PART I Total Value: 50%

Instructions: Shade the letter of the correct answer on the computer scorable answer sheet provided.

1. What is represented by X in the potential energy diagram below?

- activation energy of the forward reaction (A)
- (B) activation energy of the reverse reaction
- potential energy of the reactants (C)
- molar enthalpy of reaction (D)
- 2. Which is true for an endothermic reaction?
 - forward Ea is less than reverse Ea (A)
 - forward $E_a = \text{reverse } E_a$ (B)
 - forward E_a is greater than reverse E_a forward E_a + reverse E_a = 0 (C)
 - (D)
- 3. Which represents the slowest forward reaction?

- 4. Which substance will undergo the fastest combustion reaction?
 - (A) $C_3H_8(\ell)$
 - (B) $C_4H_{10}(\ell)$
 - (C) $C_5H_{12}(\ell)$
 - (D) $C_6H_{14}(\ell)$
- 5. Which are the values for the activation energy (E_a) and change in enthalpy (ΔH) for the forward reaction?

Progress of Reaction

	$E_a(kJ)$	ΔH (kJ)
(A)	150	-50
(B)	300	-50
(C)	150	+50
(D)	300	+50

- 6. What is the purpose of a catalyst in a chemical reaction?
 - (A) decrease reaction rate
 - (B) decrease yield
 - (C) increase reaction rate
 - (D) increase yield

Use the mechanism below to answer questions 7 and 8.

Step 1:
$$2 \text{ NO(g)} \rightarrow \text{N}_2\text{O}_2(g)$$
 fast
Step 2: $\text{N}_2\text{O}_2(g) + \text{H}_2(g) \rightarrow \text{N}_2\text{O}(g) + \text{H}_2\text{O}(g)$ slow
Step 3: $\text{N}_2\text{O}(g) + \text{H}_2(g) \rightarrow \text{N}_2(g) + \text{H}_2\text{O}(g)$ fast

- 7. Increasing the concentration of which substance will cause the greatest increase in the reaction rate?
 - (A) H_2
 - (B) NO
 - (C) N_2O
 - (D) H₂O
- 8. What are the products in the overall reaction?
 - (A) N_2 and H_2O
 - (B) N_2 and N_2O_2
 - (C) N_2O and H_2O
 - (D) N_2O_2 and N_2O

9. For the equilibrium below, 1.50 mol XY(g) is placed in a 1.0 L flask and sealed. Which graph best illustrates what happens if a catalyst is added to the reaction?

$$XY(g) \rightleftharpoons X(g) + Y(g)$$

(A)

(B)

(C)

(D)

10. Which changes the indicator to be in its yellow form for the equilibrium below?

$$HMo(aq) + CH_3COO^-(aq) \rightleftharpoons Mo^-(aq) + CH_3COOH(aq)$$

Red Yellow

- (A) add CH₃COOH(aq) to the system
- (B) add NaCH₃COO(aq) to the system
- (C) remove CH₃COO⁻(aq) by precipitation
- (D) remove HMo(aq) by precipitation

In the equilibrium below, a solution of $Fe(NO_3)_3(aq)$ is added and a precipitate is formed. What is observed for the equilibrium shift and the final colour of the reaction mixture?

$$H^{+}(aq) + 2 CrO_4^{2-}(aq) \rightleftharpoons Cr_2O_7^{2-}(aq) + OH^{-}(aq)$$

Yellow Orange

	Shift	Colour
(A)	left	orange
(B)	left	yellow
(C)	right	orange
(D)	right	yellow

12. What is the equilibrium constant expression for the reaction below?

$$C(s) \ + \ H_2O(\ell) \quad \ \rightleftharpoons \quad CO(g) \ + \ H_2(g)$$

- (A) [C][H₂O]
- (B) [CO][H₂]
- (C) $\frac{[CO][H_2]}{[H_2O][C]}$
- $(D) \qquad \frac{[H_2O][C]}{[CO][H_2]}$
- 13. Which substance will cause red litmus to change to blue?
 - (A) $H_2SO_4(aq)$
 - (B) $H_3O^+(aq)$
 - (C) $NH_3(aq)$
 - (D) $NH_4^+(aq)$
- 14. What is the conjugate base of $H_2PO_4^-$?
 - (A) HPO₄³⁻
 - (B) HPO₄²⁻
 - (C) H_3PO_4
 - (D) PO_4^{3-}
- 15. Which is a conjugate acid-base pair for the reaction shown?

