APPENDIX H

A Method to Determine Manure Application Rates

 (Adapted from MWPS-18, Livestock Waste Facilities Handbook)* Please note this methodology takes into account residual nitrogen in the soil from manure applications for the three previous years.

Section A. Manure Composition and Soil Information

1. Manure composition:

a. Values from chemical analysis of manure.

Composition		Your Farm
Laboratory data are often given in ppm.	Total N	
To convert ppm to percent, divide by	Ammonium N	$-\quad \%$
10,000. If composition data are not	Nitrate N	-
available, use Table H.1 or H.2.	$\mathrm{P}_{2} \mathrm{O}_{5}$	$-\quad \%$
	$\mathrm{~K}_{2} \mathrm{O}$	$-\quad \%$

b. Determine the amount of each nutrient per ton of solid manure or per $1,000 \mathrm{gal}$. of liquid manure. If nutrient contents are given in percent:
! \% nutrient in manure x $20=\mathrm{lb}$ nutrients/ton; or,
! \% nutrient in manure x $100=\mathrm{lb}$ nutrients/1,000 gal. (e.g., 0.5% Total N $=10 \mathrm{lb} /$ ton or $42.5 \mathrm{lb} / 1,000 \mathrm{gal}$.).

Composition	Example (Table H.2)	Your Farm
Total N	$36 \mathrm{lb} / 1,000 \mathrm{gal}$.	lb/
Ammonium N^{*}	$26 \mathrm{lb} / 1,000 \mathrm{gal}$.	lb/
Nitrate ${ }^{*}$ *	- lb/	_ lb/
$\mathrm{P}_{2} \mathrm{O}_{5}$	$27 \mathrm{lb} / 1,000 \mathrm{gal}$.	lb/
$\mathrm{K}_{2} \mathrm{O}$	$22 \mathrm{lb} / \underline{1,000 \mathrm{gal} \text {. }}$	lb/

* If only total N is determined, assume 50% ammonium N and 5% nitrate N .
N.B. Figures in Section A.1.b needs to be consistent with what's in Table H2. Also Section B - "Nutrient Needs of Crop" needs to have figures consistent with Table H.4.
N.B. Original report Tables J1- J4 should be I.1-I.4.

2. Soil information:

Soil Information	Example	Your Soil
Texture	Sandy loam	
Soil pH	lb/acre	-
Available P		
Exchangeable K	lb/acre	

Section B. Nutrient Needs of Crop

Section C. Annual Rate of Manure Application

1. Calculate amount of organic \mathbf{N} in manure (either per ton or per $\mathbf{1 , 0 0 0}$ gal):
lb total $\mathrm{N}-(\mathrm{lb}$ ammonium $\mathrm{N}+\mathrm{lb}$ nitrate N$)=\mathrm{lb}$ organic N

Example:
$36-(\underline{26}+\ldots \quad)=\underline{10} \mathrm{lb}$ organic $\mathrm{N} / \underline{1,000 \mathrm{gal} .}$
Your manure:
\qquad - \qquad $+$ \qquad) $=$ \qquad lb organic N/ \qquad
2. Calculate amount of organic \mathbf{N} in manure made available the first year.
lb organic $\mathrm{N} /($ ton or $1,000 \mathrm{gal}) \mathrm{x}$ mineralization factor $($ Table J .3$)=$ lb available organic $\mathrm{N} /$ (ton or $1,000 \mathrm{gal}$)

Example:
$\xrightarrow{10} \times \underline{0.35}+\ldots 3.5 \mathrm{lb}$ available organic $\mathrm{N} / \underline{1,000 \mathrm{gal} .}$
Your farm:
\qquad
\qquad lb available organic $\mathrm{N} /$ \qquad
3. Calculate amount of plant-available \mathbf{N} in manure (use either a or below).
a. Incorporated application of manure (assume 25% of ammonium N is lost by identification if knifed-in; assume no loss if immediately incorporated by other methods):

Available organic N (sec C.2) + [Ammonium N (Sec A.1.b) x 0.75] + Nitrate N (Sec A.1.b) $=\mathrm{lb}$ plant - available $\mathrm{N} /($ ton or $1,000 \mathrm{gal})$

Example:
$\underline{3.5}+[\underline{26} \times 0.75]+\ldots=\underline{23} \mathrm{lb}$ available $\mathrm{N} / \underline{1,000 \mathrm{gal}}$.

