Chemistry 3202
 June 2014 Public Exam Outcome Report

This examination follows the specifications, conventions and standards set out in the:
Chemistry 3202 Provincial Exam Standards

Units	$1-$ From Kinetics to Equilibrium $2-$ Acids and Bases
	3 - Thermochemistry
4 - Electrochemistry	

PART I: Selected Response-Total Value: 50\%

Item	Curriculum Guide Page	Outcome	Cognitive Level	Outcome Description
1	$\begin{gathered} \text { (Unit 1) } \\ 28 \end{gathered}$	ACC-1	1	Identify $\mathrm{E}_{\mathrm{a} \text { (forward), }} \mathrm{E}_{\mathrm{a} \text { (reverse) }}$, and $\Delta \mathrm{H}$ from a PE diagram.
2	28	ACC-1	2	Identify how $\mathrm{E}_{\mathrm{a} \text { (forward) }}, \mathrm{E}_{\mathrm{a} \text { (reverse) }}$, and $\Delta \mathrm{H}$ are related.
3	30	ACC-2	1	Describe how a catalyst affects the rate of a chemical reaction.
4	30	ACC-2	2	Identify factors that affect reaction rate.
5	30	ACC-2	2	Identify factors that affect reaction rate.
6	38	323-3	1	State the criteria that applies to a system at equilibrium.
7	40	$\begin{aligned} & 323-4 \\ & 323-5 \end{aligned}$	2	Determine the change imposed on an equilibrium system from a graphical representation.
8	42	$\begin{aligned} & 323-4 \\ & 323-5 \end{aligned}$	2	Use LCP and the solubility table to predict a change in an equilibrium system when a stress is imposed.
9	40	$\begin{aligned} & 323-4 \\ & 323-5 \end{aligned}$	2	Use LCP to predict an equilibrium shift when a stress is imposed on the equilibrium system.
10	44	323-3	1	Recognize that solids and liquids are not included in the equilibrium expression.
11	44	323-3	3	Use initial concentrations of species present and K_{eq} to determine the changes that will occur in order for an equilibrium system to establish.

12	44	323-3	2	Calculate the equilibrium concentration of a chemical species given other concentrations and K_{eq}.
13	$\begin{gathered} \text { (Unit 2) } \\ 52 \end{gathered}$	214-1	1	Use an operational acid/base definition to determine the pH of a substance.
14	52	214-1	1	Identify an operational definition of an acid or base.
15	52	214-17	2	Identify a strong/weak acid given solution characteristics.
16	56	214-17	2	Identify an amphoteric substance.
17	54	320-1	1	Identify an Arrhenius acid or base.
18	62	320-4	3	Determine the effect of changes on the self-ionization of water equilibrium.
19	58	214-17	1	Use the table of acid strength to identify strongest acid or base.
20	66	320-4	2	Convert between any two of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],\left[\mathrm{OH}^{-}\right], \mathrm{pH}$, and pOH .
21	62\&66	320-4	2	Calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],\left[\mathrm{OH}^{-}\right], \mathrm{pH}$, or pOH given the concentration of a strong monoprotic acid or a strong base.
22	82	214-17	1	Identify a Bronsted-Lowry acid or base.
23	70	320-3	2	Identify an expression as K_{a} or K_{b} for a given substance.
24	76	320-6	1	Identify laboratory equipment used for titrations.
25	80	320-7	3	Determine the colour of an indicator at different points on a titration curve.
26	84	214-5	2	Interpret from a titration curve the strength of the acid and base.
27	74	ACC-5	2	Determine the effect on pH when acid and bases are combined.
28	82	214-5	2	Identify the reaction which occurs at the second equivalence point for a given acid and base.
29	$\begin{gathered} \hline \text { (Unit 3) } \\ 92 \end{gathered}$	308-2	1	Define temperature.
30	94	324-3	1	Identify the features of open, closed and isolated systems.
31	94	324-3	1	Perform calculations involving specific heat capacity.
32	94	324-3	2	Perform calculations involving specific heat capacity.
33	94	324-3	2	Perform calculations involving specific heat capacity.

