change is exothermic?
$\checkmark \quad(\mathrm{A})$ gas to liquid
(B) liquid to gas
(C) solid to gas
(D) solid to liquid
34. Which energy change occurs when water is heated from $37.0^{\circ} \mathrm{C}$ to $95.0^{\circ} \mathrm{C}$?
(A) kinetic energy decreases
(B) kinetic energy increases
(C) potential energy decreases
(D) potential energy increases
35. Which enthalpy diagram best represents the reaction below?

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\ell)+965.1 \mathrm{~kJ}
$$

(A)

(B)

(C)

(D)

36. The molar heat of solution for $\mathrm{NaOH}(\mathrm{s})$ is $-44.6 \mathrm{~kJ} / \mathrm{mol}$. What is true if a sample of $\mathrm{NaOH}(\mathrm{s})$ is dissolved in water in a calorimeter?

	Temperature of Water	Reaction
(A)	decreases	absorbs energy
(B)	decreases	releases energy
(C)	increases	absorbs energy
(D)	increases	releases energy

37. Samples of two compounds X and Y have identical masses and initial temperatures. They are placed in an insulated container and a quantity of heat is added. What can be concluded if the final temperature of X is lower than that of Y ?
(A) The molar mass of X is greater than that of Y .
(B) The molar mass of X is less than that of Y .
(C) The specific heat capacity of X is greater than that of Y .
(D) The specific heat capacity of X is less than that of Y .
38. The graph below shows the heating curve of a substance. What is its melting point?

(A) $250{ }^{\circ} \mathrm{C}$
(B) $327^{\circ} \mathrm{C}$
(C) $1749{ }^{\circ} \mathrm{C}$
(D) $1900{ }^{\circ} \mathrm{C}$
39. A student walks to school in 0.50 hours travelling at $6 \mathrm{~km} / \mathrm{h}$. Before she leaves her house she eats 60.0 g of granola. How much energy will remain when she arrives at school? (FV of granola is $20.3 \mathrm{~kJ} / \mathrm{g}$; walking at $6 \mathrm{~km} / \mathrm{h}$ burns $1675 \mathrm{~kJ} / \mathrm{h}$ of energy.)
(A) 380 kJ
(B) 460 kJ
(C) 840 kJ
(D) 1200 kJ
40. Given the reaction below, what is the molar enthalpy of formation for $\mathrm{NH}_{3}(\mathrm{~g})$?

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+92 \mathrm{~kJ}
$$

(A) $-92 \mathrm{~kJ} / \mathrm{mol}$
(B) $-46 \mathrm{~kJ} / \mathrm{mol}$
(C) $46 \mathrm{~kJ} / \mathrm{mol}$
(D) $92 \mathrm{~kJ} / \mathrm{mol}$
41. Which is a balanced oxidation half-reaction?
(A) $\quad \mathrm{Br}_{2}(\ell)+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-}(\mathrm{aq})$
(B) $2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})$
(C) $\mathrm{Sn}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Sn}(\mathrm{s})+2 \mathrm{e}^{-}$
(D) $\mathrm{Sn}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-}$
42. Which species is the reducing agent in the reaction below?

$$
5 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 5 \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

(A) $\mathrm{Fe}^{2+}(\mathrm{aq})$
(B) $\mathrm{Fe}^{3+}(\mathrm{aq})$
(C) $\mathrm{Mn}^{2+}(\mathrm{aq})$
(D) $\mathrm{MnO}_{4}^{-}(\mathrm{aq})$
43. What is the balanced equation for the reaction below?

$$
\mathrm{Co}^{3+}(\mathrm{aq})+\mathrm{Cd}(\mathrm{~g}) \quad \rightarrow \quad \mathrm{Co}^{2+}(\mathrm{aq})+\mathrm{Cd}^{2+}(\mathrm{aq})
$$

(A) $\mathrm{Co}^{3+}(\mathrm{aq})+\mathrm{Cd}(\mathrm{g}) \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})+\mathrm{Cd}^{2+}(\mathrm{aq})$
(B) $\mathrm{Co}^{3+}(\mathrm{aq})+2 \mathrm{Cd}(\mathrm{g}) \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})+2 \mathrm{Cd}^{2+}(\mathrm{aq})$
(C) $2 \mathrm{Co}^{3+}(\mathrm{aq})+\mathrm{Cd}(\mathrm{g}) \rightarrow 2 \mathrm{Co}^{2+}(\mathrm{aq})+\mathrm{Cd}^{2+}(\mathrm{aq})$
(D) $2 \mathrm{Co}^{3+}(\mathrm{aq})+2 \mathrm{Cd}(\mathrm{g}) \rightarrow 2 \mathrm{Co}^{2+}(\mathrm{aq})+2 \mathrm{Cd}^{2+}(\mathrm{aq})$
44. Which is the cathode in the diagram below?

