PART I
 Total Value: 50\%

Instructions: Shade the letter of the correct answer on the computer scorable answer sheet provided.

1. In the potential energy diagram below, which represents the activation energy for the reverse reaction?

(A) A
(B) B
(C) C
$\boldsymbol{\nu}(\mathrm{D}) \quad \mathrm{D}$
2. Carbon monoxide, $\mathrm{CO}(\mathrm{g})$, reacts with nitrogen dioxide, $\mathrm{NO}_{2}(\mathrm{~g})$ according to the reaction below. Which describes the reaction if $\mathrm{E}_{\mathrm{a} \text { (forward) }}=134 \mathrm{~kJ}$?

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g})+226 \mathrm{~kJ}
$$

	$\mathrm{E}_{\mathrm{a}(\text { reverse) }}$	Reaction type
(A)	92	endothermic
(B)	92	exothermic
(C)	360	endothermic
$\boldsymbol{\nu}$ (D)	360	exothermic

3. Which reaction could have produced the data below?

Time (min)	pH
0.0	1.301
1.0	1.398
2.0	1.523
3.0	1.699
4.0	2.000

(A) $\quad \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})$
(B) $\quad \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{KI}(\mathrm{aq}) \rightarrow 2 \mathrm{KCl}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{~s})$
$\boldsymbol{\nu}(\mathrm{C}) \quad 2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Mg}(\mathrm{s}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
(D) $\quad \mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{SO}_{3}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
4. What effect does a catalyst have on a reaction?
(A) changes $\Delta \mathrm{H}$ of the reaction
$\boldsymbol{\checkmark}$ (B) decreases the activation energy
(C) decreases the potential energy of the products
(D) increases the kinetic energy of the reactants
5. Under standard conditions, which reacts most rapidly with oxygen gas?
$\boldsymbol{\nu}(\mathrm{A}) \quad \mathrm{CH}_{4}(\mathrm{~g})$
(B) $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$
(C) $\mathrm{C}_{10} \mathrm{H}_{22}(\ell)$
(D) $\quad \mathrm{C}_{25} \mathrm{H}_{52}(\mathrm{~s})$
6. For the reactions below, what is the reaction intermediate?

$$
\begin{array}{ll}
\text { Step 1: } & \mathrm{O}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \\
\text { Step 2: } & \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
\end{array}
$$

(A) NO
(B) $\quad \mathrm{NO}_{2}$
(C) O
(D) O_{2}
7. In which reaction will increasing the volume of the reaction vessel cause a shift in the equilibrium to favour the products?

```
\(A)}\quad2\mp@subsup{\textrm{CO}}{2}{}(\textrm{g})\rightleftharpoons2\textrm{CO}(\textrm{g})+\mp@subsup{\textrm{O}}{2}{}(\textrm{g}
```

(B) $2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$
(C) $2 \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(D) $\quad 2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
8. Which change in the equilibrium below will result in the highest concentration of $\mathrm{SO}_{2}(\mathrm{~g})$?

$$
\mathrm{S}_{8}(\mathrm{~s})+8 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 8 \mathrm{SO}_{2}(\mathrm{~g})+\text { heat }
$$

(A) add catalyst
\checkmark (B) decrease temperature
(C) increase pressure
(D) remove $\mathrm{O}_{2}(\mathrm{~g})$
9. Which is not included in an equilibrium expression?
(A) $\quad \mathrm{CO}_{2}(\mathrm{~g})$
(B) $\mathrm{Fe}^{2+}(\mathrm{aq})$
(C) $\mathrm{HCl}(\mathrm{aq})$
$\boldsymbol{V}(\mathrm{D}) \quad \mathrm{Zn}(\mathrm{s})$
10. Which corresponds to an equilibrium in which the products are favoured?
(A) $\mathrm{K}=0$
(B) $\mathrm{K}=1 \times 10^{-5}$
(C) $\mathrm{K}=1$
$\boldsymbol{\nu}(\mathrm{D}) \quad \mathrm{K}=1 \times 10^{5}$
11. What is the equilibrium constant, K , for the reaction below given the equilibrium concentrations: $\mathrm{H}_{2} \mathrm{CO}_{3}=3.3 \times 10^{-2} \mathrm{~mol} / \mathrm{L}, \mathrm{HCO}_{3}^{-}=1.2 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$, $\mathrm{H}_{3} \mathrm{O}^{+}=1.2 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$?