$$HCOOH(aq) + CN^{-}(aq) \rightleftharpoons HCOO^{-}(aq) + HCN(aq)$$

	Acid	Base	
(A)	CN ⁻ (aq)	HCN(aq)	
(B)	HCN(aq)	HCOO ⁻ (aq)	
(C)	HCOOH(aq)	CN ⁻ (aq)	
(D)	HCOOH(aq)	HCOO ⁻ (ag)	

- 16. Which is an amphoteric substance?
 - **HC1** (A)
 - (B) HSO₄-
 - (C) H_3PO_4
 - (D) SO_4^-
- 17. Which species is the strongest base?
 - $CO_3^{2-}(aq)$ (A)
 - (B) $HS^{-}(aq)$
 - $OCl^{-}(aq)$ (C)
 - $S^{2-}(aq)$ (D)
- 18. A chemist needs to quickly and completely neutralize a solution of NaOH. Which is best to use if the concentration is the same for all acids?
 - HCN(aq) (A)
 - (B) HF(aq)
 - $H_2CO_3(aq)$ (C)
 - (D) $H_3BO_3(aq)$
- What is the $[H_3O^+]$ in a substance with a pH of 2.80? 19.
 - $9.2\times10^{\text{-13}}\;\text{mol/L}$ (A)
 - (B)
 - (C)
 - $4.7 \times 10^{-8} \text{ mol/L}$ $4.7 \times 10^{-8} \text{ mol/L}$ $6.3 \times 10^{-6} \text{ mol/L}$ $1.6 \times 10^{-3} \text{ mol/L}$ (D)
- 20. Which theory states that a base is a proton acceptor?
 - (A) Arrhenius
 - (B) Brønsted-Lowry
 - (C) modified Arrhenius
 - (D) operational
- 21. What is the pOH of a solution of 4.2×10^{-6} mol/L HCl?
 - 4.37 (A)
 - (B) 5.38
 - 8.62 (C)
 - (D) 9.63
- 22. What happens to the pH and [H₃O⁺] when 0.10 mol/L NaOH is added to water?

	рН	$[\mathrm{H_3O^+}]$	
(A)	decreases	decreases	
(B)	decreases	remains the same	
(C)	increases	decreases	
(D)	increases	remains the same	

- 23. What is the final pH when 125.0 mL of 0.150 mol/L stock HCl(aq) solution is diluted to 3.75 L?
 - (A) 0.824
 - (B) 2.301
 - (C) 11.699
 - (D) 13.176
- 24. Which is the best indicator for an acid-base titration having an equivalence point pH of 4.2?
 - (A) bromocresol green
 - (B) bromothymol blue
 - (C) orange IV
 - (D) phenol red
- 25. Which is a concentrated weak acid?
 - (A) $0.100 \text{ mol/L HNO}_2(\text{aq})$
 - (B) $0.100 \text{ mol/L HNO}_3(aq)$
 - (C) $10.0 \text{ mol/L HNO}_2(\text{aq})$
 - (D) $10.0 \text{ mol/L HNO}_3(aq)$
- 26. Which acid has the lowest conductivity?