(A) $\mathrm{Cu}(\mathrm{s})$
(B) $\mathrm{Cu}^{2+}(\mathrm{aq})$
(C) $\mathrm{Pb}(\mathrm{s})$
(D) $\mathrm{Pb}^{2+}(\mathrm{aq})$
45. What is the overall cell potential for the cell in which the reaction below occurs?

$$
\mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{NO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \mathrm{Au}(\mathrm{~s})+3 \mathrm{NO}_{3}^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq})
$$

(A) $\quad-0.90 \mathrm{~V}$
(B) $\quad-0.70 \mathrm{~V}$
(C) $\quad 0.70 \mathrm{~V}$
(D) $\quad 0.90 \mathrm{~V}$
46. How many moles of electrons are transferred if a current of 1.80 A is allowed to run for 125 s ?
(A) $3.89 \times 10^{-5} \mathrm{~mol}$
(B) $2.33 \times 10^{-3} \mathrm{~mol}$
(C) $4.29 \times 10^{2} \mathrm{~mol}$
(D) $1.39 \times 10^{3} \mathrm{~mol}$
47. Which is the strongest reducing agent in the table below?
\checkmark indicates evidence of reaction
\boldsymbol{X} indicates no evidence of reaction

	$\mathrm{W}(\mathrm{s})$	$\mathrm{X}(\mathrm{s})$	$\mathrm{Q}(\mathrm{s})$	$\mathrm{Z}(\mathrm{s})$
$\mathrm{W}^{-}(\mathrm{s})$	x	\checkmark	\checkmark	x
$\mathrm{X}^{2-}(\mathrm{s})$	x	x	\checkmark	x
$\mathrm{Q}^{2-}(\mathrm{s})$	x	x	x	x
$\mathrm{Z}^{3-}(\mathrm{s})$	\checkmark	\checkmark	\checkmark	x

(A) $\quad \mathrm{Q}(\mathrm{s})$
(B) $\quad \mathrm{Q}^{-}(\mathrm{aq})$
(C) $\quad \mathrm{Z}(\mathrm{s})$
(D) $\quad Z^{3-}(a q)$
48. Nickel (II) subsulfide, $\mathrm{Ni}_{3} \mathrm{~S}_{2}$, is mined at Voisey's Bay. What is the oxidation number of S in $\mathrm{Ni}_{3} \mathrm{~S}_{2}$?
(A) -3
(B) -2
(C) -1
(D) 0
49. What type of cell is a rechargeable nickel-cadmium cell?
(A) fuel
(B) hydrogen
(C) primary
(D) secondary
50. Which describes the energy conversion that occurs in an electrolytic cell?
(A) chemical to electrical
(B) chemical to mechanical
(C) electrical to chemical
(D) electrical to mechanical

Part II
Total Value: 50\%
Instructions: Complete all items in this section. Your responses should be clearly presented in a well-organized manner with proper use of units, formulae and significant digits where appropriate.
Value
2\% 51.(a) For the reaction shown, explain how increasing the temperature would increase the rate of production of $\mathrm{O}_{2}(\mathrm{~g})$.

$$
6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g})
$$

Increase in temperature causes reactant particles to move faster [$1 / 2$ mark]
thus colliding more often [$1 / 2$ mark] and with more intensity [$1 / 2$ mark].
More collisions will excess the E_{a} and have proper orientation [$1 / 2$ mark] ,
thus the rate increases.
3% (b) For the equilibrium reaction shown, sketch the change in concentration for each reactant and product as the volume of the container is decreased and the system re-establishes equilibrium.