$$
\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftharpoons \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

$\boldsymbol{\nu}$ (A) $\quad 4.4 \times 10^{-7}$
(B) 3.6×10^{-3}
(C) 2.8×10^{2}
(D) 2.3×10^{6}
12. What is the equilibrium concentration of $\mathrm{I}_{2}(\mathrm{~g})$ when the concentration of $\mathrm{I}(\mathrm{g})$ is $0.00100 \mathrm{~mol} / \mathrm{L}$?

$$
\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{I}(\mathrm{~g}) \quad \mathrm{K}=3.8 \times 10^{-5}
$$

(A) $\quad 0.026 \mathrm{~mol} / \mathrm{L}$
(B) $0.038 \mathrm{~mol} / \mathrm{L}$
(C) $26 \mathrm{~mol} / \mathrm{L}$
(D) $38 \mathrm{~mol} / \mathrm{L}$
13. Which operationally defines a potassium hydroxide solution?
$\boldsymbol{\nu}(\mathrm{A})$ feels slippery
(B) $\mathrm{pH}=2.0$
(C) tastes sour
(D) turns litmus red
14. According to Arrhenius theory, which substance is a base?
(A) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
(B) $\mathrm{CH}_{3} \mathrm{OH}$
$\boldsymbol{\nu}$ (C) KOH
(D) $\quad \mathrm{Na}_{2} \mathrm{CO}_{3}$
15. Which properties best describe a $0.10 \mathrm{~mol} / \mathrm{L}$ solution with the highest pH ?

	Reaction with active metal	Electrical conductivity	Litmus
$\boldsymbol{\mathcal { V }}$ (B)	moderate	moderate	red
(C)	none	high	blue
(D)	none	moderate	blue
	vigorous	high	red

16. Which describes an amphoteric substance?
(A) can only accept a proton
(B) can only accept an electron
$\boldsymbol{\nu}$ (C) can accept or donate a proton
(D) can accept or donate an electron
17. Which describes the percent dissociation of a strong base?
(A) 25%
(B) 50%
(C) 75%
$\boldsymbol{\nu}$ (D) 100%
18. Which is the strongest base?
$\boldsymbol{V}(\mathrm{A}) \quad \mathrm{HBO}_{3}{ }^{2-}$
(B) HSO_{4}^{-}
(C) PO_{4}^{3-}
(D) $\quad \mathrm{SO}_{4}{ }^{2-}$
19. What is the net ionic equation for the reaction between $\mathrm{HF}(\mathrm{aq})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$?
(A) $2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{~F}^{-}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+2 \mathrm{NaF}(\mathrm{aq})$
(B) $2 \mathrm{HF}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+2 \mathrm{~F}^{-}(\mathrm{aq})$
(C) $\quad 2 \mathrm{HF}(\mathrm{aq})+2 \mathrm{Na}^{+}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{Na}^{+}(\mathrm{aq})+2 \mathrm{~F}^{-}(\mathrm{aq})$
(D) $2 \mathrm{HF}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+2 \mathrm{NaF}(\mathrm{aq})$
20. What is the pH for a solution with a hydronium ion concentration of 1.25×10^{-4} ?
(A) -10.097
(B) -3.903
$\boldsymbol{\nu}$ (C) 3.903
(D) 10.097
21. What is the pOH for a $0.110 \mathrm{~mol} / \mathrm{L}$ strong acid solution?
(A) 0.110
(B) 0.959
$\boldsymbol{\nu}$ (C) 13.041
(D) 13.890
22. What is $\left[\mathrm{OH}^{-}\right]$for a solution with $\mathrm{pH}=12.25$?
(A) $5.6 \times 10^{-13} \mathrm{~mol} / \mathrm{L}$
(B) $1.8 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$
(C) $\quad 1.7 \mathrm{~mol} / \mathrm{L}$
(D) $\quad 65 \mathrm{~mol} / \mathrm{L}$
23. Which K_{a} value represents a solution with the lowest pOH ?
\boldsymbol{v} (A) $\quad 1.7 \times 10^{-9}$
(B) 1.6×10^{-6}
(C) 1.9×10^{-5}
(D) 1.1×10^{-2}
24. Given below is an incomplete K_{a} or K_{b} expression. Which species, X , would give a correct expression?
(A) $\mathrm{H}_{2} \mathrm{O}$