34	98	$324-3$	2	Identify the enthalpy diagram for a given reaction.
35	104	$324-1$	3	Determine the identity of a reactant using $\mathrm{q}=\mathrm{n} \Delta \mathrm{H}$ for a given reaction.
36	104	$324-1$	2	Calculate the energy associated with a substance undergoing a phase change.
37	$92 / 100$	$308-2$ $324-3$	1	Identify the energy changes that occur when substances undergo chemical changes and phase changes.
38	108	$214-3$	2	Identify the order of changes a substance undergoes during a temperature change.
39	110	$117-9$	1	Compare the magnitude of the energy that is involved when physical, chemical and nuclear changes occur.
40	114	$324-4$	2	Using Hess's law, predict the heat of a reaction.
41	Unit 4$)$ 124	$322-1$	1	Describe a process that occurs with oxidation and reduction.
42	126	$322-1$	2	Identify the oxidizing agent and the reducing agent in a redox equation.
43	124	$322-1$	2	Identify electron transfer in redox equations.
44	126	$322-3$	2	Determine the oxidation number of an atom in an ion or molecule.
45	134	$322-4$	1	Use electrochemical cell notation to represent an electrochemical cell.
46	136	$322-5$ $322-6$	2	Identify a spontaneous reaction as one that produces a positive cell potential.
47	136	$322-5$ $322-6$	1	Describe an electrolytic cell in terms of type of reaction and cell potential.
48	138	$322-5$ $322-6$	3	Complete a table of redox half-reactions from experimental results.
49	144	$322-8$	2	Perform calculations related to $\mathrm{Q}=$ It and $\mathrm{Q}=\mathrm{nF}$.
50	150	$322-7$	1	Identify a cell type.

PART II: Constructed Response-Total Value: 50\%

Item	Curriculum Guide Page	Outcome	Cognitive Level	Value	Outcome Description
51 a	28	ACC-1	2	3	Draw and label a potential energy diagram for a given reaction.
51 b	38	$323-4$ $323-5$	2	2	Predict the change that will occur when a compound is added to an established equilibrium and justify your answer.
51 c	32	ACC-3	3	4	i) Determine an elementary step of a reaction mechanism given 2 elementary steps and net equation for the overall reaction. ii) Identify how to increase rate of overall reaction.
51 d	46	ACC-4	2	4	Given the initial concentrations and equilibrium concentration of a species which is allowed to reach equilibrium, calculate the value of K eq.
52 a (i)	60	$320-2$	2	2	Predict the Bronsted-Lowry reaction that occurs when two solutions are combined.
52 a (ii)	60	$320-2$	2	1	Predict whether reactants or products are favoured.
52 b	66	$320-4$	2	3	Perform dilution and pH calculations to determine the final volume.
52 c	70	$320-3$	2	4	Calculate pH given the initial concentration of a weak base.
52 d	$76 / 78$	$320-6$	3	4	Use titration data to determine the identity of a group II metal in one reactant. (science communication mark)
53 a	98	$214-3$	2	5	i) Draw a heating/cooling curve from given data. ii) Calculate the total energy required to heat a substance through temperature changes and phase change.
53 b	112	ACC-8	2	2	Calculate fuel value of a substance given calorimeter data.
53 c	114	$324-4$	2	2	Use standard molar enthalpies of formation to calculate heat of reaction for a chemical change.
53 d	118	$324-4$	3	4	Use bond energies and enthalpy of reaction to calculate a missing bond energy.

54 a	130	$322-2$	2	3	Balance a redox reaction under acidic conditions.
54 b	$132 / 136$	$322-4$ $322-5$ $322-6$	2	4	i) Identify and label the parts of an electrochemical cell. ii) Determine the overall cell potential. (science communication mark)
54 c	$94 / 144$	$322-8$	3	3	Using Faraday's law, determine the time to make a metal given its specific heat capacity and heat absorption during a temperature change.