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{PCl}_{3}(\mathrm{~g})
$$

[1.0 mark] for conc increase [1.0 mark] for the change [1.0 mark] for re-establish eqbm

Value

$$
\begin{aligned}
& 3 \% \quad 51 .(\mathrm{c}) \quad \begin{array}{l}
\text { Explain three changes that can be imposed on the sys } \\
\text { the maximum amount of } \mathrm{C}_{6} \mathrm{H}_{6} \text { to be produced. }
\end{array} \\
& \qquad 3 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{6}(\ell)+633 \mathrm{~kJ}
\end{aligned}
$$

Any three of the following four:

1) increase $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]$ - system shifts right to use it up producing $\mathrm{C}_{6} \mathrm{H}_{6}$
remove $\mathrm{C}_{6} \mathrm{H}_{6}$ as it forms - system shifts right to produce more of it
2) decrease temperature - system shifts right to produce energy thus
producing $\mathrm{C}_{6} \mathrm{H}_{6}$
3) increase pressure/decrease volume - system shifts right to produce less gas molecules thus producing $\mathrm{C}_{6} \mathrm{H}_{6}$
[1⁄2 mark] x 3 for the change; [112 mark] x 3 for the explanation
5% (d) If 2.00 mol of $\mathrm{HCl}(\mathrm{g})$ is placed in an evacuated 3.00 L container and the equilibrium below is established, calculate the equilibrium concentration of all reactants and products.

$$
2 \mathrm{HCl}(\mathrm{aq}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \mathrm{K}=3.4 \times 10^{-2}
$$

$\mathbf{c}=\underline{\mathbf{n}}=\underline{2.00 \mathrm{~mol}}=0.667 \mathrm{~mol} / \mathrm{L}$

V	3.00 L		
I	$0.667 \mathrm{~mol} / \mathrm{L}$	0	0
C	$-2 x$	$+x$	$+x$
E	$0.667-2 x$	x	x

$$
\begin{array}{ll}
\mathrm{K}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{Cl}_{2}\right]}{[\mathrm{HCl}]^{2}} & {[1 / 2 \text { mark }]} \\
0.034=\frac{x^{2}}{(0.667-2 x)^{2}} & {[112 \text { mark] }}
\end{array}
$$

taking square root of both sides is much quicker than solving the quadratic since the assumption will not work
$0.18(4)=\frac{x}{0.667-2 x}$
[1⁄2 mark]
0.12(3) $-0.36(8) x=x$
$x=0.089(9)$
[1/2 mark]
thus

$\left[\mathrm{H}_{2}\right]=\left[\mathrm{Cl}_{2}\right]=x=0.090 \mathrm{~mol} / \mathrm{L}$	$[112 \mathrm{mark}]$
$[\mathrm{HCl}]=0.667-2 x=0.667-(2 \times 0.089(9))=0.487 \mathrm{~mol} / \mathrm{L}$	$[112 \mathrm{mark}]$

[1.0 mark] for science communication
52.(a) Use an appropriate acid-base theory to explain why an aqueous solution of lithium hydrogen sulfate $\left(\mathrm{LiHSO}_{4}(\mathrm{aq})\right)$ turns blue litmus red.
$\mathrm{LiHSO}_{4} \rightarrow \mathrm{Li}^{+}+\mathrm{HSO}_{4}{ }^{-}$blue litmus red $\mathrm{HSO}_{4}{ }^{-}$is an acid

Either:

Modern Arrhenius: the $\mathrm{HSO}_{4}{ }^{-}$reacts with water to form $\mathrm{H}_{3} \mathbf{O}^{+}$ions

$$
\mathbf{H S O}_{4}^{-}+\mathbf{H}_{2} \mathbf{O} \rightarrow \mathbf{H}_{3} \mathbf{O}^{+}+\mathrm{SO}_{4}{ }^{2-}
$$

Or:
Bronsted-Lowry: the $\mathrm{HSO}_{4}{ }^{-}$donates a proton

$$
\mathbf{H S O}_{4}^{-}+\mathbf{H}_{2} \mathbf{O} \rightleftharpoons \mathbf{H}_{3} \mathbf{O}^{+}+\mathrm{SO}_{4}{ }^{2-}
$$

