APPENDIX H A Method to Determine Manure Application Rates (Adapted from MWPS-18, Livestock Waste Facilities Handbook)

* Please note this methodology takes into account residual nitrogen in the soil from manure applications for the three previous years.

Section A. Manure Composition and Soil Information

1. Manure composition:

a. Values from chemical analysis of manure.

Composition		Your Farm
Laboratory data are often given in ppm. To convert ppm to percent, divide by 10,000. If composition data are not available, use Table H.1 or H.2.	Total N Ammonium N Nitrate N P_2O_5 K_2O	% % %

- b. Determine the amount of each nutrient per ton of solid manure or per 1,000 gal. of liquid manure. If nutrient contents are given in percent:
 - ! % nutrient in manure x 20 = lb nutrients/ton; or,
 - ! % nutrient in manure x 100 = lb nutrients/1,000 gal. (e.g., 0.5% Total N = 10 lb/ton or 42.5 lb/1,000 gal.).

Composition	Example (Table H.2)	Your Farm
Total N	<u>36</u> lb/ <u>1,000 gal.</u>	lb/
Ammonium N*	<u>26</u> lb/ <u>1,000 gal.</u>	lb/
Nitrate N*	lb/	lb/
P_2O_5	<u>27</u> lb/ <u>1,000 gal.</u>	lb/
K ₂ O	<u>22</u> lb/ <u>1,000 gal.</u>	lb/

* If only total N is determined, assume 50% ammonium N and 5% nitrate N.

- N.B. Figures in Section A.1.b needs to be consistent with what's in Table H2. Also Section B "Nutrient Needs of Crop" needs to have figures consistent with Table H.4.
- N.B. Original report Tables J1 J4 should be I.1 I.4.

2. Soil information:

Soil Information	Example	Your Soil		
Texture Soil pH	Sandy loam			
Available P	lb/acre	lb/acre		
Exchangeable K	lb/acre	lb/acre		

Section B. Nutrient Needs of Crop

	Example	Your Crop
Crop to be grown	Timothy	
Expected yield/acre	<u> </u>	
Nutrients required/acre	N = 100 lb/acre	lb/acre
(based on soil test report or	$P_2O_5 = 55$ lb/acre	lb/acre
Table H.4)	$K_2O = 250$ lb/acre	lb/acre

Section C. Annual Rate of Manure Application

1. Calculate amount of organic N in manure (either per ton or per 1,000 gal):

lb total N - (lb ammonium N + lb nitrate N) = lb organic N

Example:

<u>36</u> - (<u>26</u> + <u>-</u>) = <u>10</u> lb organic N/<u>1,000 gal.</u>

Your manure:

_____- - (______+ _ ___) = _____ lb organic N/_____

2. Calculate amount of organic N in manure made available the first year.

lb organic N/(ton or 1,000 gal) x mineralization factor (Table J.3) = lb available organic N/(ton or 1,000 gal)

Example:

<u>10</u> x <u>0.35</u> + <u>3.5</u> lb available organic N/ <u>1,000 gal.</u>

Your farm:

_____ x ____ = ____ lb available organic N/_____

3. Calculate amount of plant-available N in manure (use either a or b below).

a. Incorporated application of manure (assume 25% of ammonium N is lost by identification if knifed-in; assume no loss if immediately incorporated by other methods):

Available organic N (sec C.2) + [Ammonium N (Sec A.1.b) x 0.75] + Nitrate N (Sec A.1.b) = lb plant - available N/(ton or 1,000 gal)

Example:

<u>3.5</u> + [<u>26</u> x 0.75] + <u>-</u> = <u>23</u> lb available N/<u>1,000 gal.</u>

Your farm:

_____+ [____ x 0.75] + _____ = ____ lb available N/_____

b. Surface application of manure (assumes 50% of ammonium N is lost by ammonia volatilization):