$$
\frac{[\mathrm{X}]\left[\mathrm{HSO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{SO}_{3}\right]}
$$

$\boldsymbol{\nu}$ (B) $\quad \mathrm{H}_{3} \mathrm{O}^{+}$
(C) OH^{-}
(D) $\mathrm{SO}_{3}{ }^{2-}$
25. Which is the best example of a buffer solution?
(A) $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$ and $\mathrm{NH}_{3}(\mathrm{aq})$
(B) $\mathrm{HBr}(\mathrm{aq})$ and $\mathrm{Br}^{-}(\mathrm{aq})$
$\boldsymbol{\nu}(\mathrm{C}) \quad \mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq})$ and $\mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})$
(D) $\quad \mathrm{KOH}(\mathrm{aq})$ and $\mathrm{OH}^{-}(\mathrm{aq})$
26. Which is the best indicator for the titration curve below?

(A) indigo carmine
(B) methyl orange
(C) phenol red
(D) thymolphthalein
27. A flask containing an unknown solution of concentration $0.100 \mathrm{~mol} / \mathrm{L}$, is tested with three indicators. Based on the data below, what is the pH of this solution?

Indicator	Colour
chlorophenol red	red
phenolphthalein	colourless
bromothymol blue	green

(A) 5.8
(B) 6.0
$\boldsymbol{\nu}$ (C) $\quad 7.0$
(D) 7.6
28. Which best describes the sample that is titrated to give the titration curve below?

(A) strong acid

Volume of titrant (mL)
$\boldsymbol{\nu}$ (B) strong base
(C) weak acid
(D) weak base
29. Which describes the process and the $\Delta \mathrm{H}$ when heat is released from a system to its surroundings?

	Process	$\Delta \mathrm{H}$
(A)	endothermic	negative
(B)	endothermic	positive
$\boldsymbol{\Omega}$ (C)	exothermic	negative
(D)	exothermic	positive

30. What mass of water will increase its temperature from $20.0{ }^{\circ} \mathrm{C}$ to $80.0^{\circ} \mathrm{C}$ when 31 kJ of heat is applied?
(A) 0.12 g
(B) 94 g
\boldsymbol{V} (C) 120 g
(D) 7800 g
31. In the diagram below, which describes the energy change from A to B ?

(A) kinetic energy is decreasing
(B) kinetic energy is increasing
(C) potential energy is decreasing
(D) potential energy is increasing
32. Which is the correct unit for heat capacity?
(A) J
(B) J / g
(C) $\mathrm{J} /{ }^{\circ} \mathrm{C}$
(D) $\mathrm{J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
33. Which equation represents the standard formation of sodium hydrogen carbonate, NaHCO_{3} ?
$\boldsymbol{\nu}(\mathrm{A}) \quad \mathrm{Na}(\mathrm{s})+\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NaHCO}_{3}(\mathrm{~s})$
(B) $\quad \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Na}(\mathrm{s})+\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g})$
(C) $\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{NaHCO}_{3}(\mathrm{~s})$
(D) $\quad \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq})$
34. What mass of argon condenses if there is an energy change of 8.00 kJ ? $\left(\Delta \mathrm{H}_{\text {vap }}\right.$ for argon is $6.30 \mathrm{~kJ} / \mathrm{mol}$)
(A) 0.0318 g
(B) 1.27 g
(C) 31.5 g
$\boldsymbol{\nu}$ (D) $\quad 50.7 \mathrm{~g}$
35. Which is best measured using a bomb calorimeter?
```
(A) \DeltaH Comb
(B) }\Delta\mp@subsup{H}{\mathrm{ fus}}{
(C) \DeltaH Holn
(D) }\Delta\mp@subsup{\textrm{H}}{\mathrm{ neut }}{
```

