Acquiring VLF-EM data with the hand-held Geonics EM-16 receiver

Gerry Kilfoil

Geological Survey

Department of Industry, Energy and Technology

- Basic principles EM method
- EM-16 use/demo & survey set-up
- Data presentation, Fraser Filter
- Basic interpretation

Electromagnetics (EM)

Theory

- Passing a current (AC) through a wire induces a primary magnetic field in the vicinity of the wire.
- The primary magnetic field induces currents in bedrock conductors (if present).
- The currents in the conductor induce a secondary magnetic field.
- The secondary field is measured by a receiver

Electromagnetics (EM)

Uses

To detect buried metal in urban settings.

- To map conductive geological strata, fault zones.
- To delineate mineralized horizons (if conductive)

There are several types of EM surveys.

VLF-EM (Very Low Frequency)

The primary signal field induces a secondary field in a conductor in the bedrock.

A conductor can be

Metallic body, Graphitic horizons, Faults, Contacts between different bedrock units.

Conductor = Continuous body

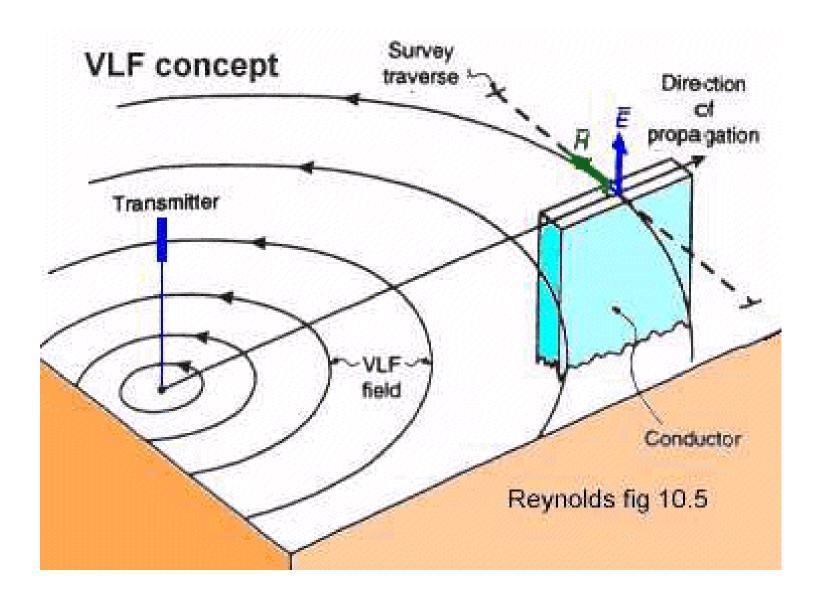
Submarine communications systems use VLF transmitter stations at

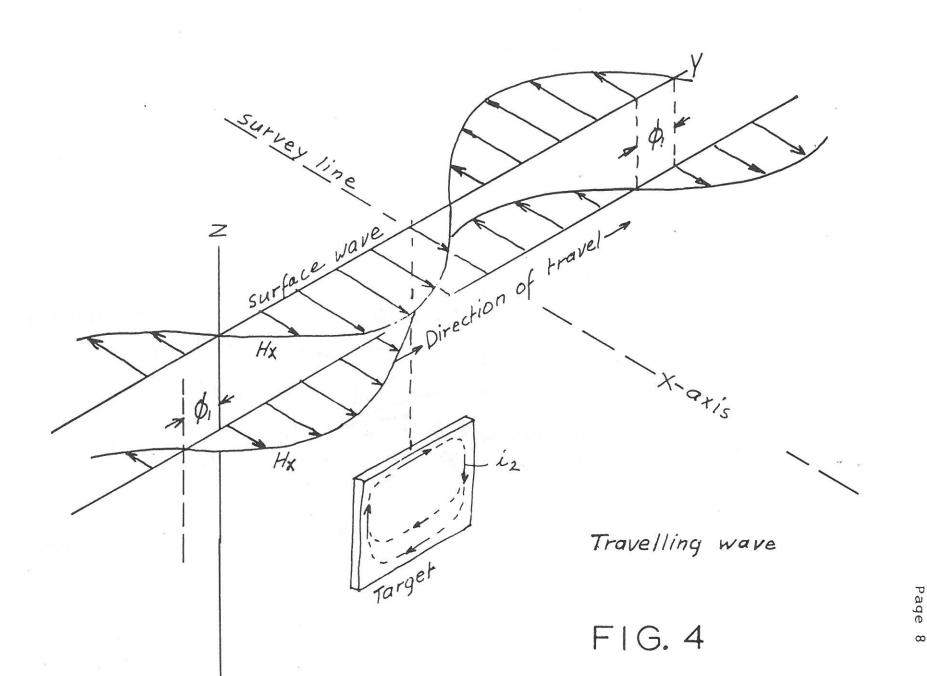
Cutler, Maine Annapolis, Maryland Seattle, Washington Rugby, England Bordeaux, France (and others around the globe)

