APPENDIX I

A Method to Determine Manure Application Rates (Adapted from MWPS-18, Livestock Waste Facilities Handbook)

* Please note this methodology takes into account residual nitrogen in the soil from manure applications for the three previous years.

Section A. Manure Composition and Soil Information

1. Manure composition:
a. Values from chemical analysis of manure.

Composition		Your Farm
Laboratory data are often given in	Total N	
ppm. To convert ppm to percent,	Ammonium N	$\%$
divide by 10,000. If composition data	Nitrate N	-
are not available, use Table I.1 or I.2.	$\mathrm{P}_{2} \mathrm{O}_{5}$	$\%$
	$\mathrm{~K}_{2} \mathrm{O}$	$\%$

b. Determine the amount of each nutrient per ton of solid manure or per 1,000 gal. of liquid manure. If nutrient contents are given in percent:
! $\%$ nutrient in manure x $20=\mathrm{lb}$ nutrients/ton; or,
! $\%$ nutrient in manure $\times 100=\mathrm{lb}$ nutrients $/ 1,000$ gal. (e.g., 0.5% Total N $=10 \mathrm{lb} /$ ton or $42.5 \mathrm{lb} / 1,000 \mathrm{gal}$.).

Composition	Example (Table I.2)	Your Farm
Total N	$36 \mathrm{lb} / 1,000 \mathrm{gal}$.	lb/
Ammonium N^{*}	$26 \mathrm{lb} / 1,000 \mathrm{gal}$.	lb/
Nitrate ${ }^{*}$	-- lb/ 1,000 gal.	lb/
$\mathrm{P}_{2} \mathrm{O}_{5}$	$27 \mathrm{lb} / 1,000 \mathrm{gal}$.	lb/
$\mathrm{K}_{2} \mathrm{O}$	$22 \mathrm{lb} / 1,000 \mathrm{gal}$.	lb/

[^0]2. Soil information:

Soil Information	Example	Your Soil
Texture	$\frac{\text { Sandy loam }}{}$	
Soil pH	lb/acre	-
Available P		
Exchangeable K	lb/acre	

Section B. Nutrient Needs of Crop

	Example	Your Crop
Crop to be grown	Timothy	
Expected yield/acre	2.5 T	
Nutrients required/acre	$\mathrm{N}=100 \mathrm{lb} / \mathrm{acre}$	_ lb/acre
(based on soil test report or	$\mathrm{P}_{2} \mathrm{O}_{5}=\underline{55} \mathrm{lb} / \mathrm{acre}$	lb/acre
Table I.4)	$\mathrm{K}_{2} \mathrm{O}=55 \mathrm{lb} / \mathrm{acre}$	lb/acre

Section C. Annual Rate of Manure Application

1. Calculate amount of organic \mathbf{N} in manure (either per ton or per $\mathbf{1 , 0 0 0}$ gal):
lb total $\mathrm{N}-(\mathrm{lb}$ ammonium $\mathrm{N}+\mathrm{lb}$ nitrate N$)=\mathrm{lb}$ organic N

Example:
$36-(\underline{26}+\ldots \quad)=\underline{10} \mathrm{lb}$ organic $\mathrm{N} / \underline{1,000 \mathrm{gal} .}$
Your manure:
\qquad - \qquad $+$ \qquad $)=$ \qquad lb organic N/ \qquad
2. Calculate amount of organic \mathbf{N} in manure made available the first year.
lb organic $\mathrm{N} /($ ton or $1,000 \mathrm{gal}) \times$ mineralization factor $($ Table I .3$)=$ lb available organic $\mathrm{N} /($ ton or $1,000 \mathrm{gal}$)

Example:
$\underline{10} \times \underline{0.35}+\ldots$.
Your farm:
\qquad
\qquad lb available organic $\mathrm{N} /$ \qquad
3. Calculate amount of plant-available \mathbf{N} in manure (use either a or below).
a. Incorporated application of manure (assume 25% of ammonium N is lost by volatization if knifed-in; assume no loss if immediately incorporated by other methods):

Available organic N (sec C.2) + [Ammonium N (Sec A.1.b) x 0.75] + Nitrate N (Sec A.1.b) $=\mathrm{lb}$ plant - available $\mathrm{N} /($ ton or $1,000 \mathrm{gal})$

Example:
$\underline{3.5}+[\underline{26} \times 0.75]+\ldots=\underline{23} \mathrm{lb}$ available $\mathrm{N} / \underline{1,000 \mathrm{gal}}$.