36. The equation below shows the enthalpy change that occurs when calcium chloride dissolves in water. Which describes this process?

$$
\mathrm{CaCl}_{2}(\mathrm{~s}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})+82.8 \mathrm{~kJ}
$$

	$\Delta \mathrm{H}_{\text {soln }}(\mathrm{kJ} / \mathrm{mol})$	Water temperature
(A)	-82.8	decreases
$\boldsymbol{\nu}(\mathrm{B})$	-82.8	increases
(C)	82.8	decreases
(D)	82.8	increases

37. Which is the most likely $\Delta \mathrm{H}$ for a nuclear change?
(A) $10^{-6} \mathrm{~kJ} / \mathrm{mol}$
(B) $10^{-3} \mathrm{~kJ} / \mathrm{mol}$
(C) $10^{3} \mathrm{~kJ} / \mathrm{mol}$
$\boldsymbol{\sim}$ (D) $\quad 10^{9} \mathrm{~kJ} / \mathrm{mol}$
38. How much energy is contained in a 50.0 g cereal bar if its fuel value is $0.0134 \mathrm{~kJ} / \mathrm{g}$?
(A) $2.68 \times 10^{-4} \mathrm{~kJ}$
(B) $1.34 \times 10^{-2} \mathrm{~kJ}$
\boldsymbol{V} (C) $\quad 6.70 \times 10^{-1} \mathrm{~kJ}$
(D) $3.73 \times 10^{3} \mathrm{~kJ}$
39. What is the enthalpy change for the reaction below?

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\ell)
$$

Compound	$\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$	52.4
$\mathrm{H}_{2} \mathrm{O}(\ell)$	-285.8
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\ell)$	-277.6

(A) $\quad-511 \mathrm{~kJ}$
\boldsymbol{V} (B) $\quad-44.2 \mathrm{~kJ}$
(C) 44.2 kJ
(D) 511 kJ
40. The diagram shown illustrates the formation enthalpies of $\mathrm{V}(\mathrm{s}), \mathrm{Cl}_{2}(\mathrm{~g})$ and some of their compounds. What is the energy change when 1.00 mol of $\mathrm{VCl}_{4}(\ell)$ decomposes to form $\mathrm{VCl}_{2}(\mathrm{~s})$ and $\mathrm{Cl}_{2}(\mathrm{~g})$?
(A) -117 kJ

(B) -71.3 kJ
(C) 71.3 kJ
$\boldsymbol{\nu}(\mathrm{D}) \quad 117 \mathrm{~kJ}$
41. Which describes oxidation?
(A) gain of electrons
(B) gain of protons
(C) loss of electrons
(D) loss of protons
42. What is the oxidation number of O in $\mathrm{O}_{2}(\mathrm{~g})$?
(A) -2
(B) 0
(C) +1
(D) +2
43. Which species is reduced in the reaction below?