$4 \% \quad$ (b) What is the pH of the resulting solution prepared by mixing 25.00 mL of a $0.220 \mathrm{~mol} / \mathrm{L} \mathrm{KOH}(\mathrm{aq})$ solution with 30.00 mL of a $0.150 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}(\mathrm{aq})$ solution?

```
\(\mathrm{HCl}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{KCl}(\mathrm{aq}) \quad \quad(1 / 2\) mark \()\)
\(\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathbf{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\)
```

or
$n_{\text {(HCl) }}=c \mathrm{v}=(0.150 \mathrm{M})(0.03000 \mathrm{~L})=4.50 \times 10^{-3} \mathrm{~mol} \quad(1.0 \mathrm{mark})$
$\mathbf{n}_{\text {(КОН) }}=\mathbf{c ~ v}=(0.220 \mathrm{M})(0.02500 \mathrm{~L})=5.50 \times 10^{-3} \mathrm{~mol}$

Ratio: $\quad \mathrm{HCl}: \mathrm{KOH}$ is $\mathbf{1}: \mathbf{1}$
Excess OH^{-}: $4.50 \times 10^{-3} \mathrm{~mol}$ of HCl reacts with $4.50 \times 10^{-3} \mathbf{~ m o l ~ o f ~} \mathrm{KOH}$ leaving $0.00100 \mathrm{~mol} \mathrm{KOH} \quad(1 / 2$ mark)

```
c
    0.0550 L
    pOH = - log [OH
    pH=14.000-pOH = 14.000-1.74=12.26 (1/2 mark)
```


Value

$4 \% \quad$ 52.(c) A $0.10 \mathrm{~mol} / \mathrm{L}$ acid $\mathrm{HA}(\mathrm{aq})$ has a K_{a} value of 5.9×10^{-6}.
(i) What is the pH of the solution?

	HA	$+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons$	$\mathrm{H}_{3} \mathrm{O}^{+}$	A
I	0.10		0	0
C	$-x$		$+x$	$+x$
E	0.10-x		$+x$	$+\boldsymbol{x}$

check $\frac{\left[\mathrm{HOCl}_{\mathrm{i}}-\right.}{\mathrm{K}_{\mathrm{a}}}=\frac{0.10}{5.9 \times 10^{-6}}>500$ assume good $\quad(1 / 2$ mark)
thus assume $0.10-x \sim 0.10 \quad$ ($1 / 2$ mark)

$\mathrm{K}_{\mathrm{a}}=\underset{[\mathrm{HA}]}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}$	
$5.9 \times 10^{-6}=\frac{x^{2}}{0.10}$	$(1 / 2 \mathrm{mark})$
$x=7.6(8) \times 10^{-4}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	$(1 / 2 \mathrm{mark})$
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log 7.6(8) \times 10^{-4}=3.11$	$(1 / 2 \mathrm{mark})$

(ii) Calculate the percent ionization of the acid.

$$
\% \mathrm{rxn}=\frac{]_{\text {change- }} \times 100 \%}{[]_{\text {initial }}}=\frac{7.6(8) \times 10^{-4}}{0.10} \times 100 \%=0.77 \%
$$

[1.0 mark]
$4 \% \quad$ (d) A pipette is used to transfer four 25.00 mL samples of hydrochloric acid, $\mathrm{HCl}(\mathrm{aq})$, to flasks. Each sample is then titrated to the equivalence point using a solution prepared by dissolving 0.200 g of sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, to form 100.0 mL of solution. The results below were obtained. What is the concentration of $\mathrm{HCl}(\mathrm{aq})$?

Trial	1	2	3	4
Final burette reading (mL)	20.98	33.26	33.12	45.43
Initial burette reading (mL)	8.08	20.98	20.83	33.12
Volume of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ added (mL)	12.90	12.28	12.29	12.31