Your farm:
\qquad $+$ \qquad x 0.75] + \qquad $=$ \qquad lb available $\mathrm{N} /$ \qquad
b. Surface application of manure (assumes 50% of ammonium N is lost by ammonia volatilization):

Available organic N (Sec C.2) + [Ammonium N (Sec A.1.b) x 0.50] + Nitrate $\mathrm{N}(\operatorname{Sec} A .1 . \mathrm{b})=\mathrm{lb}$ plant-available $\mathrm{N} /($ ton or $1,000 \mathrm{gal})$

Your farm:
\qquad x 0.50] + lb available $\mathrm{N} /$
4. Adjust \mathbf{N} fertilizer recommendation to account for residual \mathbf{N} from manure applications in the last 3 years.
a. Manure applied to field 1 year ago (if none, proceed to b):
lb organic $\mathrm{N} /$ (ton or $1,000 \mathrm{gal}$) of manure x (mineralization factor x 0.50) x tons or 1,000 gals applied $/$ acre $=\mathrm{lb}$ residual $\mathrm{N} /$ acre

Example:

Your farm:
\qquad x \qquad x 0.50) x \qquad $=$ \qquad lb residual $\mathrm{N} /$ acre
b. Manure applied to field 2 years ago (if none, proceed to c.):
lb organic $\mathrm{N} /$ (ton or $1,000 \mathrm{gal}$) or manure x (mineralization factor x 0.25) x tons
or $1,000 \mathrm{gal}$ applied/acre $=\mathrm{lb}$ residual $\mathrm{N} /$ acre
Your farm:
\qquad x \qquad $\mathrm{x} 0.25) \mathrm{x}$ \qquad $=$ \qquad lb residual $\mathrm{N} /$ acre
c. Manure applied 3 years ago (if none, proceed to d.):
$\mathrm{lb} \mathrm{N} /$ (ton or $1,000 \mathrm{gal}$) of manure x (mineralization factor x 0.125) x tons or $1,000 \mathrm{gal}$ applied/acre $=\mathrm{lb}$ residual $\mathrm{N} /$ acre

Your farm:
\qquad $\mathrm{x}(\ldots \quad \mathrm{x} 0.125) \mathrm{x}$ \qquad $=$ \qquad lb residual $\mathrm{N} /$ acre
d. Total residual N :

Sec C.4. $\mathrm{a}+\operatorname{Sec} \mathrm{C} .4 . \mathrm{b}+\operatorname{Sec} \mathrm{C} .4 . \mathrm{c}=$ total lb residual $\mathrm{N} / \mathrm{acre}$
Example:
$10.5+\ldots+\ldots=10.5$ total lb residual $\mathrm{N} /$ acre
Your farm:
\qquad
\qquad
\qquad $=$ \qquad total lb residual $\mathrm{N} /$ acre
e. Adjust N requirement of crop:
lb N required by crop $(\mathrm{Sec} \mathrm{B})-\mathrm{lb}$ residual $\mathrm{N}(\operatorname{Sec} \mathrm{C} .4 . \mathrm{d})=\mathrm{lb} \mathrm{N}$ required/acre
Example:
$\underline{100}-\underline{10.5}=\underline{89.5 \mathrm{lb} \mathrm{N} \text { required/acre }}$
Your farm:
\qquad $-$ \qquad lb N required/acre

5. Annual manure applications based on amount of \mathbf{N} required by crop:

Adjusted N required (Sec C.4.e) $\div \mathrm{lb}$ available $\mathrm{N} /$ (ton or $1,000 \mathrm{gal}$) (Sec C.3.a or C.3.b) $=$ tons of manure/acre or number of $1,000 \mathrm{gal}$ units of manure/acre

Example:
$\underline{89.5} \div \underline{23}=\underline{3.891}$ tons of manure/ac or $1,000 \mathrm{gal}$ units of manure/ac
Your farm:
\qquad \div \qquad $=$ \qquad tons of manure/ac or 1,000 gal units of manure/ac