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{CuSO}_{4}(\mathrm{aq}) \rightarrow \mathrm{ZnSO}_{4}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s})
$$

(A) $\mathrm{Zn}(\mathrm{s})$
(B) $\mathrm{Zn}^{2+}(\mathrm{aq})$
(C) $\mathrm{Cu}(\mathrm{s})$
$\boldsymbol{\nu}$ (D) $\mathrm{Cu}^{2+}(\mathrm{aq})$
44. What does the salt bridge maintain in an electrochemical cell?
(A) constant pH
(B) constant temperature
$\boldsymbol{\nu}$ (C) electrical neutrality
(D) initial concentration of ions
45. What is the order for electrochemical cell notation?
(A) anode |anode ion solution \mid cathode ion solution |cathode
(B) anode ion solution|anode $\|$ cathode ion solution \mid cathode
(C) cathode \mid cathode ion solution $|\mid$ anode $|$ anode ion solution
(D) cathode ion solution \mid cathode $|\mid$ anode $|$ anode ion solution
46. What is the oxidation half-reaction for the electrochemical cell below?

$$
\mathrm{Ni}\left|\mathrm{Ni}^{2+}\right|\left|\mathrm{Cd}^{2+}\right| \mathrm{Cd}
$$

(A) $\quad \mathrm{Cd} \rightarrow \mathrm{Cd}^{2+}+2 \mathrm{e}^{-}$
(B) $\mathrm{Cd}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cd}$
(C) $\mathrm{Ni} \rightarrow \mathrm{Ni}^{2+}+2 \mathrm{e}^{-}$
(D) $\mathrm{Ni}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}$
47. What is the cell voltage, E°, for the electrochemical cell formed from the half-reactions below?

$$
\begin{aligned}
& \mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{~s}) \\
& \mathrm{Hg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Hg}(\ell)
\end{aligned}
$$

(A) -1.30 V
(B) -0.40 V
(C) +0.40 V
$\boldsymbol{\nu}$ (D) $\quad+1.30 \mathrm{~V}$
48. Which would balance the reaction below?

$$
\mathrm{X}^{-} \rightarrow \mathrm{X}^{2-}
$$

(A) add one electron to the product side
$\boldsymbol{\nu}$ (B) add one electron to the reactant side
(C) add two electrons to the product side
(D) add two electrons to the reactant side
49. Which describes the reaction below?

$$
\mathrm{Ni}(\mathrm{~s})+\mathrm{Pb}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Ni}^{2+}(\mathrm{aq})+\mathrm{Pb}(\mathrm{~s})
$$

	$\mathrm{E}^{\circ}(\mathrm{V})$	Spontaneity
(A)	-0.13	non-spontaneous
(B)	-0.13	spontaneous
(C)	0.13	non-spontaneous
$\boldsymbol{\gamma}$ (D)	0.13	spontaneous

50. A copper spoon was electroplated with silver. Which reaction occurred at the cathode during electroplating?
(A) $\quad \mathrm{Ag} \rightarrow \mathrm{Ag}^{+}+\mathrm{e}^{-}$
(B) $\mathrm{Ag}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}$
(C) $\mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}^{-}$
(D) $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}$

PART II Total Value: 50\%

Instructions: Complete all items in this section. Your responses should be clearly presented in a well-organized manner with proper use of units, formulae and significant figures where appropriate.
Value
$2 \% \quad$ 51.(a) Explain the effect on reaction rate if the concentration of $\mathrm{CO}(\mathrm{g})$ is increased in the reaction below.

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{Fe}(\mathrm{~s})+24.8 \mathrm{~kJ}
$$

Reaction Rate will increase. [1 mark]

- more reacting particles [$1 / 2$ mark] result in more collisions with proper
orientation and sufficient energy [$1 / 2$ mark] resulting in an increased rate
\qquad
\qquad
\qquad

3\% (b) Consider the reaction mechanism below.

Step	Reaction Mechanism	Rate
1	$\mathrm{I}_{2} \rightarrow 2 \mathrm{I}$	very fast
2	$\mathrm{I}+\mathrm{H}_{2} \rightarrow \mathrm{H}_{2} \mathrm{I}$	fast
3	$\mathrm{H}_{2} \mathrm{I}+\mathrm{I} \rightarrow 2 \mathrm{HI}$	slow

i) Write the equation for the overall reaction.