Your farm:
\qquad $+$ \qquad x 0.75] + \qquad $=$ \qquad lb available $\mathrm{N} /$ \qquad
b. Surface application of manure (assumes 50% of ammonium N is lost by ammonia volatilization):

Available organic N (Sec C.2) + [Ammonium N (Sec A.1.b) x 0.50] + Nitrate $\mathrm{N}(\operatorname{Sec} A .1 . \mathrm{b})=\mathrm{lb}$ plant-available $\mathrm{N} /($ ton or $1,000 \mathrm{gal})$

Your farm:
\qquad x 0.50] + lb available $\mathrm{N} /$
4. Adjust \mathbf{N} fertilizer recommendation to account for residual \mathbf{N} from manure applications in the last 3 years.
a. Manure applied to field 1 year ago (if none, proceed to b):
lb organic $\mathrm{N} /$ (ton or $1,000 \mathrm{gal}$) of manure x (mineralization factor x 0.50) x tons or 1,000 gals applied $/$ acre $=\mathrm{lb}$ residual $\mathrm{N} /$ acre

Example:
$\underline{10 \mathrm{lb} / 1,000 \mathrm{gal} \times(\underline{0.35} \times 0.50) \times \underline{6,000}=\underline{10.5} \mathrm{lb} \text { residual } \mathrm{N} / \text { acre } . ~}$

Your farm:
\qquad x \qquad x 0.50) x \qquad $=$ \qquad lb residual $\mathrm{N} /$ acre
b. Manure applied to field 2 years ago (if none, proceed to c.):
lb organic $\mathrm{N} /$ (ton or $1,000 \mathrm{gal}$) or manure x (mineralization factor x 0.25) x tons
or $1,000 \mathrm{gal}$ applied/acre $=\mathrm{lb}$ residual $\mathrm{N} /$ acre
Your farm:
\qquad x \qquad x 0.25) x \qquad $=$ \qquad lb residual $\mathrm{N} /$ acre
c. Manure applied 3 years ago (if none, proceed to d.):
$\mathrm{lb} \mathrm{N} /$ (ton or $1,000 \mathrm{gal}$) of manure x (mineralization factor x 0.125) x tons or $1,000 \mathrm{gal}$ applied/acre $=\mathrm{lb}$ residual $\mathrm{N} /$ acre

Your farm:
\qquad $\mathrm{x}(\ldots \quad \mathrm{x} 0.125) \mathrm{x}$ \qquad $=$ \qquad lb residual $\mathrm{N} /$ acre
d. Total residual N :

Sec C.4. $\mathrm{a}+\operatorname{Sec} \mathrm{C} .4 . \mathrm{b}+\operatorname{Sec} \mathrm{C} .4 . \mathrm{c}=$ total lb residual $\mathrm{N} / \mathrm{acre}$

Example:
$10.5+\ldots+\ldots=10.5$ total lb residual $\mathrm{N} /$ acre

Your farm:
\qquad $+$ \qquad $=$ \qquad total lb residual $\mathrm{N} /$ acre
e. Adjust N requirement of crop:
lb N required by crop $(\operatorname{Sec} \mathrm{B})-\mathrm{lb}$ residual $\mathrm{N}($ Sec $\mathrm{C} .4 . \mathrm{d})=\mathrm{lb} \mathrm{N}$ required/acre
Example:
$100-10.5=\underline{89.5 \mathrm{lb} \mathrm{N} \text { required/acre }}$

