Rapport Sommaire Chimie 3232

Modules: 1 – De la cinétique à l'équilibre 2 – Les acides et les bases

3 – La thermochimie 4 – L'électrochimie

PARTIE I : Choix multiples – Valeur totale : 50 %

Question	Page du programme d'études	RAS	Niveau cognitif	Description du résultat d'apprentissage	
1	(Module 1) 28	ACC-1	N1	Déterminer des preuves qui appuient la théorie cinétique de la matiere.	
2	28	ACC-1	N2	Déterminer le rapport entre $E_{a(directe)}$, $E_{a(inverse)}$ et ΔH .	
3	30	ACC-2	N1	Décrire comment un catalyseur change la vitesse d'une réaction chimique.	
4	30	ACC-2	N2	Nommer les facteurs qui modifient la vitesse de réaction.	
5	32	ACC-3	N2	Nommer les réactions intermédiaires et les catalyseurs d'un mécanisme de réaction donné.	
6	32	ACC-3	N1	Déterminer l'étape déterminante de la vitesse d'un mécanisme de réaction donné.	
7	40	323-4 323-5	N2	Déterminer le changement sur un système à l'équilibre à l'aide d'un graphique.	
8	42	323-4 323-5	N2	Prédire un changement d'un système à l'équilibre selon le principe de Le Chatelier et à l'aide du tableau de la solubilité.	
9	44	323-3	N1	Décrire l'effet qui peut provoquer le changement d'une constante d'équilibre (K_{eq}) .	
10	44	323-3	N1	Démontrer la connaissance que les solides et les liquides ne sont pas inclus dans l'expression de la constante d'équilibre.	
11	44	323-3	N3	Utiliser les concentrations initales des espèces et K _{eq} pour déterminer quels changements se produiront pour que le système atteint l'équilibre.	
12	44	323-3	N2	Calculer K _{eq} à l'aide des concentrations à l'équilibre.	

Page 1 de 5 juin 2017

13	(Module 2) 52	214-1	N1	Déterminer le pH d'une substance en utilisant la définition opérationnelle d'un acide et d'une base.	
14	54	320-1	N1	Nommer un acide ou une base selon Arrhenius.	
15	52	214-1	N2	Nommer un acide fort ou un acide faible selon les caractéristiques de la solution.	
16	56	214-17	N2	Déterminer une substance amphotère.	
17	58	214-17	N2	Utiliser le tableau de la force relative des acides et des bases pour déterminer les acides et les bases les plus forts.	
18	60	320-2	N2	Prédire la position de l'équilibre qui est favorisée dans une réaction acidebase.	
19	62	320-4	N3	Déterminer les effets de changements sur l'auto-ionisation de l'eau.	
20	66	320-4	N1	Décrire les caractéristiques d'une solution neutre.	
21	62, 66	320-4	N2	Calculer [H3O+], [OH-], pH ou pOH d'un acide fort ou d'une base forte.	
22	66	320-4	N1	Effectuer les calculs entre [H3O+], [OH-], pH ou pOH	
23	66	320-4	N2	Effectuer les calculs entre [H3O+], [OH-], pH ou pOH	
24	70	320-3	N2	Déterminer une expression de Ka ou Kb pour une substance donnée.	
25	80	320-7	N3	Déterminer la couleur d'un indicateur à différents points d'une courbe de titration.	
26	82	214-5	N1	Nommer les espèces polyprotiques ou polybasiques.	
27	76	320-6	N1	Nommer un appareil utilisé au cours d'un titrage.	
28	82	214-5	N2	Nommer la réaction qui se produit au deuxième point d'équivalence d'un acide ou une base.	
29	(Module 3) 94	324-3	N2	Effectuer des calculs de la chaleur massique.	
30	98	324-3	N1	Nommer les changements qui surviennent lorsque des substances subissent des modifications chimiques ou de changements d'état.	
31	94	324-3	N1	Effectuer des calculs de la chaleur massique.	
32	98	324-3	N2	Décrire un diagramme d'enthalpie pour une réaction donnée.	