6. Annual manure application based on amount of $\mathrm{P}_{2} \mathrm{O}_{5}$ required by crop:

$\mathrm{P}_{2} \mathrm{O}_{5}$ required by crop $(\mathrm{Sec} \mathrm{B}) \div \mathrm{lb}_{2} \mathrm{O}_{5} /($ ton or $1,000 \mathrm{gal})(\mathrm{Sec} \mathrm{A.1.b})=$ tons manure/acre or number of $1,000 \mathrm{gal}$ units of manure/acre

Example:
$\underline{55} \div \underline{27 / \mathrm{lb} / 1,000 \mathrm{gal}}=\underline{2.037}$ tons of manure/ac or 1,000 gal units of manure/ac
Your farm:
\qquad $\div ـ$ \qquad tons of manure/ac or $1,000 \mathrm{gal}$ units of manure/ac
7. Select annual rate of manure to be applied. If manure is to supply all N and $\mathrm{P}_{2} \mathrm{O}_{5}$ needs of the crop, select the HIGHER of the two values (Sec C. 5 or Sec C.6) as your application rate per acre. If your aim is to maximize use of nutrients in animal manure, select the LOWER of the two values, then supplement with commercial fertilizer to supply the remainder of the nutrients required by the crop.

Rate of manure to be applied is:
Example:
$\underline{2.037}$ tons of manure/acre
Your farm:
\qquad tons of manure/acre

Section D. Additional Fertilizer Required

1. Nitrogen (do not complete if manure rate selected in Sec C. 7 supplies all of the required N).
a. Available N added in manure:

Tons or 1,000 gal units of manure added/acre (Sec C.7) xlb available $\mathrm{N} /($ ton or $1,000 \mathrm{gal}$) (Sec C.3.a or C.3.b) $=\mathrm{lb}$ available N applied

Example:
$\underline{2.037} \times \underline{23 \mathrm{lb} / 1,000 \mathrm{gal}}=\underline{46.9 \mathrm{lb}}$ available N applied
Your farm:
\qquad x \qquad $=$ \qquad available N applied
b. Additional fertilizer N required:

Adjusted N requirement (Sec C.4.e) - lb N applied (D.1.a) $=\mathrm{lb}$ fertilizer N required
Example:
$\underline{89.5}-\underline{46.9}=\underline{42.6} \mathrm{lb}$ fertilizer N
Your farm:
\qquad $-$ \qquad $=$ \qquad lb fertilizer N
2. Phosphorus (do not complete if manure rate selected inSec C. 7 supplies all of the required amount of $\mathrm{P}_{2} \mathrm{O}_{5}$ added in manure):

Your farm:
\qquad x \qquad $=$ \qquad lb $\mathrm{P}_{2} \mathrm{O}_{5}$ applied
b. Additional fertilizer $\mathrm{P}_{2} \mathrm{O}_{5}$ required:
$\mathrm{P}_{2} \mathrm{O}_{5}$ required by crop $(\mathrm{Sec} \mathrm{B})-\mathrm{lb} \mathrm{P}_{2} \mathrm{O}_{5}$ applied $(\operatorname{Sec} \mathrm{D} .2 \mathrm{a})=\mathrm{lb}$ fertilizer $\mathrm{P}_{2} \mathrm{O}_{5}$ required
Your farm:
\qquad
\qquad $=$ \qquad lb fertilizer $\mathrm{P}_{2} \mathrm{O}_{5}$ required

3. Potassium:

a. $\quad \mathrm{K}_{2} \mathrm{O}$ added in manure:

Tons or 1,000 gal units of manure/acre (Sec C.7) $\times \mathrm{lb} \mathrm{K}_{2} \mathrm{O} /($ ton or $1,000 \mathrm{gal})\left(\right.$ Sec A.1.b) $=\mathrm{lb} \mathrm{K}_{2} \mathrm{O}$ applied
Example:
$\underline{2.037} \times \underline{22 \mathrm{lb} / 1,000}=\underline{44.8} \mathrm{lb} \mathrm{K}_{2} \mathrm{O}$ added
Your farm:
\qquad
\qquad $=$ \qquad lb $\mathrm{K}_{2} \mathrm{O}$ added
b. Additional $\mathrm{K}_{2} \mathrm{O}$ required:
$\mathrm{K}_{2} \mathrm{O}$ required by crop $(\mathrm{Sec} \mathrm{B})-\mathrm{lb} \mathrm{K}_{2} \mathrm{O}$ applied $(\mathrm{Sec} \mathrm{D} .3 . \mathrm{a})=\mathrm{lb}$ fertilizer $\mathrm{K}_{2} \mathrm{O}$ required
Example:
$\underline{250}-\underline{44.8}=\underline{205.2} \mathrm{lb}$ fertilizer $\mathrm{K}_{2} \mathrm{O}$ required
Your farm:
\qquad $=$ \qquad lb fertilizer $\mathrm{K}_{2} \mathrm{O}$ required