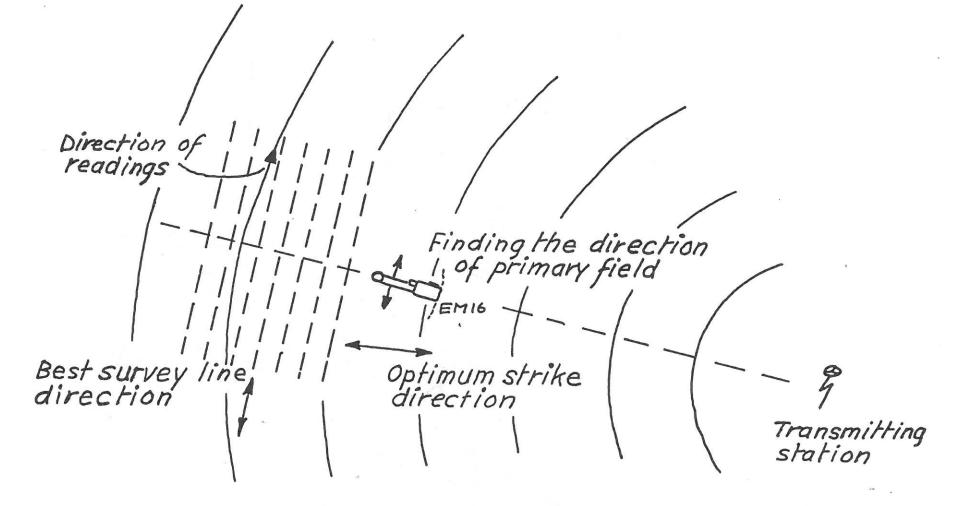
Uses:

 Primarily used for locating/mapping near vertical mineralized beds or structures.

Depth of penetration approx. 50 m

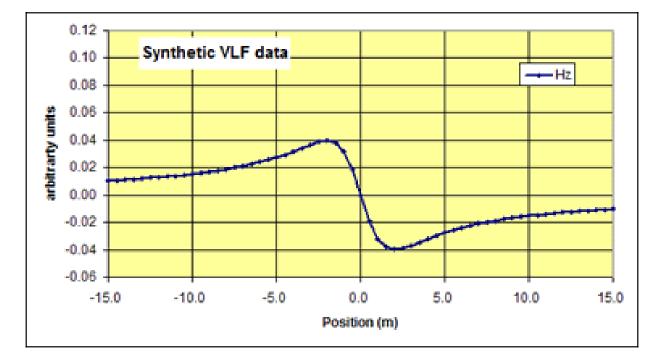

Advantages:

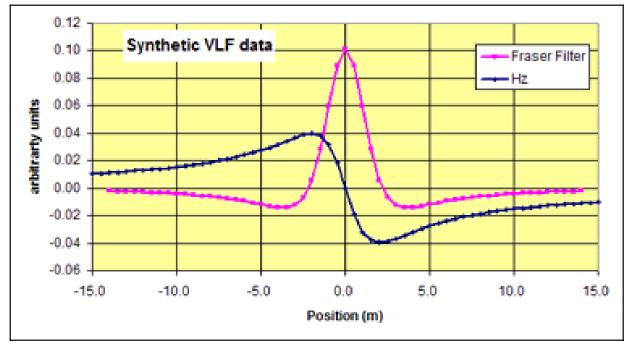

- Measurements are easily acquired;
- Relatively cheap and good for reconnaissance;
- Uses an existing transmitter source;
- Does not require ground contact;
- Can provide relatively deep measurements.

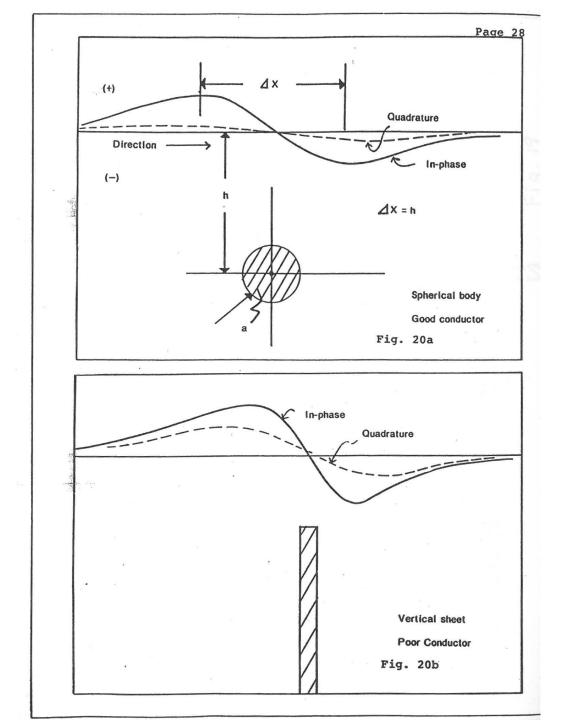


Ineffective if

- Rock layers are horizontal
- Soil is electrically conductive
- Body not aligned approx. towards transmitter
- Metal pipes, cables, power lines etc nearby
- Loss of signal from the VLF transmitter!!







