## Physics 3204 June 2012 Public Exam Outcome Report

This examination follows the specifications, conventions and standards set out in the:

## **Physics 3204 Provincial Exam Standards**

<u>Units</u> 1 – Force, Motion and Energy

2 – Fields

3 – Matter Energy Interface

**PART I: Selected Response**—Total Value: 50%

| Item | Curriculum<br>Guide Page | Outcome | Cognitive<br>Level | Outcome Description                                                                                                                               |
|------|--------------------------|---------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | (Unit 1)<br>28           | 325-6   | L1                 | Identify an example of projectile motion.                                                                                                         |
| 2    | 28                       | 325-6   | L1                 | Calculate the horizontal component of an initial velocity.                                                                                        |
| 3    | 28                       | 325-6   | L1                 | Identify the velocity vector of a projectile.                                                                                                     |
| 4    | 28                       | 325-6   | L2                 | Calculate the time in the air given the range and initial velocity of a projectile.                                                               |
| 5    | 30                       | 325-6   | L2                 | Calculate the time for a projectile, launched horizontally, to fall a given distance.                                                             |
| 6    | 32                       | 325-8   | L1                 | Calculate the magnitude of the applied force required to move an object at constant velocity.                                                     |
| 7    | 34                       | 325-8   | L2                 | Calculate the normal force on a box sliding down a frictionless ramp.                                                                             |
| 8    | 34                       | 325-8   | L2                 | Calculate the coefficient of kinetic friction on an incline when an object slides down at constant velocity.                                      |
| 9    | 34                       | 325-8   | L3                 | Calculate the tension in the connecting string for a system of masses with a pulley on the end of a frictionless, horizontal table.               |
| 10   | 44                       | ACP-1   | L2                 | Calculate the mass of an object in static equilibrium supported by cables at two different angles.                                                |
| 11   | 34                       | 325-8   | L2                 | Calculate the acceleration of a system of masses with a pulley on a horizontal table with friction.                                               |
| 12   | 36                       | 325-12  | L1                 | Use a diagram to identify the direction of the velocity, centripetal acceleration and centripetal force for an object in uniform circular motion. |

| 13 | 38             | 325-13           | L2 | Calculate the tension in a rope at the top of a loop when it is swinging an object in a vertical circle. |  |  |  |
|----|----------------|------------------|----|----------------------------------------------------------------------------------------------------------|--|--|--|
| 14 | 36             | 325-13           | L2 | Calculate centripetal acceleration given the radius and period.                                          |  |  |  |
| 15 | 42             | 325-13           | L3 | Identify the change in centripetal force caused by changing the radius of rotation.                      |  |  |  |
| 16 | 40             | 325-13           | L1 | Calculate the radius of a banked curve without friction.                                                 |  |  |  |
| 17 | 44             | ACP-1            | L1 | Identify the conditions necessary for static equilibrium.                                                |  |  |  |
| 18 | 46             | ACP-1            | L2 | Solve a static equilibrium problem by balancing torques.                                                 |  |  |  |
| 19 | 44             | ACP-1            | L1 | Identify the center of mass of a uniform object.                                                         |  |  |  |
| 20 | 46             | ACP-1            | L2 | Calculate the torque exerted on an object when a force is applied at an angle.                           |  |  |  |
| 21 | (Unit 2)<br>56 | 308-13<br>308-14 | L2 | Given diagrams, identify which electroscope has been charged by induction.                               |  |  |  |
|    | 30             | 308-15           |    |                                                                                                          |  |  |  |
|    |                | 328-1            |    | Identify both charges in an electric field diagram.                                                      |  |  |  |
| 22 | 62             | 328-2            | L1 |                                                                                                          |  |  |  |
|    |                | 328-3            |    |                                                                                                          |  |  |  |
|    |                | 328-1            |    | Calculate the magnitude of the electric field strength at a given distance from a single                 |  |  |  |
| 23 | 64             | 328-2            | L1 | charge.                                                                                                  |  |  |  |
|    |                | 328-3            |    |                                                                                                          |  |  |  |
| 24 | 72             | ACP-3            | L1 | Identify a source of electrical energy.                                                                  |  |  |  |
|    |                | 328-1            |    | Calculate the work done given the charge and the electrical potential.                                   |  |  |  |
| 25 | 68             | 328-2            | L2 |                                                                                                          |  |  |  |
|    |                | 328-3            |    |                                                                                                          |  |  |  |
| 26 | 72             | ACP-3            | L1 | Calculate current using the defining equation.                                                           |  |  |  |
| 27 | 74             | ACP-3            | L2 | Given diagrams, identify which circuit has the most resistance.                                          |  |  |  |
| 28 | 76             | ACP-3            | L2 | Calculate resistivity using the defining equation for resistance.                                        |  |  |  |
| 29 | 74             | ACP-3            | L1 | Calculate voltage using Ohm's Law.                                                                       |  |  |  |
| 30 | 76             | ACP-3            | L1 | Identify the voltage vs. current graph for an ohmic resistor.                                            |  |  |  |
| 31 | 80             | ACP-3            | L2 | Calculate the power dissipated by a resistor in a series circuit.                                        |  |  |  |
| 32 | 80             | ACP-3            | L2 | Calculate the cost to operate an electrical device for a given period of time.                           |  |  |  |
| 33 | 82             | 328-1,2          | L1 | Given diagrams, identify the strongest magnet using domain theory.                                       |  |  |  |
| 34 | 82             | 328-1,2          | L1 | Given diagrams, identify the magnetic field around Earth.                                                |  |  |  |