TABLE I. 1
Nutrients in Solid Manure at the Time of Land Application

Spec ies	Bedding or litter	Dry matter	Ammonium N	Total N	$\mathrm{P}_{2} \mathrm{O}_{5}$	$\mathrm{K}_{2} \mathrm{O}$
S w in e	$\begin{aligned} & \text { No } \\ & \text { Y es } \end{aligned}$	\%	$\mathrm{lb} /$ ton manure			
		18	65	108	97	87
		18				
B eef	No	15 *	4	11	7	10
	No	$52+$	7	21	14	23
	Y es	50	8	21	18	26
Dair y	No	18	4	9	4	10
	Y es	21	5	9	4	10
S heep	No	28	5	18	11	26
	Y es	28	5	14	9	25
Horse	Y es	46	4	14	4	14

Note:

* Open concrete lot.
+ Open dirt lot.
Source: MW PS-18, Livestock W aste Facilit ies Handbook.

TABLE 1.2
Nutrients In Liquid Manure at the Time of Land Application

Spec ies	W aste handling	D ry matter	Ammonium N	Total N	$\mathrm{P}_{2} \mathrm{O}_{5}$	$\mathrm{K}_{2} \mathrm{O}$
S w in e	Liquid pit Lagoon*	\%	$\mathrm{lb} / 1,000 \mathrm{gal}$ manure			
		4	26	36	27	22
		1	3	4	2	4
B eef	Liquid pit	11	24	40	27	34
	Lagoon*	1	2	4	9	5
Dair y	Liquid pit	8	12	24	18	29
	Lagoon*	1	2.5	4	4	5
Veal calf	Liquid pit	3	19	24	25	51

Source: MW PS-18. Livestock W aste Facilit ies Handbook.

* Includes lot runoff water.

TABLE 1.3
Amount of Nitrogen Mineralized or Released From Organic Nitrogen Forms in M anure to Plant Available Forms During the Growing S eason

M anure Type	M anure Handling	M in eralization Factor
S w ine	Fresh	0.50
	Anaerobic liquid	0.35
	Aerobic liquid	0.30
Beef	Solid w ithout bedding	0.35
	Solid w it h bedding	0.25
	Anaerobic liquid	0.30
	A erobic liquid	0.25
Dairy	Solid w ithout bedding	0.35
	Solid w it h bedding	0.25
	Anaerobic liquid	0.30
	A erobic liquid	0.25
S heep	Solid	0.25
Horses	Solid w it h bedding	0.20

TABLE I. 4

Estim ated Removal of Plant Nutrients By Various Crops

Crop	D.M, Y ield (t / ha)	Kilograms per hectare				
		N it rogen N	Phosphorus $\mathrm{P}_{2} \mathrm{O}_{5}$	$\begin{gathered} \text { Potassiu m } \\ K_{2} \mathrm{O} \end{gathered}$	C a lcium Ca	Magnesium Mg
0 at Grain	3.1	56	22	17	3	4
0 at Straw	4.5	28	11	67	9	10
Barley Grain	3.2	56	28	17	2	3
Barley Straw	3.4	22	11	50	13	3
W he at Grain	2.7	56	28	17	1	7
W he at Straw	3.4	22	5	39	7	3
Corn Silage	12.3	112	56	151	12	21
A If alfa Hay	8.9	213	50	275	132	27
Timothy Hay	8.9	151	39	163	20	11
Red Clover Hay	8.9	168	39	179	121	29

Source: A tlant ic Provinces Field Crop Guide.

[^0]: * If only total N is determined, assume 50% ammonium N and 5% nitrate N .