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{NaCl}(\mathrm{aq})
$$

Avg Volume used $=(12.28+12.29+12.31) \mathrm{mL} / 3=12.29(3) \mathrm{mL} \quad(1 / 2 \mathrm{mark})$
$\mathrm{n}\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)=\frac{\mathrm{m}}{\mathrm{M}}=\frac{0.200 \mathrm{~g}}{105.99 \mathrm{~g} / \mathrm{mol}}=0.00188(7) \mathrm{mol} \quad \quad$ (1.0 mark)
$c\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)=\frac{\mathrm{n}}{\mathrm{v}}=\frac{0.00188(7) \mathrm{mol}}{0.1000 \mathrm{~L}}=0.0188(7) \mathrm{mol} / \mathrm{L} \quad \quad(1 / 2 \mathrm{mark})$
$n_{\text {used }}\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)=\mathbf{c x v}=(0.0188(7) \mathrm{mol} / \mathrm{L})(0.01229(3) \mathrm{L})=2.32 \times 10^{-4} \mathrm{~mol}$
(1/2 mark)
$n(\mathbf{H C l})=2.32 \times 10^{-4} \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3} \times 2 \mathrm{~mol} \mathrm{HCl}=4.63(9) \times 10^{-4} \mathrm{~mol}$ $1 \mathrm{~mol} \mathrm{Na} \mathrm{CO}_{3}$
(1.0 mark)
$\mathbf{c}(\mathbf{H C l})=\frac{\mathrm{n}}{\mathrm{v}}=\frac{4.63(9) \times 10^{-4} \mathrm{~mol}}{0.02500 \mathrm{~L}}=0.0186 \mathrm{~mol} / \mathrm{L} \quad \quad(1 / 2 \mathrm{mark})$

Value

$4 \% \quad$ 53.(a) A 2.71 g sample of mercury at $72.1^{\circ} \mathrm{C}$ is cooled to $-38.8^{\circ} \mathrm{C}$ and solidified.
(i) Draw a cooling curve for this process.

melting point Hg	$-38.8{ }^{\circ} \mathrm{C}$
specific heat	$0.140 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{H}_{\text {fusion }}$	$8.9 \mathrm{~kJ} / \mathrm{mol}$

[1.0 mark]
(ii) How much heat is released during this process?

$$
\begin{array}{ll}
\mathrm{q}_{1}=\mathrm{mc} \Delta \mathrm{~T}=(2.71 \mathrm{~g})\left(0.140 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)\left(-38.8^{\circ} \mathrm{C}-72.1^{\circ} \mathrm{C}\right)=-42.0(8) \mathrm{J} & {[1.0 \mathrm{mark}]} \\
\mathrm{q}_{2}=\mathrm{n} \Delta \mathrm{H}_{\text {sol }}=\frac{2.71 \mathrm{~g}}{200.59 \mathrm{~g} / \mathrm{mol}} \mathrm{x}-8.9 \mathrm{~kJ} / \mathrm{mol}=-0.12 \mathrm{~kJ} & {[1.0 \mathrm{mark}]} \\
\Delta E_{T}=-0.0420(8) \mathrm{kJ}+-0.12 \mathrm{~kJ}=-0.16 \mathrm{~kJ} \text { or } 1.6 \times 10^{2} \mathrm{~J} & {[1.0 \text { mark] }}
\end{array}
$$

5% (b) $\quad 50.0 \mathrm{~mL}$ of $0.500 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}(\mathrm{aq})$ is mixed with 50.0 mL of $0.500 \mathrm{~mol} / \mathrm{L}$
$\mathrm{NaOH}(\mathrm{aq})$ in a coffee cup calorimeter. The initial temperature of each solution is $18.2{ }^{\circ} \mathrm{C}$ and the highest recorded temperature is $23.2^{\circ} \mathrm{C}$.

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)
$$

(i) Calculate the enthalpy of neutralization of HCl .

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{aq} \text { soln }}=\mathbf{5 0 . 0} \mathrm{g}+\mathbf{5 0 . 0} \mathrm{g}=100.0 \mathrm{~g} \quad \text { Assume } \mathrm{D}_{\mathrm{aq} \text { soln }}=\mathrm{D}_{\text {water }}=1.00 \mathrm{~g} / \mathrm{mL} \\
& \text { [} 1 / 2 \text { mark] } \\
& \mathbf{q}_{\text {rxn }}=-\mathbf{q}_{\text {aq soln }} \quad[1 / 2 \text { mark] } \\
& =-(100.0 \mathrm{~g})\left(4.184 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}\right)\left(23.2^{\circ} \mathrm{C}-18.2^{\circ} \mathrm{C}\right) \\
& =-20(92) \mathrm{J} \\
& =-2.0(9) \mathrm{kJ} \\
& \text { [1.0 mark] }
\end{aligned}
$$