| 35 | 86             | 328-5           | L3 | Determine the direction of the force on a charged particle moving parallel to a current-carrying conductor.                                                    |  |  |
|----|----------------|-----------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 36 | 86             | 328-5           | L2 | Determine the direction of the force on a current-carrying wire placed in a magnetic field.                                                                    |  |  |
| 37 | 86             | 328-5           | L2 | Determine the magnitude and direction of the force on a moving charged particle in a magnetic field.                                                           |  |  |
| 38 | 86             | 328-5           | L2 | Calculate the length of current-carrying wire that would experience a given force when in a magnetic field.                                                    |  |  |
| 39 | 88             | 328-7           | L2 | Use Lenz's Law to determine the polarity of a magnet moving into a current-carrying coil.                                                                      |  |  |
| 40 | 88             | 328-7           | L3 | Identify the type and frequency of rotation of a generator when given the graph of current output vs. time.                                                    |  |  |
| 41 | (Unit 3)<br>98 | 327-10          | L1 | Identify the definition of the work function.                                                                                                                  |  |  |
| 42 | 96             | 327-9           | L1 | Calculate the energy of electromagnetic radiation given the frequency.                                                                                         |  |  |
| 43 | 98             | 327-10          | L2 | Calculate the wavelength of light that causes electrons to be ejected in a solar cell given the work function and the kinetic energy of the ejected electrons. |  |  |
| 44 | 104            | 329-3           | L2 | Calculate the energy released when an electron transitions to a lower energy level.                                                                            |  |  |
| 45 | 100            | 115-3           | L2 | Calculate the mass of an object with a given deBroglie wavelength and speed.                                                                                   |  |  |
| 46 | 108            | 329-5           | L1 | Identify a nuclear decay process from one of its products.                                                                                                     |  |  |
| 47 | 110            | 214-2           | L3 | Use a graph of mass vs. time to determine the half-life of a radioactive sample.                                                                               |  |  |
| 48 | 110            | 329-6           | L2 | Identify the products of a nuclear reaction.                                                                                                                   |  |  |
| 49 | 112            | 115-5<br>117-11 | L1 | Identify the purpose of one component in the CANDU reactor.                                                                                                    |  |  |
| 50 | 110            | 329-6           | L2 | Calculate the mass defect in a nuclear reaction given the energy released per atom and the number of atoms that were split.                                    |  |  |