Available organic N (Sec C.2) + [Ammonium N (Sec A.1.b) x 0.50] + Nitrate N (Sec A.1.b) = lb plant-available N/(ton or 1,000 gal)

Your farm:

_____+ [_____x 0.50] + _____ = _____lb available N/_____

4. Adjust N fertilizer recommendation to account for residual N from manure applications in the last 3 years.

a. Manure applied to field 1 year ago (if none, proceed to b):

lb organic N/(ton or 1,000 gal) of manure x (mineralization factor x 0.50) x tons or 1,000 gals applied/acre = lb residual N/acre

Example:

<u>10 lb/1,000 gal</u> x (0.35 x 0.50) x <u>6,000</u>=<u>10.5</u> lb residual N/acre

Your farm:

_____x (_____x 0.50) x _____ lb residual N/acre

b. Manure applied to field 2 years ago (if none, proceed to c.):

lb organic N/(ton or 1,000 gal) or manure x (mineralization factor x 0.25) x tons

or 1,000 gal applied/acre = lb residual N/acre

Your farm:

x (x 0.25) x = lb residual N/acre

c. Manure applied 3 years ago (if none, proceed to d.):

lb N/(ton or 1,000 gal) of manure x (mineralization factor x 0.125) x tons or 1,000 gal applied/acre = lb residual N/acre

Your farm:

 $_$ x ($_$ x 0.125) x $_$ = ____ lb residual N/acre

d. Total residual N:

Sec C.4.a + Sec C.4.b + Sec C.4.c = total lb residual N/acre

Example:

<u>10.5</u> + <u>-</u> + <u>-</u> =<u>10.5</u> total lb residual N/acre

Your farm:

+ + + total lb residual N/acre

e. Adjust N requirement of crop:

lb N required by crop (Sec B) - lb residual N (Sec C.4.d) = lb N required/acre

Example:

<u>100</u> - <u>10.5</u> = <u>89.5</u> lb N required/acre

Your farm:

_____- - _____lb N required/acre

5. Annual manure applications based on amount of N required by crop:

Adjusted N required (Sec C.4.e) \div lb available N/(ton or 1,000 gal) (Sec C.3.a or C.3.b) = tons of manure/acre or number of 1,000 gal units of manure/acre

Example:

Your farm:

 $\dot{}$ $\dot{}$ $\dot{}$ = _____ tons of manure/ac or 1,000 gal units of manure/ac

6. Annual manure application based on amount of P_2O_5 required by crop:

 P_2O_5 required by crop (Sec B) \div lb P_2O_5 /(ton or 1,000 gal) (Sec A.1.b) = tons manure/acre or number of 1,000 gal units of manure/acre

Example:

<u>55</u> \div <u>27/lb/1,000 gal</u> = <u>2.037</u> tons of manure/ac or 1,000 gal units of manure/ac

Your farm:

 $\dot{}$ $\dot{}$ $\dot{}$ = _____ tons of manure/ac or 1,000 gal units of manure/ac

7. Select annual rate of manure to be applied. If manure is to supply all N and P_2O_5 needs of the crop, select the HIGHER of the two values (Sec C.5 or Sec C.6) as your application rate per acre. If your aim is to maximize use of nutrients in animal manure, select the LOWER of the two values, then supplement with commercial fertilizer to supply the remainder of the nutrients required by the crop.

Rate of manure to be applied is:

Example:

2.037 tons of manure/acre

Your farm:

_____ tons of manure/acre

Section D. Additional Fertilizer Required

1. Nitrogen (do not complete if manure rate selected in Sec C.7 supplies all of the required N).

a. Available N added in manure:

Tons or 1,000 gal units of manure added/acre (Sec C.7) x lb available N/(ton or 1,000 $\,$

gal) (Sec C.3.a or C.3.b) = lb available N applied

Example:

<u>2.037 x 23 lb/1,000 gal = 46.9 lb</u> available N applied

Your farm:

_____x ____ = _____ available N applied

b. Additional fertilizer N required:

Adjusted N requirement (Sec C.4.e) - lb N applied (D.1.a) = lb fertilizer N required

Example:

<u>89.5</u> - <u>46.9</u> = <u>42.6</u> lb fertilizer N

Your farm:

_____ - ____ = ____ lb fertilizer N

2. Phosphorus (do not complete if manure rate selected in Sec C.7 supplies all of the required amount of P_2O_5 added in manure:

Tons or 1,000 gal units of manure/acre (Sec C.7) x lb $P_2O_5/(ton \text{ or } 1,000 \text{ gal})$ (Sec A.1.b) = lb P_2O_5 applied

Your farm:

 $\underline{\qquad} x \underline{\qquad} = \underline{\qquad} lb P_2O_5 applied$

b. Additional fertilizer P₂O₅ required:

 P_2O_5 required by crop (Sec B) – lb P_2O_5 applied (Sec D.2.a) = lb fertilizer P_2O_5 required

Your farm:

 $_$ _ _ _ = _ _ _ lb fertilizer P₂O₅ required

3. Potassium:

a. K_2O added in manure:

Tons or 1,000 gal units of manure/acre (Sec C.7) x lb $K_2O/(ton \text{ or } 1,000 \text{ gal})$ (Sec A.1.b) = lb K_2O applied

Example:

2.037 x 22 lb/1,000 = 44.8 lb K₂O added

Your farm:

 $\underline{\qquad} x \underline{\qquad} = \underline{\qquad} lb K_2O added$

b. Additional K₂O required:

 K_2O required by crop (Sec B) - lb K_2O applied (Sec D.3.a) = lb fertilizer K_2O required

Example:

<u>250</u> - <u>44.8</u> = <u>205.2</u> lb fertilizer K_2O required

Your farm:

_____ - ____ = _____ lb fertilizer K₂O required

TABLE H.1

Nutrients in Solid Manure at the Time of Land Application

	Bedding	Dry Matter	Ammoniu m N	Total N	P ₂ O ₅	K ₂ O	
Species	•		lb/ton manure				
Poultry	No	45	26	33	48	34	
	Yes	75	36	56	45	34	
	Deep Pit	76	44	68	64	45	
Turkey	No	22	17	27	20	17	
	Yes	29	13	20	16	13	

Source: MWPS-18, Livestock Waste Facilities Handbook.

TABLE H.2

Nutrients in Liquid Manure at the Time of Land Application

	Waste	Dry	Ammoniu			
Species	Handling	Matter	m N	Total N	P_2O_5	K ₂ O

		%	lb/ton manure			
Poultry	Liquid Pit	13	64 80 36 96			

Source: MWPS-18, Livestock Waste Facilities Handbook.

TABLE H.3

Amount of Nitrogen Mineralized or Released from Organic Nitrogen Forms in Manure to Plant Available Forms During the Growing Season

Manure Type	Manure Handling	Mineralization Factor
Poultry	Deep pit	0.45
	Solid with litter	0.30
	Solid without litter	0.35

TABLE H.4

Estimated Removal of Plant Nutrients By Various Crops

		Kilograms per hectare				
Сгор	D.M. Yield (t/ha)	Nitrogen N	Phosphorus P ₂ O ₅	Potassium K ₂ O	Calcium Ca	Magnesium Mg
Oat Grain	3.1	56	22	17	3	4
Oat Straw	4.5	28	11	67	9	10
Barley Grain	3.2	56	28	17	2	3
Barley Straw	3.4	22	11	50	13	3
Wheat Grain	2.7	56	28	17	1	7
Wheat Straw	3.4	22	5	39	7	3
Corn Silage	12.3	112	56	151	12	21
Alfalfa Hay	8.9	213	50	275	132	27
Timothy Hay	8.9	151	39	163	20	11
Red Clover Hay	8.9	168	39	179	121	29

Source: Atlantic Provinces Field Crop Guide.