$\mathbf{n}_{\mathrm{HCl}}=\mathbf{n}_{\text {NaOH }} \quad$ ratio $\mathbf{1 : 1}$ thus all HCl completely reacts

| $\mathbf{n}_{\text {HCI }}=\mathbf{c \times v}=(0.500 \mathrm{~mol} / \mathrm{L})(0.0500 \mathrm{~L})=0.0250 \mathrm{~mol}$ | $[1 / 2 \mathrm{mark}]$ |
| :--- | :--- | :--- |
| $\Delta H_{\text {neutralized } \mathrm{HCI}}=\frac{\mathbf{q}}{\mathrm{n}}=\frac{-2.0(9) \mathrm{kJ}}{0.0250 \mathrm{~mol}}=-84 \mathrm{~kJ}$ | $[112 \mathrm{mark}]$ |

[1.0 mark] for science communication
(ii) State two assumptions that must be made in this case in determining the enthalpy of neutralization.
Any 2 of the following 4:
[122 mark@]

1)	$\mathbf{q}_{\text {calorimeter }}=0$
2)	$\mathbf{D}_{\text {aq soln }}=\mathbf{D}_{\text {water }}$
3)	$\mathbf{c}_{\text {aq soln }}=\mathbf{c}_{\text {water }}$
4)	$\mathbf{q}_{\text {outside surroundings }}=\mathbf{0}$ (system is isolated)

Value

$4 \% \quad$ 53.(c). Using the data below, calculate the enthalpy of formation for $\mathrm{Bi}_{2} \mathrm{O}_{3}(\mathrm{~s})$.

$$
\begin{array}{rllll}
\mathrm{BiCl}_{3}(\mathrm{~s})+\mathrm{Bi}_{2} \mathrm{O}_{3}(\mathrm{~s}) & \rightarrow & 3 \mathrm{BiOCl}(\mathrm{~s}) & \Delta \mathrm{H}=-147.7 \mathrm{~kJ} & \\
\mathrm{Bi}(\mathrm{~s})+\frac{3}{2} \mathrm{Cl}_{2}(\mathrm{~g}) & \rightarrow & \mathrm{BiCl}_{3}(\mathrm{~s}) & \Delta \mathrm{H}_{\mathrm{f}}=-379.1 \mathrm{~kJ} & \mathbf{l x} \mathbf{- 1} \\
2 \mathrm{Bi}(\mathrm{~s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) & \rightarrow & \mathrm{Bi}_{2} \mathrm{O}_{3}(\mathrm{~s}) & \Delta \mathrm{H}_{\mathrm{f}}=? & \mathbf{l x} \mathbf{- 1} \\
\mathrm{Bi}(\mathrm{~s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) & \rightarrow & \mathrm{BiOCl}(\mathrm{~s}) & \Delta \mathrm{H}_{\mathrm{f}}=-366.9 \mathrm{~kJ} & \mathbf{l} \mathbf{x ~ 3}
\end{array}
$$

$$
\mathrm{BiCl}_{3}(\mathrm{~s}) \quad \rightarrow \quad \mathrm{Bi}(\mathrm{~s})+\frac{3}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=+379.1 \mathrm{~kJ}
$$

$$
\mathrm{Bi}_{2} \mathrm{O}_{3}(\mathrm{~s}) \quad \rightarrow \quad 2 \mathrm{Bi}(\mathrm{~s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=? \quad \mathrm{x}-1{ }_{[1 \mathrm{mark}]}
$$

$3 \mathrm{Bi}(\mathrm{s})+3 / 2 \mathrm{O}_{2}(\mathrm{~g})+3 / 2 \mathrm{Cl}_{2}(\mathrm{~g})$	\rightarrow	$3 \mathrm{BiOCl}(\mathrm{s})$	$\Delta \mathrm{H}=-1100.7 \mathrm{~kJ}$
$[1 \mathrm{mark}]$			

Thus

$$
\begin{aligned}
& 379.1 \mathrm{~kJ}+-\Delta \mathbf{H}+(-1100.7 \mathrm{~kJ})=-147.7 \mathrm{~kJ} \\
& -\Delta \mathbf{H}=-147.7 \mathrm{~kJ}+(-379.1 \mathrm{~kJ})+1100.7 \mathrm{~kJ} \\
& -\Delta \mathbf{H}=573.9 \mathrm{~kJ} \\
& \Delta \mathrm{H}_{\mathrm{f}}=-573.9 \mathrm{~kJ}
\end{aligned}
$$

$3 \% \quad 54$. (a) Under acidic conditions, balance the half-reaction below.