**PART II: Constructed Response**—Total Value: 50%

| Item     | Curriculum<br>Guide Page | Outcome                    | Cognitive<br>Level | Value | Outcome Description                                                                                                                                                       |
|----------|--------------------------|----------------------------|--------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 51a      | (Unit 1)<br>28           | 325-6                      | L2                 | 4     | Calculate the maximum height for a projectile thrown with an initial velocity at an angle above the horizontal from a point above the floor. (science communication mark) |
| 51b(i)   | 34                       | 325-8                      | L2                 | 4     | Calculate the acceleration of a system of masses with a pulley on a combination horizontal table and incline when friction is present on both surfaces.                   |
| 51b(ii)  | 34                       | 325-8                      | L2                 | 2     | Calculate the tension in the connecting string of the system of masses in part 51b(i).                                                                                    |
| 51c      | 38                       | 325-13                     | L3                 | 2     | Determine if a car can make a turn on a horizontal road at a given speed when the maximum friction is given.                                                              |
| 51d      | 38                       | 325-13                     | L2                 | 2     | Calculate the normal force on an object at the bottom of a vertical circle.                                                                                               |
| 51e      | 44                       | ACP-1                      | L2                 | 2     | Calculate the mass of an object in static equilibrium by balancing forces.                                                                                                |
| 51f      | 46                       | ACP-1                      | L3                 | 4     | Calculate the mass of an object in static equilibrium by balancing torques when the object is supported at both ends by forces at different angles.                       |
| 52a      | (Unit 2)<br>56           | 308-13<br>308-14<br>308-15 | L2                 | 2     | Identify and explain the charges on objects using the laws of electric charges given the method of charging.                                                              |
| 52b      | 60                       | 328-4                      | L2                 | 4     | Calculate the net electric force on a charge due to the presence of two other charges. All charges are co-linear. (science communication mark)                            |
| 52c(i)   | 78                       | ACP-3                      | L2                 | 1     | Solve a combination circuit using Kirchoff's Laws and Ohm's Law – find voltage across a series resistor.                                                                  |
| 52c(ii)  | 78                       | ACP-3                      | L2                 | 2     | Solve a combination circuit using Kirchoff's Laws and a power equation – find power dissipated in a parallel resistor.                                                    |
| 52c(iii) | 78                       | ACP-3                      | L2                 | 2     | Solve a combination circuit using Kirchoff's Laws and Ohm's Law – find the current through a parallel resistor.                                                           |
| 52d      | 88                       | 328-7                      | L3                 | 3     | Use Lenz's Law to identify and explain which situation will result in a magnet moving at a slower rate through two different hollow tubes.                                |

| 52e | 86             | 328-5  | L2 | 3 | Calculate the resistance of a length of conductor in a series circuit when it is placed in a uniform magnetic field. (science communication mark)                             |
|-----|----------------|--------|----|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 52f | 86             | 328-5  | L3 | 3 | Calculate the magnitude and direction of a current in a wire placed in a magnetic field given the magnetic field strength and direction at a specific distance from the wire. |
| 53a | (Unit 3)<br>98 | 327-10 | L3 | 3 | Given a graph of kinetic energy vs. frequency and a table of metals and their work functions, determine and explain which metals will eject electrons.                        |
| 53b | 104            | 329-3  | L2 | 3 | Calculate the wavelength of light emitted when an electron transitions to a lower energy level.                                                                               |
| 53c | 110            | 214-2  | L2 | 2 | Calculate the time for a radioactive sample to decay to a specified amount given its half-life.                                                                               |
| 53d | 108            | 329-4  | L2 | 2 | Calculate the energy released in a nuclear reaction given the masses of the particles involved in the reaction.                                                               |