Planning of survey

FIG. 3

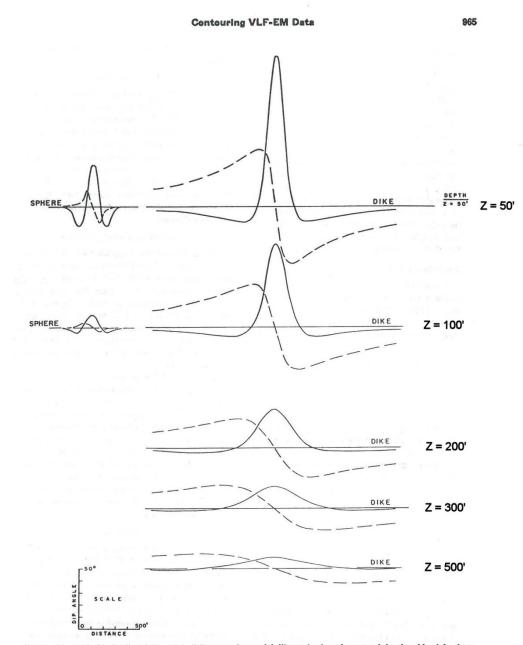
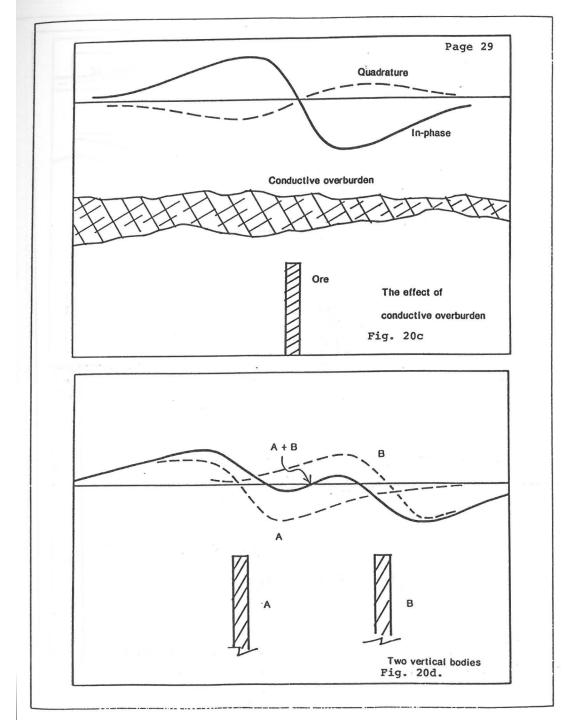
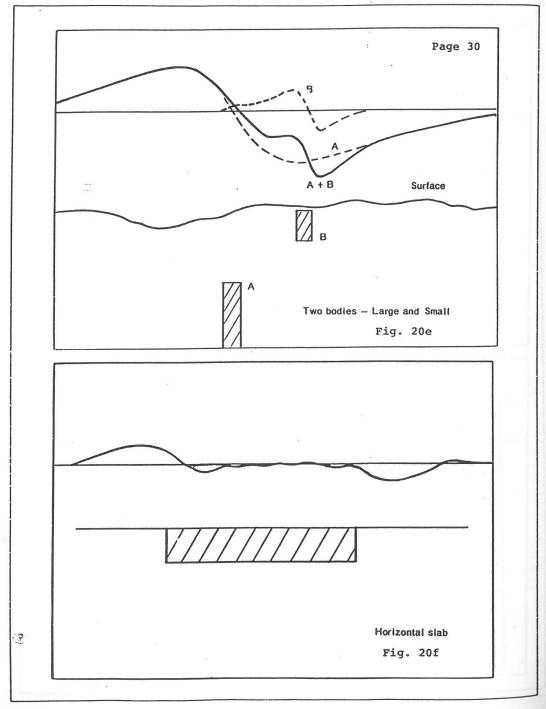




Fig. 6. Dip-angle (dashed) and filtered (solid) curves for model dike and sphere for several depths of burial, where z is depth to top of dike and to center of sphere.

(Fraser, 1969)

Page 76

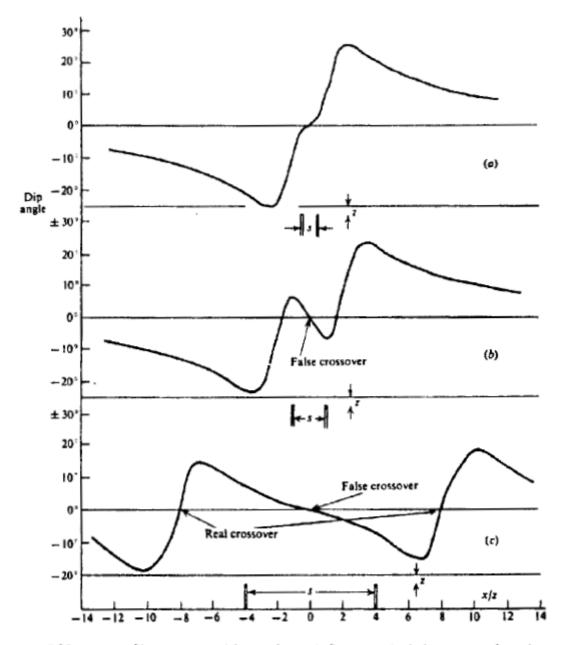


Figure 7.39. VLF profiles over two identical semiinfinite vertical sheets as a function of distance between the sheets. (a) s = 2z. (b) s = 4z. (c) s = 16z. (Telford et al., 1990)