$$
\mathrm{I}_{2}+\mathrm{H}_{2} \rightarrow 2 \mathbf{H I} \quad \text { [1 mark] }
$$

ii) Explain why increasing the concentration of I_{2} will have little effect on the overall reaction rate.
\qquad
The rate determining step (RDS) determines the overall reaction
rate; ie: the slowest step. [1 mark]
I_{2} is not in the RDS. [1 mark]
$2 \% \quad$ 51.(c) Smog consists of many different gases including $\mathrm{N}_{2} \mathrm{O}_{4}$ which is colourless and NO_{2} which is brown. Using the equilibrium below, explain why some people believe that smog is not a problem in winter.
$\underset{\text { brown }}{\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})}+59 \mathrm{~kJ} \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
colourless

Winter means the temperature decreases. LCP predicts the system will try to increase the temperature by shifting left to produce energy. [1 mark]

A shift left causes the air to become less brown or even
colourless. Since smog cannot be seen, it is believed not to be a

```
problem. [1 mark]
```

$4 \% \quad$ (d) $\quad 4.00 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ is placed in a 2.00 L flask at $1400^{\circ} \mathrm{C}$. When the equilibrium below is reached, 6.00% of the $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ has reacted. Calculate the value of the equilibrium constant.

Value

$2 \% \quad$ 51.(e) The system below is allowed to reach equilibrium at $400^{\circ} \mathrm{C}$.

$$
4 \mathrm{HCl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=-114 \mathrm{~kJ}
$$

The equilibrium concentration of Cl_{2} is graphed below.

- At t_{1} the reaction vessel is heated and the reaction is allowed to reestablish equilibrium.
- \quad At $_{2}$ a catalyst is added.

For each change, extend the line to indicate the effect on $\left[\mathrm{Cl}_{2}\right]$.

2% 52.(a) Determine the $\mathrm{Br} \varnothing$ nsted-Lowry acid-base neutralization reaction that occurs between $\mathrm{NaHSO}_{4}(\mathrm{aq})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{aq})$.

$4 \% \quad$ (b) Calculate the pH of a $2.97 \mathrm{~mol} / \mathrm{L} \mathrm{F}^{-}(\mathrm{aq})$ solution given $\mathrm{K}_{\mathrm{b}}=1.15 \times 10^{-11}$.

$$
\mathbf{F}^{-} \quad+\mathbf{H}_{2} \mathbf{O} \rightleftharpoons \mathbf{O H}^{-} \quad+\quad \mathbf{H F}
$$

I	2.97	0	0	
C	$-x$	$+x$	$+x$	
E	$2.97-x$	$+x$	$+x$	$(1 / 2$ mark $)$

check $\frac{\left[F^{-}\right]_{i_{-}}}{\mathrm{K}_{\mathrm{b}}}=\frac{2.97}{1.15 \times 10^{-11}}>500$ thus assume $2.97-x \sim 2.97$
$\mathrm{K}_{\mathrm{b}}=\frac{[\mathrm{HF}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{F}^{-}\right]} \quad \quad(1 / 2$ mark $)$

$$
1.15 \times 10^{-11}=\frac{x^{2}}{2.97} \quad(1 / 2 \text { mark })
$$

$\mathrm{x}=5.84(4) \times 10^{-6}=\left[\mathrm{OH}^{-}\right]$	$(1 / 2 \mathrm{mark})$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log 5.84(4) \times 10^{-6}=5.233$	$(1 / 2 \mathrm{mark})$
$\mathrm{pH}=14.000-\mathrm{pOH}=14.000-5.233=8.767$	$(1 / 2 \mathrm{mark})$

4\% 52.(c) A titration experiment was performed by adding $0.120 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}(\mathrm{aq})$ solution to 30.0 mL of an unknown monoprotic acid solution. Given the titration curve below, determine the concentration of the unknown acid.

Volume of titrant (mL)
From the graph, the volume of $\mathbf{N a O H}$ added at the equivalence point is $\mathbf{2 0 . 0} \mathbf{~ m L}$. [1⁄2 mark]

Science Communication	$1 / 2$ mark units $1 / 2$ mark significant figures

(d) If a $0.250 \mathrm{~mol} / \mathrm{L}$ solution of a weak acid, HA , has a pH of 1.415 , determine the acid.