$$
\begin{array}{cll}
\mathrm{Ag}^{+}(\mathrm{aq})+ & \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2^{-}}(\mathrm{aq}) & \rightarrow \mathrm{SO}_{4}{ }^{2^{-}}(\mathrm{aq})+\mathrm{Ag}(\mathrm{~s}) \\
\mathbf{5} \mathbf{H}_{\mathbf{2}} \mathbf{O}+\mathbf{S}_{\mathbf{2}} \mathbf{O}_{\mathbf{3}}{ }^{2-} \rightarrow \mathbf{2} \mathbf{S O}_{4}{ }^{2-}+\mathbf{1 0} \mathbf{H}^{+}+\mathbf{8} \mathbf{e}^{-} & \\
\mathbf{A g}^{+}+\mathbf{e}^{-} \rightarrow \mathbf{A g} & \mathbf{x} \mathbf{8} & {[\mathbf{1} \text { mark }]} \\
{[1 / 2 \text { mark] }]}
\end{array}
$$

$$
\begin{aligned}
& 5 \mathrm{H}_{2} \mathrm{O}+\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow 2 \mathrm{SO}_{4}{ }^{2-}+10 \mathrm{H}^{+}+8 \mathrm{e}^{-} \\
& 8 \mathrm{Ag}^{+}+8 \mathrm{e}^{-} \rightarrow \mathbf{8 ~ A g}
\end{aligned}
$$

[$1 / 2$ mark]

$$
5 \mathrm{H}_{2} \mathrm{O}+\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}+8 \mathrm{Ag}^{+} \rightarrow 2 \mathrm{SO}_{4}{ }^{2-}+10 \mathrm{H}^{+}+8 \mathrm{Ag} \quad[1 \text { mark] }
$$

Value

4\% 54.(b) In an electrolytic cell, 0.061 g of $\mathrm{Zn}(\mathrm{s})$ was plated in 10.0 minutes from a solution of $\mathrm{ZnCl}_{2}(\mathrm{aq})$. What current was used?

Plating at the cathode: $\quad \mathbf{Z n}{ }^{2+}+2 \mathrm{e}^{-} \rightarrow \mathbf{Z n}$	[1⁄2 mark]
$\mathrm{n}(\mathrm{Zn})=\frac{\mathrm{m}}{\mathrm{M}}=\frac{0.061 \mathrm{~g}}{65.38 \mathrm{~g} / \mathrm{mol}}=9.3(3) \times 10^{-4} \mathrm{~mol}$	[112 mark]
$n\left(e^{-}\right)=9.3(3) \times 10^{-4} \mathrm{~mol} \mathrm{Zn} \times \frac{2 \mathrm{~mol} \mathrm{e}}{}{ }^{-}=0.0018(7) \mathrm{mol}$	[1⁄2 mark]
$Q=n_{\text {e- }} \times \mathrm{F}=(0.0018(7) \mathrm{mol})\left(96500 \mathrm{C} / \mathrm{mol} \mathrm{e}{ }^{-}\right)=180 \mathrm{C}$	[1/2 mark]
$I=\frac{Q}{t}=\frac{180 \mathrm{C}}{100 \min \mathrm{v} 60 \mathrm{~s}}=0.30 \mathrm{~A}$	[1.0 mark]

[1.0 mark] for science communication

(c) A student constructed an electrochemical cell as shown. The aqueous cell solutions had a concentration of $1 \mathrm{~mol} / \mathrm{L}$ with respect to the metal ions present. The solution in one half-cell is initially an orange colour due to the mixture of the pale green Fe^{2+} ions and the orange Fe^{3+} ions. The other half is coloured blue due to the Cu^{2+} ions. Describe the colour changes the student would see in each half of the cell if the reaction proceeded until no further change took place.

$\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+} \quad \mathrm{E}^{\circ}=+0.77 \mathrm{~V}$
$\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu} \mathrm{E}^{\circ}=+0.34 \mathrm{~V}$ this will become the oxidation at the anode
[1.0 mark]
Negative ions flow from cathode solution towards the anode solution.
Positive ions (blue $\mathbf{C u}^{\mathbf{2 +}}$) flow from anode solution towards cathode solution.
[1.0 mark]
Orange solution will become orange-blue color as Cu^{2+} ions migrate in.
Blue solution will become a paler blue as Cu^{2+} ions leave
\qquad