Page 2 de 5 juin 2017

33	100	324-3	N1	Distinguer entre un changement de phase endothermique ou exothermique.	
34	104	324-7	N2	Calculer l'énergie associée à une substance qui subit un changement d'état.	
35	104	324-1	N3	Déterminer l'identité d'un réactif dans une réaction chimique à l'aide de l'enthalpie de réaction, de la quantité d'énergie absorbée ou libérée et de la masse des réactifs.	
36	108	214-3	N1	Déterminer les changements d'état sur une courbe de chauffage ou de refroidissement.	
37	110	117-9	N1	Comparer les changements physiques, chimiques et nucléaires.	
38	108	214-3	N2	À partir des données, déterminer les changements d'une substance au cours d'un changement de température.	
39	112	ACC-8	N2	Calculer la valeur de combustible d'une substance.	
40	114	324-4	N2	Prédire la chaleur de réaction à l'aide de la loi de Hess.	
41	(Module 4) 126	322-1	N1	Utiliser un tableau des potentiels standard de réduction pour trouver l'agent d'oxydation ou de réduction le plus fort.	
42	126	322-1	N2	Déterminer si une réaction est une réaction d'oxydoréduction.	
43	126	322-1	N1	Déterminer si une demi-réaction est une oxydation ou une réduction.	
44	126	322-3	N2	Déterminer le nombre d'oxydation d'un atome dans un ion ou une molécule.	
45	132	322-4	N1	Décrire la fonction d'un pont salin.	
46	136	322-5 322-6	N2	Utiliser le tableau des potentiels standards de réduction pour prédire le potentiel de la pile, E_0 .	
47	136	322-5 322-6	N1	Décrire une cellule électrolytique en fonction du type de réaction et de son potentiel.	
48	138	322-5 322-6	N3	Utiliser les valeurs de potentiels des cellules données pour déterminer le potentiel d'une cellule inconnue.	
49	144	322-8	N2	Effectuer des calculs liés à $Q = It$ et $Q = nF$.	
50	134	322-4	N2	Décrire les déplacements des électrons et des ions dans une cellule électrochimique.	

Page 3 de 5 juin 2017

PARTIE II : Questions à développement – Valeur totale : 50 %

Question	Page du programme d'études	RAS	Niveau cognitif	Valeur	Description des résultats d'apprentissage
51a	(Module 1) 28	ACC-1	N2	2	Tracer et indiquer les légendes de diagramme d'énergie potentielle d'une réaction donnée.
51b(i)	32	ACC-3	N3	2	Déterminer une réaction élémentaire d'un mécanisme de réaction à partir de deux étapes et de l'équation de la réaction globale.
51b(ii)	32	ACC-3	N3	2	Décrire comment augmenter la vitesse de la réaction globale.
51c(i)	40	323-4 323-5	N2	2	Décrire les changements qui peuvent se produire dans un système à l'équilibre pour que la quantité d'une espèce chimique augmente ou diminue selon le principe de Le Chatelier.
51c(ii)	40	323-4 323-5	N2	1	Prédire et expliquer à l'aide du principe de Le Chatelier les changements à l'équilibre causés par la modification de la température, de la pression, du volume ou de la concentration.
51d	46	ACC-4	N2	4	Calculer la valeur de K_{eq} à partir des concentrations initiales ou de la concentration à l'équilibre d'une espèce qui a atteint l'équilibre.
52a	(Module 2) 60	320-2	N2	2	Prédire la réaction de Brønsted-Lowry qui se produit lorsque deux solutions sont mélangées.
52b	70	320-3	N2	4	Calculer le pH d'une solution à partir de la concentration d'un acide faible (ou d'une base faible) et le K_a (ou le K_b).
52c	80	116-2	N2	4	Calculer [H ₃ O ⁺], [OH ⁻], pH ou pOH dans un mélange d'un acide fort et d'une base forte, où l'un de ces réactifs est en excès.
52d	76, 78	320-6	N3	4	Nommer un métal de la groupe II d'un réactif à l'aide des données d'un titrage.

Page 4 de 5 juin 2017

53a	(Module 3) 96, 106	324-1 324-3	N3	4	Utiliser le première principe de la thermodynamique pour déterminer la valeur de m , c ou ΔT d'une substance lorsque deux substances sont mélangées et après l'atteinte de l'équilibre thermique.
53b	114	324-4	N2	4	Utiliser la loi de Hess pour calculer l'enthalpie d'une réaction.
53c	114	324-4	N2	2	Utiliser les enthalpies standards de formation, ΔH ^o f pour déterminer l'enthalpie molaire d'une réaction donnée.
53d	118	324-4	N2	3	Utiliser les énergies de liaison pour calculer l'enthalpie d'une réaction donnée.
54a	(Module 4) 130	322-2	N2	3	Équilibrer une réaction d'oxydo-réduction en conditions acides.
54b	138	322-5 322-6	N3	3	Étant donné la liste de matériel de laboratoire et de produits chimiques, construire une cellule électrochimique ayant une tension donnée. Écrire les deux demi-réactions identifiant l'anode, la cathode et les tensions utilisées pour produire la pile.
54c	144	322-8	N2	4	Effectuer des calculs avec la loi de Faraday

Page 5 de 5 juin 2017