Value

5\% 53.(a) A student assembled the following apparatus to determine the molar enthalpy of combustion for ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\ell)$ and the results below were recorded. If all of the heat produced from the ethanol is absorbed by the water and the aluminum calorimeter, calculate the molar enthalpy of combustion for ethanol.

mass of $\mathrm{H}_{2} \mathrm{O}$	500.0 g
mass of aluminum calorimeter	42.21 g
mass of ethanol burned	6.13 g
initial temperature of water and aluminum	$25.0{ }^{\circ} \mathrm{C}$
final temperature of water and aluminum	$91.0{ }^{\circ} \mathrm{C}$
$\mathrm{c}_{\text {aluminum }}$	$0.900 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
$\mathrm{c}_{\text {water }}$	$4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{q}_{\text {lost }}=-\mathrm{q}_{\text {gain }} \quad \Delta \mathrm{T}=91.0^{\circ} \mathrm{C}-25.0^{\circ} \mathrm{C}=66.0^{\circ} \mathrm{C} \\
& q\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathbf{O H}\right)=-\left[(m c \Delta T)_{\mathrm{H}_{2} \mathrm{O}}+(m c \Delta T)_{\mathrm{Al}}\right] \\
& =-\left[\left(500.0 \mathrm{~g} \times 4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \times 66.0^{\circ} \mathrm{C}\right)+\left(42.21 \mathrm{~g} \times 0.900 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \times 66.0^{\circ} \mathrm{C}\right)\right. \\
& =-[138(072) \mathrm{J}+250(7) \mathrm{J}] \quad \text { (2 marks) } \\
& =-140(579) \mathrm{J} \\
& =-141 \mathrm{~kJ} \\
& \text { (1 mark) }
\end{aligned}
$$

Science Communication $1 / 2$ mark units $1 / 2$ mark significant figures

Value
4\% 53.(b) Using the data determine $\Delta \mathrm{H}$ for the reaction below.

$2 \mathrm{LiH}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Li}_{2} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\ell)$					
x 1	$2 \mathrm{LiOH}(\mathrm{s})$	\rightarrow	$\mathrm{Li}_{2} \mathrm{O}(\mathrm{s})+$	$\mathrm{H}_{2} \mathrm{O}(\ell)$	$\Delta \mathrm{H}=+379.1 \mathrm{~kJ}$
x-2	$\mathrm{LiOH}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow$	\rightarrow	LiH(s) +	$\mathrm{H}_{2} \mathrm{O}(\ell)$	$\Delta \mathrm{H}=+111.0 \mathrm{~kJ}$
x 1	$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow$	\rightarrow	$2 \mathrm{H}_{2} \mathrm{O}(\ell)$		$\Delta \mathrm{H}=-285.9 \mathrm{~kJ}$
	$2 \mathrm{LiOH}(\mathrm{s})$ -	\rightarrow	$\mathbf{L i}_{2} \mathbf{O}(\mathrm{~s})+$	$\mathrm{H}_{2} \mathrm{O}(\ell)$	$\Delta \mathrm{H}=+379.1 \mathrm{~kJ}$
	$\mathbf{2 L i H}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\ell)$	\rightarrow	$2 \mathrm{LiOH}(\mathrm{s})$	$+2 \mathrm{H}_{2}(\mathrm{~g})$	$\Delta \mathrm{H}=-222.0 \mathrm{~kJ}$
	$\mathbf{2} \mathbf{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$	\rightarrow	$\mathbf{2} \mathrm{H}_{2} \mathrm{O}(\ell)$		$\Delta H=-285.9 \mathrm{~kJ}$

$$
2 \mathrm{LiH}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow \quad \mathrm{Li}_{2} \mathrm{O}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\ell) \quad \Delta \mathrm{H}=-128.8 \mathrm{~kJ}
$$

4% (c) The fuel value of methane is $55.48 \mathrm{~kJ} / \mathrm{g}$. Using the data below, calculate the energy required to break the $\mathrm{C}-\mathrm{H}$ bond.