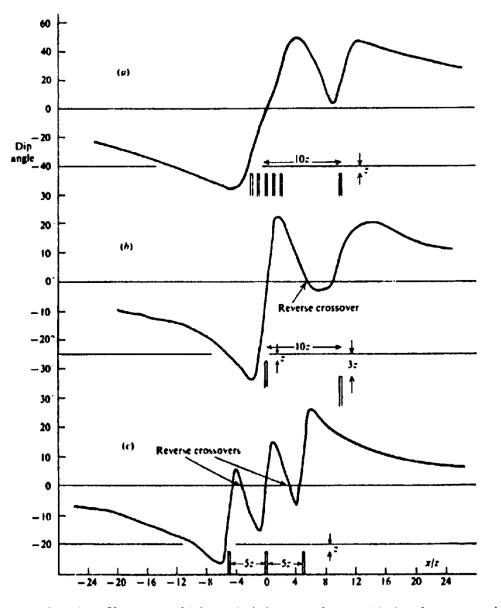
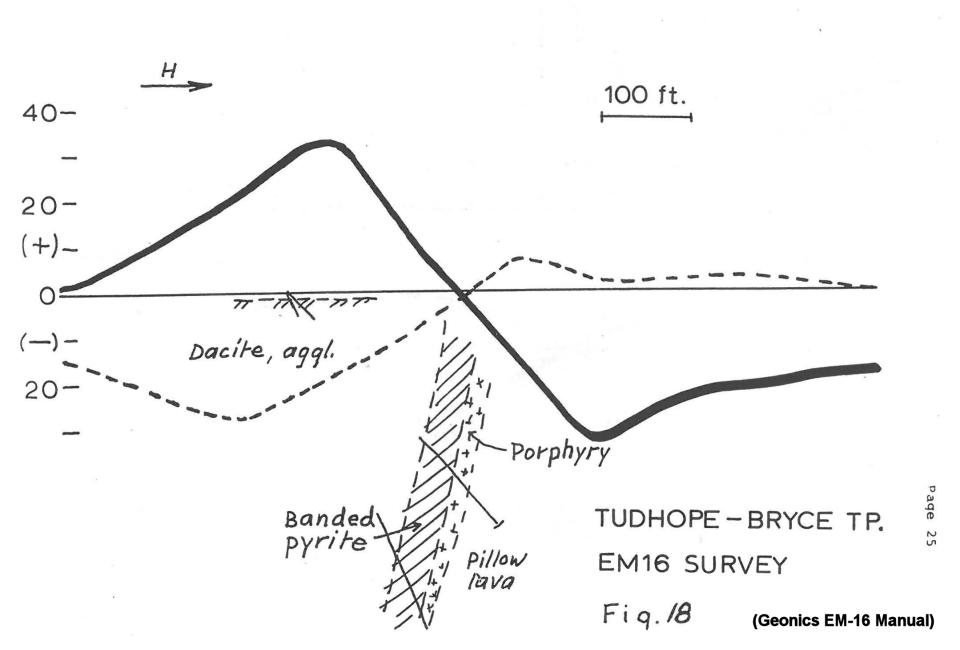
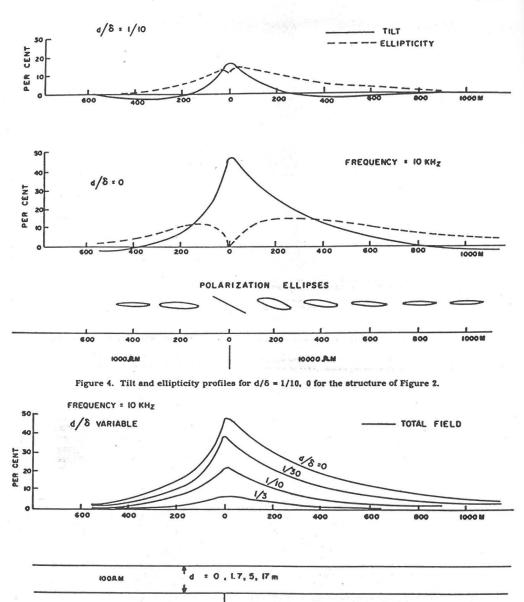




Figure 7.40. VLF profiles over multiple vertical-sheet conductors. (a) Five sheets spaced z apart plus one sheet distant 10z from the midpoint of the five sheets, all at depth z. (b) Two sheets at depths of z and 3z, spaced 10z apart. (c) Three sheets at depth z and spaced 5z apart.