	Acid	K _a
(A)	0.5 mol/L	1.0×10^{3}
(B)	1.0 mol/L	1.0×10^{-6}
(C)	1.5 mol/L	1.0×10^{-2}
(D)	2.0 mol/L	1.0×10^{9}

- What is the most likely pH at the equivalence point when equal concentrations of a weak acid and a strong base are titrated?
 - (A) 4
 - (B) 7
 - (C) 10
 - (D) 14
- 28. Which substance is diprotic?
 - (A) HNO₂
 - (B) H_2S
 - (C) NO_2
 - (D) $S^{2^{-}}$
- 29. Which is a measure of average kinetic energy?
 - (A) enthalpy
 - (B) heat
 - (C) specific heat capacity
 - (D) temperature

- 30. Which relationship illustrates the First Law of Thermodynamics?
 - $(A) q_{\text{system}} = -q_{\text{surroundings}}$
 - (B) $q_{\text{system}} = q_{\text{surroundings}}$
 - (C) $q = mc\Delta T$
 - (D) $q = n\Delta H$
- 31. A sample of 0.105 mol of Ag metal is placed in 251.0 mL of H_2O in a calorimeter. What is the enthalpy change of Ag if the temperature change of H_2O is -3.50 °C?
 - (A) -3.84 kJ
 - (B) -3.68 kJ
 - (C) +3.68 kJ
 - (D) +3.84 kJ
- 32. What is the specific heat capacity of a metal that absorbs 4.95 J of heat when a 2.50 g sample of the metal increases in temperature from 25.0 °C to 31.0 °C?
 - (A) 0.084 J/g·°C
 - (B) $0.33 \text{ J/g} \cdot ^{\circ}\text{C}$
 - (C) $3.0 \text{ J/g} \cdot ^{\circ}\text{C}$
 - (D) 12 J/g·°C
- 33. Which is true for an exothermic reaction?
 - (A) enthalpy difference between products and reactants (ΔH) is negative
 - (B) enthalpy difference between products and reactants (ΔH) is positive
 - (C) enthalpy of the products is higher than the enthalpy of the reactants
 - (D) enthalpy of the products is the same as the enthalpy of the reactants
- 34. What is the heat of condensation for 15.00 moles of ammonia gas that is liquifying? $(\Delta H_{vap}(NH_3) = 23.30 \text{ kJ/mol})$
 - (A) -349.5 kJ
 - (B) -1.553 kJ
 - (C) 1.553 kJ
 - (D) 349.5 kJ
- 35. For the reaction below, what is the molar heat of formation of $H_2O(\ell)$?

$$2 H_2(g) + O_2(g) \rightarrow 2 H_2O(\ell) + 571.6 \text{ kJ}$$

- (A) -571.6 kJ
- (B) -285.8 kJ
- (C) 285.8 kJ
- (D) 571.6 kJ
- 36. At standard pressure, which is an example of a change in kinetic energy only?
 - (A) carbon dioxide cooling from -80 °C to -100 °C
 - (B) molten aluminum solidifying at 660 °C
 - (C) steam condensing at 100 °C
 - (D) water decomposing above 1.0×10^7 °C

37. Which fuel releases the most energy per gram when burned?

	Fuel	Molar Mass (g/mol)	$\Delta \mathrm{H^{\circ}_{comb}} (\mathrm{kJ/mol})$
(A)	$C_2H_5OH(\ell)$	46.08	-1407
(B)	$C_4H_9OH(\ell)$	74.14	-2713
(C)	$C_4H_{10}(\ell)$	58.14	-2882
(D)	$C_8H_{18}(\ell)$	114.26	-5509

- 38. Which is the unit for the heat capacity of a bomb calorimeter?
 - (A) $J/g \cdot {}^{\circ}C$
 - (B) $kJ/^{\circ}C$
 - (C) kJ/g
 - (D) kJ/mol
- 39. What is true for changes in the kinetic and potential energy for section A-B on the graph below?