$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	
Bond	Bond Energy $(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{H}-\mathrm{O}$	460
$\mathrm{C}=\mathrm{O}$	745
$\mathrm{O}=\mathrm{O}$	498

$$
\begin{aligned}
& \Delta \mathrm{H}=55.48 \mathrm{~kJ} / \mathrm{g} \times 16.05 \mathrm{~g} / \mathrm{mol})=890.4(5) \mathrm{kJ} / \mathrm{mol} \quad \text { (} 1 \mathrm{mark} \text {) } \\
& \text { since } \Delta \mathrm{H}_{\text {comb }}=-890.4(5) \mathrm{kJ} / \mathrm{mol} \quad \text { (combustion is exo) } \quad(1 / 2 \text { mark sign) } \\
& 4 x(C-H)+2 x(O=O) \rightarrow 2 x(C=O)+4 x(O-H) \\
& \begin{array}{rlr}
\Delta H=\Sigma \text { BE }_{\text {reactants }}-\Sigma \text { BE }_{\text {products }} \\
-890.4(5) \mathrm{kJ} & =[(4 \times \mathrm{C}-\mathrm{H})+(2 \times 498)]-[(2 \times 745)+(4 \times 460)] \\
-890.4(5) \mathrm{kJ} & =[(4 \times \mathrm{C}-\mathrm{H})+996]-[1490+1840] \\
-890.4(5) \mathrm{kJ} & =(4 \times \mathrm{C}-\mathrm{H})+996-3330 \mathrm{~kJ} \\
4 \times \mathrm{C}-\mathrm{H} & =-\mathbf{8 9 0 . 4 (5) k J}-996 \mathrm{~kJ}+3330 \mathrm{~kJ} \\
4 \times \mathrm{C}-\mathrm{H} & =\mathbf{1 4 4 3 . (5 5) \mathrm { kJ }} \\
\mathrm{C}-\mathrm{H} & =\mathbf{3 6 1} \mathrm{kJ} / \mathrm{mol}
\end{array}
\end{aligned}
$$

Value

3\% 54.(a) Balance the reaction below under acidic conditions.

(b) $\mathrm{E}^{\circ}{ }_{\text {cell }}$ for the cell below is +2.12 V .

$$
\mathrm{La}\left|\mathrm{La}^{3+}\right|\left|\mathrm{Cd}^{2+}\right| \mathrm{Cd}
$$

i) Write the balanced overall cell reaction.

ii) Calculate the standard reduction potential for the $\mathrm{La} \mid \mathrm{La}^{3+}$ half-cell.

$$
\begin{aligned}
& \mathbf{L a} \rightarrow \mathbf{L a}^{3+}+3 \mathbf{e}^{-} \quad \xi=\text { ? } \\
& \mathrm{Cd}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathbf{C d} \quad \xi=-0.40 \mathrm{~V} \\
& \xi_{\text {cell }}=2.12 \mathrm{~V} \\
& \xi_{\text {oxidation }}=2.12 \mathrm{~V}-(-0.40 \mathrm{~V})=2.52 \mathrm{~V} \quad(1 / 2 \mathrm{mark}) \\
& \text { thus } \xi_{\text {reduction }}=-2.52 \mathrm{~V} \\
& \text { (} 1 / 2 \text { mark) }
\end{aligned}
$$

Science Communication	$1 / 2$ mark units
	$1 / 2$ mark significant figures

Value

3% 54.(c) Given the half-reactions below, determine if a manganate ion, $\mathrm{MnO}_{4}{ }^{2-}$, can exist in an acidic solution under standard conditions.

Under standard acidic conditions, $\mathrm{MnO}_{4}{ }^{\mathbf{2 -}}$ would react spontaneously, thus it would not exist.