(Telford et al., 1991)

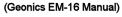


Figure 5. Total field, $|H_z/H_x|$, profiles over the structure of Figure 2 with d/6 = 0, 1/30, 1/10, 1/3.

M.2.00001

M 20001

3

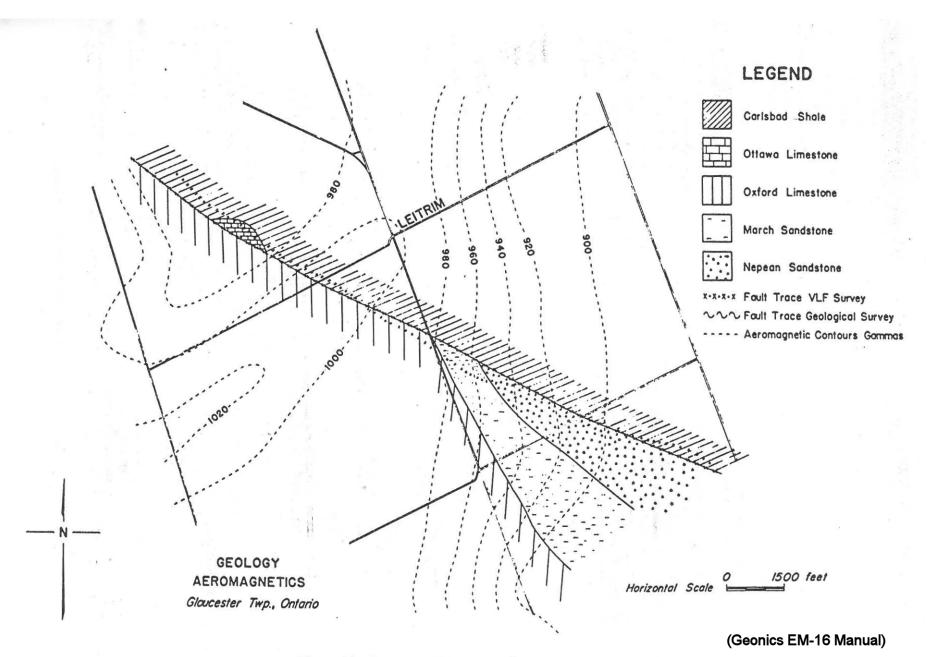


Figure 10. Geology and aeromagnetic contours, Leitrim area.

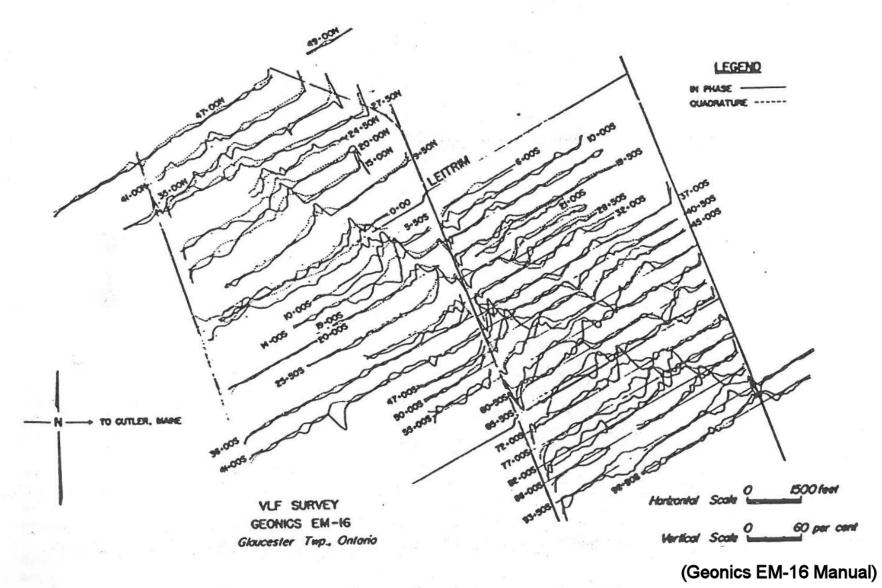


Figure 11. VLF in-phase and quadrature profiles, Leitrim area.