Your farm:
\qquad - \qquad lb N required/acre
5. Annual manure applications based on amount of \mathbf{N} required by crop:

Adjusted N required (Sec C.4.e) $\div \mathrm{lb}$ available $\mathrm{N} /$ (ton or $1,000 \mathrm{gal}$) (Sec C.3.a or C.3.b) $=$ tons of manure/acre or number of $1,000 \mathrm{gal}$ units of manure/acre

Example:
$\underline{89.5} \div \underline{23}=3.891$ tons of manure/ac or 1,000 gal units of manure/ac

Your farm:
\qquad \div \qquad tons of manure/ac or 1,000 gal units of manure/ac
6. Annual manure application based on amount of $\mathrm{P}_{2} \mathrm{O}_{5}$ required by crop:
$\mathrm{P}_{2} \mathrm{O}_{5}$ required by crop $(\mathrm{Sec} \mathrm{B}) \div 1 \mathrm{~b}_{2} \mathrm{O}_{5} /($ ton or $1,000 \mathrm{gal})($ Sec A.1.b) $=$ tons manure/acre or number of $1,000 \mathrm{gal}$ units of manure/acre

Example:
$\underline{55} \div \underline{27 / \mathrm{lb} / 1,000 \mathrm{gal}}=\underline{2.037}$ tons of manure/ac or $1,000 \mathrm{gal}$ units of manure/ac
Your farm:
$\ldots-$ \qquad tons of manure/ac or 1,000 gal units of manure/ac
7. Select annual rate of manure to be applied. If manure is to supply all N and $\mathrm{P}_{2} \mathrm{O}_{5}$ needs of the crop, select the HIGHER of the two values (Sec C. 5 or Sec C.6) as your application rate per acre. If your aim is to maximize use of nutrients in animal manure, select the LOWER of the two values, then supplement with commercial fertilizer to supply the remainder of the nutrients required by the crop.

Rate of manure to be applied is:
Example:
$\underline{2.037}$ tons of manure/acre

Your farm:
\qquad tons of manure/acre

Section D. Additional Fertilizer Required

1. Nitrogen (do not complete if manure rate selected in Sec C. 7 supplies all of the required N).
a. Available N added in manure:

Tons or 1,000 gal units of manure added/acre (Sec C.7) x lb available $\mathrm{N} /($ ton or 1,000
gal) $($ Sec C.3.a or C.3.b $)=\mathrm{lb}$ available N applied

Example:
$\underline{2.037} \times \underline{23 \mathrm{lb} / 1,000 \mathrm{gal}}=\underline{46.9 \mathrm{lb}}$ available N applied

Your farm:
\qquad
\qquad = \qquad available N applied
b. Additional fertilizer N required:

Adjusted N requirement (Sec C.4.e) -lb N applied (D.1.a) $=\mathrm{lb}$ fertilizer N required Example:
$\underline{89.5}-\underline{46.9}=\underline{42.6} \mathrm{lb}$ fertilizer N
Your farm:
\qquad

\qquad lb fertilizer N
2. Phosphorus (do not complete if manure rate selected in Sec C. 7 supplies all of the required amount of $\mathrm{P}_{2} \mathrm{O}_{5}$ added in manure:

Tons or 1,000 gal units of manure/acre (Sec C.7) x lb $\mathrm{P}_{2} \mathrm{O}_{5} /($ ton or $1,000 \mathrm{gal})$ (Sec A.1.b) $=\mathrm{lb} \mathrm{P}_{2} \mathrm{O}_{5}$ applied

Your farm:
\qquad x \qquad $=$ \qquad lb $\mathrm{P}_{2} \mathrm{O}_{5}$ applied
b. Additional fertilizer $\mathrm{P}_{2} \mathrm{O}_{5}$ required:
 Your farm:
\qquad
\qquad
\qquad lb fertilizer $\mathrm{P}_{2} \mathrm{O}_{5}$ required

3. Potassium:

a. $\quad \mathrm{K}_{2} \mathrm{O}$ added in manure:

Tons or 1,000 gal units of manure/acre (Sec C.7) x lb $\mathrm{K}_{2} \mathrm{O} /($ ton or $1,000 \mathrm{gal})$ (Sec A.1.b) $=1 b \mathrm{~K}_{2} \mathrm{O}$ applied

Example:
$\underline{2.037} \times \underline{22 \mathrm{lb} / 1,000}=\underline{44.8 \mathrm{lb} \mathrm{K}} \mathrm{K}_{2} \mathrm{O}$ added
Your farm:
\qquad x \qquad $=$ \qquad lb $\mathrm{K}_{2} \mathrm{O}$ added
b. Additional $\mathrm{K}_{2} \mathrm{O}$ required:
$\mathrm{K}_{2} \mathrm{O}$ required by crop $(\mathrm{Sec} \mathrm{B})-\mathrm{lb} \mathrm{K}_{2} \mathrm{O}$ applied $(\mathrm{Sec} \mathrm{D} .3 . \mathrm{a})=\mathrm{lb}$ fertilizer $\mathrm{K}_{2} \mathrm{O}$ required Example:
$\underline{250}-\underline{44.8}=\underline{205.2} \mathrm{lb}$ fertilizer $\mathrm{K}_{2} \mathrm{O}$ required
Your farm:
\qquad - \qquad $=$ \qquad lb fertilizer $\mathrm{K}_{2} \mathrm{O}$ required

TABLE H. 1
Nutrients in Solid Manure at the Time of Land Application

Species	Bedding or Litter	Dry Matter	$\underset{\mathbf{m ~ N}}{\text { Ammoniu }}$	Total N	$\mathrm{P}_{2} \mathrm{O}_{5}$	$\mathrm{K}_{2} \mathrm{O}$
		\%	lb/ton manure			
Poultry	No	45	26	33	48	34
	Yes	75	36	56	45	34
	Deep Pit	76	44	68	64	45
Turkey	No	22	17	27	20	17
	Yes	29	13	20	16	13

Source: MWPS-18, Livestock Waste Facilities Handbook.

TABLE H. 2
Nutrients in Liquid Manure at the Time of Land Application

Species	Waste Handling	Dry Matter	Ammoniu m N	Total N	$\mathbf{P}_{2} \mathrm{O}_{5}$	$\mathbf{K}_{2} \mathbf{O}$

		\%	lb/ton manure			
Poultry	Liquid Pit	13	64	80	36	96

Source: MWPS-18, Livestock Waste Facilities Handbook.

TABLE H. 3

Amount of Nitrogen Mineralized or Released from Organic Nitrogen Forms in Manure to Plant Available

Forms During the Growing Season

Manure Type	Manure Handling	Mineralization Factor
Poultry	Deep pit	0.45
	Solid with litter	0.30
	Solid without litter	0.35

TABLE H. 4

Estimated Removal of Plant Nutrients By Various Crops

		Kilograms per hectare					
Crop	D.M. Yield (t/ha)	Nitrogen \mathbf{N}	Phosphorus $\mathbf{P}_{\mathbf{2}} \mathbf{O}_{\mathbf{5}}$	Potassium $\mathbf{K}_{\mathbf{2}} \mathbf{O}$	Calcium $\mathbf{C a}$	Magnesium $\mathbf{M g}$	
Oat Grain	3.1	56	22	17	3	4	
Oat Straw	4.5	28	11	67	9	10	
Barley Grain	3.2	56	28	17	2	3	
Barley Straw	3.4	22	11	50	13	3	
Wheat Grain	2.7	56	28	17	1	7	
Wheat Straw	3.4	22	5	39	7	3	
Corn Silage	12.3	112	56	151	12	21	
Alfalfa Hay	8.9	213	50	275	132	27	
Timothy Hay	8.9	151	39	163	20	11	
Red Clover Hay	8.9	168	39	179	121	29	

Source: Atlantic Provinces Field Crop Guide.