(A) decreases constant
(B) decreases increases
(C) increases constant
(D) increases decreases

40. What is the enthalpy change for the formation of HBr?

$$H_2(g) + Br_2(g) \rightarrow 2 HBr(aq)$$

Bond	Bond Energy (kJ/mol)
Н-Н	436
Br-Br	193
H-Br	366

- (A) -263 kJ
- (B) -103 kJ
- (C) 103 kJ
- (D) 263 kJ

- 41. Which occurs in oxidation half-reactions?
 - (A) electrons are gained
 - (B) electrons are lost
 - (C) protons are gained
 - (D) protons are lost
- 42. What is the oxidation number of $F_2(g)$?
 - (A) -1
 - (B) 0
 - (C) 1
 - (D) 2
- 43. What is the reducing agent in the reaction below?

$$CuO(s) \ + \ H_2(g) \ \boldsymbol{\rightarrow} \ Cu(s) \ + \ H_2O(\ell)$$

- (A) Cu
- (B) CuO
- (C) H₂
- (D) H₂O
- 44. Which is the cathode for the cell notation given below?

$$Zn(s)|Zn^{2+}(aq)||Sn^{2+}(aq)|Sn(s)$$

- (A) Sn(s)
- (B) $\operatorname{Sn}^{2+}(\operatorname{aq})$
- (C) Zn(s)
- (D) $Zn^{2+}(aq)$
- 45. What is the cathode reaction for the cell shown?

- (A) $2 \operatorname{Br}^-(\operatorname{aq}) \to \operatorname{Br}_2(\ell) + 2 \operatorname{e}^-$
- (B) $Br_2(\ell) + 2e^- \rightarrow 2Br^-(aq)$
- (C) $Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$
- (D) $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$
- 46. Which process separates water into hydrogen and oxygen?
 - (A) combustion
 - (B) electrolysis
 - (C) electroplating
 - (D) fusion

- 47. When connected, which pair of half cells produces the highest possible cell potential?
 - (A)
 - (B)
 - $\begin{array}{c|c} Ca \mid Ca^{2+} \mid \mid Ni^{2+} \mid Ni \\ Ca \mid Ca^{2+} \mid \mid Pb^{2+} \mid Pb \\ Ni \mid Ni^{2+} \mid \mid Ca^{2+} \mid Ca \\ Pb \mid Pb^{2+} \mid \mid Ca^{2+} \mid Ca \end{array}$ (C)
 - (D)
- 48. Which is the strongest oxidizing agent?
 - (A) Ag
 - Ag^{+} (B)
 - (C) Na
 - (D) Na^{+}
- 49. Calculate the number of moles of Ag metal produced when 0.919 A is passed through an electrolytic cell for 35 h.
 - $3.33\times10^{\text{-4}}\,\text{mol}$ (A)
 - $1.20 \times 10^{-3} \text{ mol}$ (B)
 - 1.20 mol (C)
 - 129 mol (D)
- 50. Which is a primary cell?
 - button (A)
 - hydrogen fuel (B)
 - (C) lead-storage
 - (D) rechargeable

PART II Total Value: 50%

Instructions: Complete all items in this section. Your responses should be clearly presented in a well-organized manner with proper use of units, formulae and significant figures where appropriate.

		significant figures where appropriate.
Value 3%	51.(a)	$N_2O_4(g)$ is placed in a sealed flask and allowed to establish the equilibrium below. Describe the changes in both the forward and reverse reaction rates as the system moves towards and establishes equilibrium.
		$N_2O_4(g) \iff 2 NO_2(g)$
2%	(b)	Two 15 g cubes of the same metal are placed outside. One of the cubes has been sanded to a very smooth surface while the other has not been sanded. Explain why the unsanded cube rusts faster than the sanded cube.

51.(c) A flask is initially filled with some HI. At equilibrium, the concentration of HI is 0.80 mol/L. Calculate the concentration of H_2 at equilibrium.