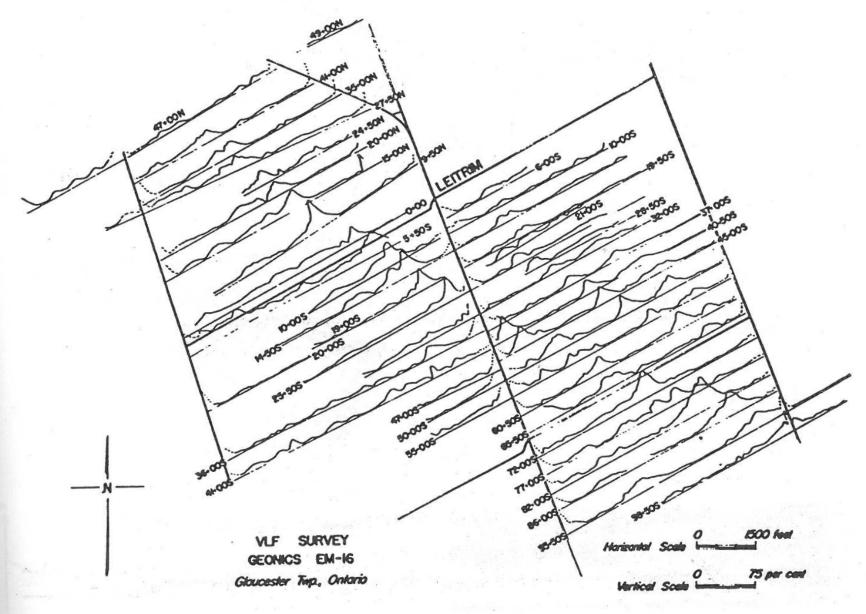


Figure 12. VLF total field profiles, Leitrim area.

(Geonics EM-16 Manual)

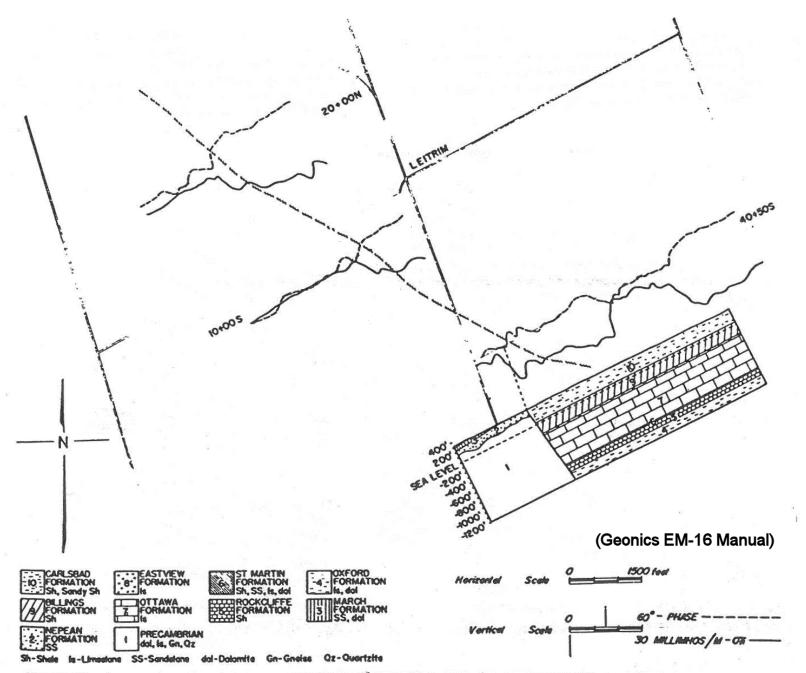
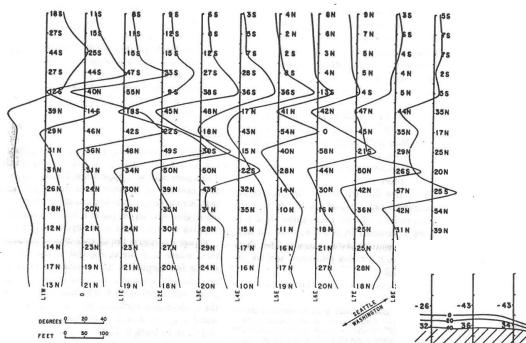
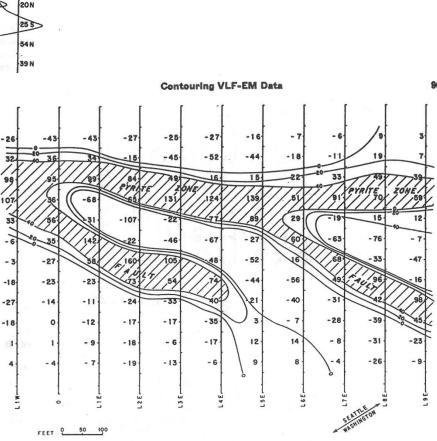
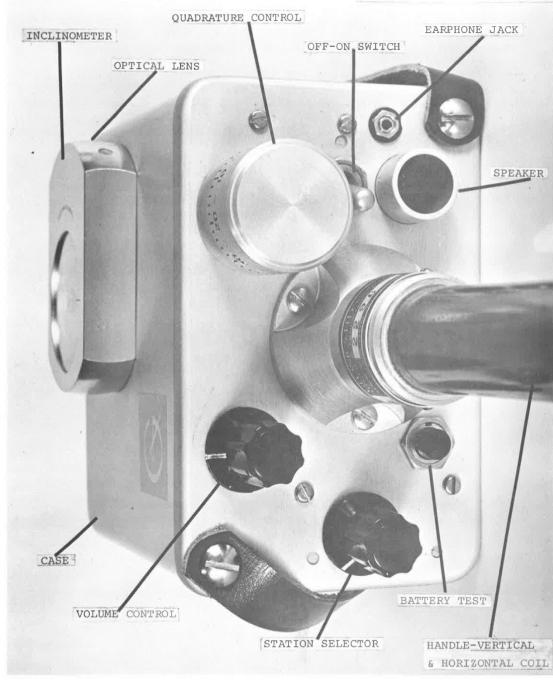



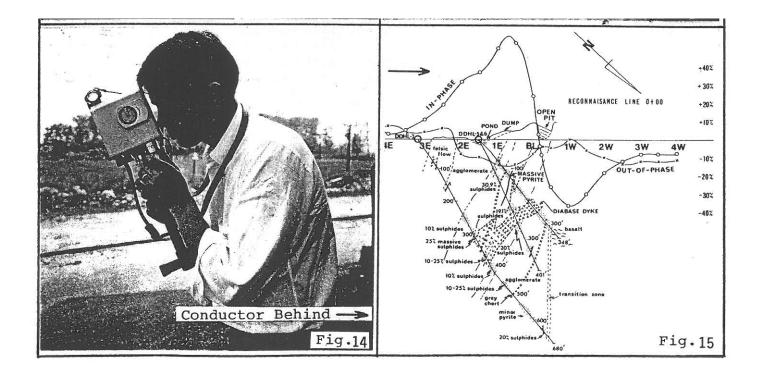
Figure 13. Apparent conductivity (σ_a) and phase (ϕ) profiles on lines 20+00N, 10+00S, and 40+50S. Leitrim area.

Fraser

FIG. 1. Dip-angle data in the vicinity of the Temagami mine. The arrow defines the VLF-EM primar from the transmitter at Seattle, Washington.

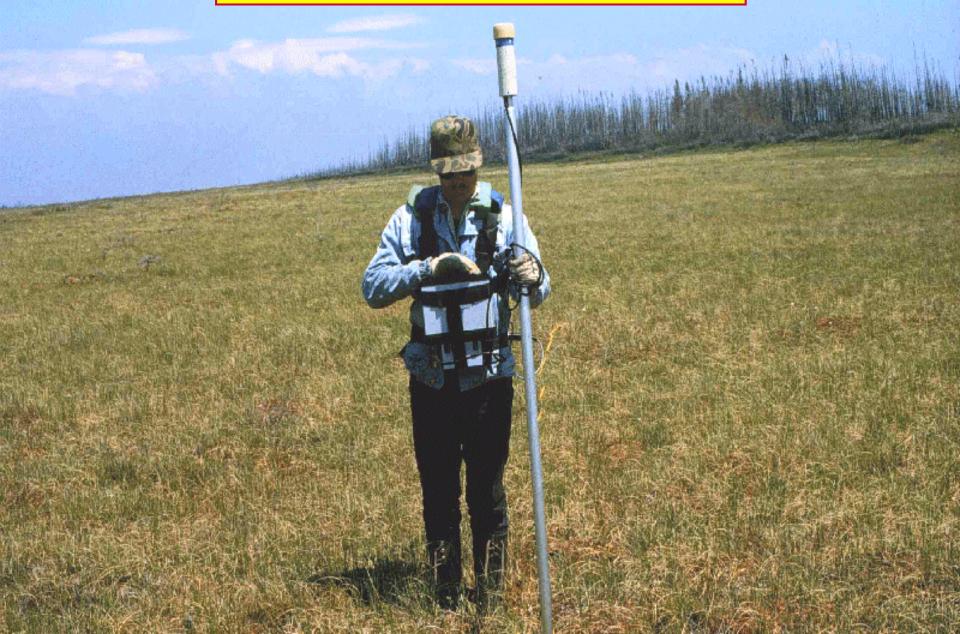
960

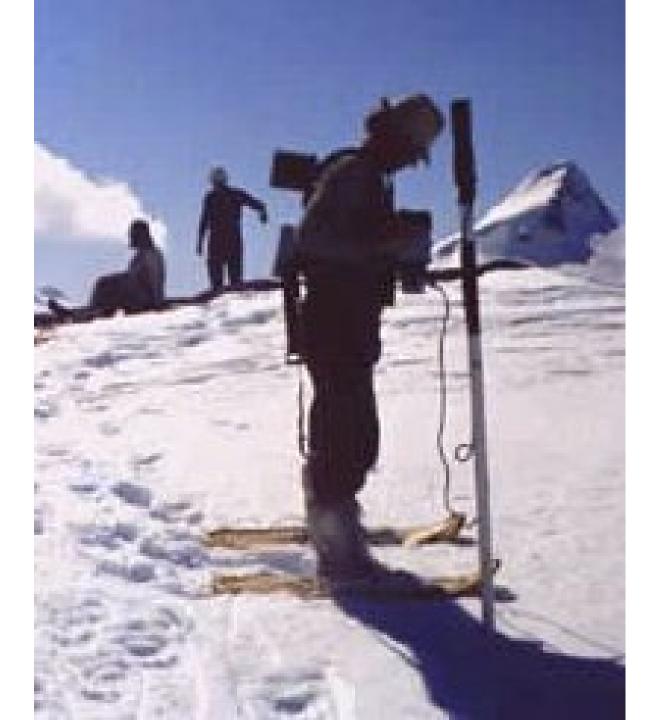




FIG. 2. Filtered data computed from the map of Figure 1.