2 HI(g)
$$\iff$$
 H₂(g) + I₂(g) $K_{eq} = 2.6 \times 10^{-3}$

2% (d) The temperature in a closed system, such as with industrial refrigeration, is regulated by the equilibrium shown below. Explain how the amount of $NH_3(\ell)$ in the system has changed over time as given in the table below.

$$NH_3(g) \rightleftharpoons NH_3(\ell) + energy$$

Day	Inside Temperature (°C)
1	-4.93
2	-4.97
3	-5.00
4	-5.02

·	·	·	·	·

51.(e) A scientist placed amounts of N_2 , H_2 , and NH_3 in a sealed container. After thirty minutes the scientist measured the following concentrations of gases present in the container: $[N_2] = 0.85 \text{ mol/L}$, $[H_2] = 1.1 \text{ mol/L}$, and $[NH_3] = 0.67 \text{ mol/L}$. In what direction is the reaction moving to gain equilibrium? Show your workings.

$$N_2(g) + 3 H_2(g) \implies 2 NH_3(g)$$
 $K_{eq} = 0.017$

2% 52.(a) Predict the Brønsted-Lowry acid-base neutralization reaction that occurs when $(NH_4)_2S$ is added to $NaHSO_3$.

4% (b) Calculate the K_b value of a 0.200 mol/L solution of CH_3NH_2 if the measured pH is 11.930.

$$CH_3NH_2(aq) + H_2O(\ell) \rightleftharpoons CH_3NH_3^+(aq) + OH^-(aq)$$

Value 2%	52.(c)	Explain why the pH of a mixture of NH ₄ Cl and NH ₃ does not drastically change when a small amount of NaOH is added.	e
4%	(d)	A 20.0 mL solution of NaOH has a pOH of 3.25. A 30.0 mL solution of HCl h a pH of 2.87. Calculate the pH of the mixture of these solutions if the NaOH solution is added to the HCl solution.	as
2%	(e)	Explain what happens to the equilibrium colour of the indicator in the equation shown below when it is placed in a basic solution. $HIn(aq) \ + \ H_2O(\ell) \ \rightleftharpoons \ H_3O^+(aq) \ + \ In^-(aq)$ red yellow	l

53.(a) Burning 2.20 g of methanol in an alcohol burner warms 426 g of water by 14.0 °C. The experiment is repeated using the same mass of methanol but this time a different mass of water is heated and the temperature of the water increases by 42.0 °C. Calculate the new mass of water heated.

2% (b) Use the data below to explain which 12 g sample of metal will have the higher temperature when 300 J of energy is added.

	Aluminum	Gold
Specific Heat Capacity (J/g·°C)	0.902	0.129

·		

- 3% 53.(c) The molar enthalpy of combustion of butane (C_4H_{10}) is -2871 kJ/mol.
 - i) Write a balanced thermochemical equation to represent the reaction that occurs when two moles of butane burns in excess oxygen.

ii) Construct a potential energy diagram for the above reaction and label the heat of reaction.

Progress of Reaction

4% (d) Using the data below, calculate the enthalpy change for the following reaction:

$$C_2H_4(g) + 6 F_2(g) \rightarrow 2 CF_4(g) + 4 HF(g)$$
 $\Delta H = ?$

$$H_2(g) + F_2(g) \rightarrow 2 HF(g)$$
 $\Delta H = -546.6 \text{ kJ}$

$$C(s) + 2 F_2(g)$$
 \rightarrow $CF_4(g)$ $\Delta H = -74.6 \text{ kJ}$

$$2 C(s) + 2 H_2(g) \rightarrow C_2 H_4(g)$$
 $\Delta H = +52.4 \text{ kJ}$

3% 54.(a) A redox cell reaction is attempted using Ni^{2+} (aq) and Ag(s).

i) Write the equation for the reaction.

ii) Calculate the E° of the cell and tell whether it is spontaneous.

3% (b) A standard cell potential of 1.71 V is measured for an electrochemical cell using a Cr(s)|Cr²⁺(aq) anode and a KNO₃ salt bridge. When the KNO₃ salt bridge is replaced with a KCl salt bridge, a white precipitate forms in the cathode compartment. What is the cathode half-cell reaction? Explain.

Value	54 (a)	Coloulate the mass of cold plots dente a motel pine from a colution of AuCl. in an
4%	54.(c)	Calculate the mass of gold plated onto a metal ring from a solution of AuCl ₃ in an electrolytic cell run with a current of 20.0 A for 35 minutes.