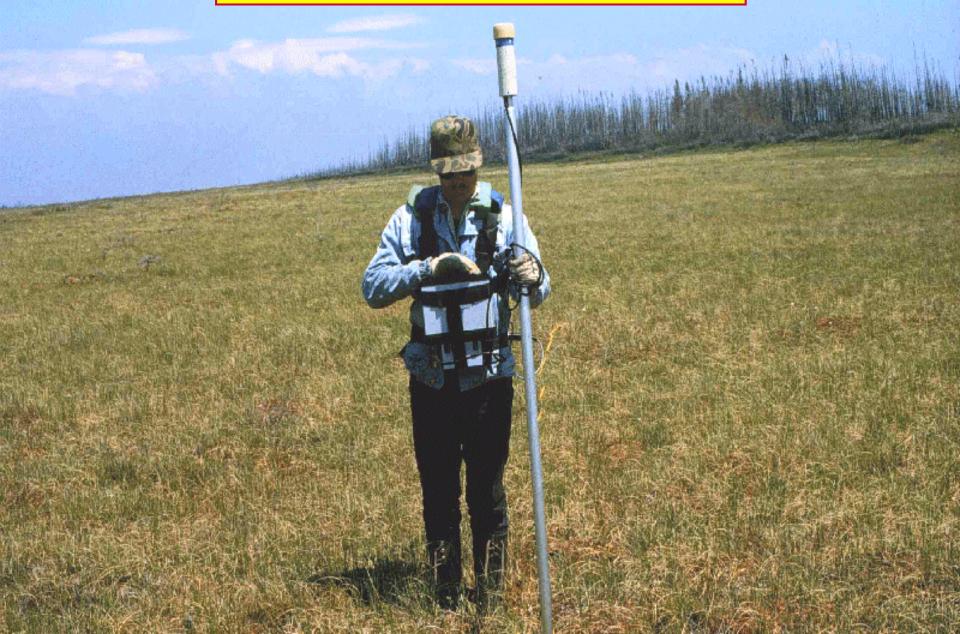
EM-16 Receiver

FIG. I EM I6



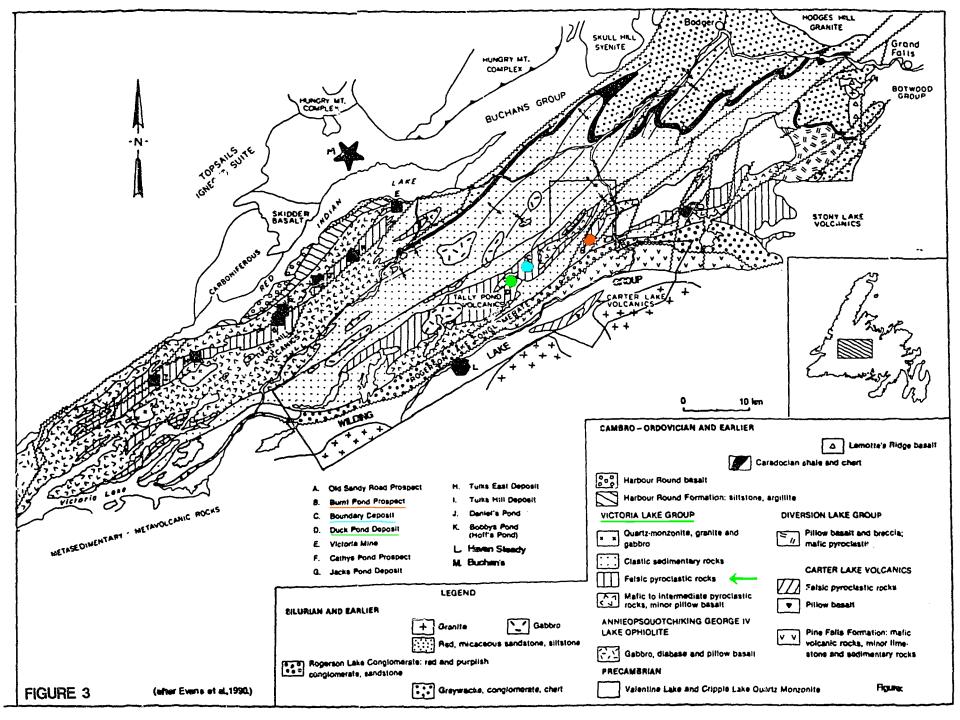


Omni Plus Magnetometer / VLF-EM



VLF-EM Data Recording and Plotting

JOB Weir's Pool Worth DATE June 04, 1987 PAGE	JOB. Clouds in Alth Sunny + still by noon DATE Juna 24, 1987 PAGE 1200
Great Gul Lake Dade Rade Rade Rade Record Rade Record Record Rade Rade Rade Rade Rade Rade Rade Rad	Pas Tilt Quad Mag 0.0 +10 +6 56236.7 Educated 20.0 +6 +2 55527.7 10.0 +6 +1 55870.8
	70.0 48 76 549428 60.0 0 76 54878.1 80.0 -17 71 54653.4 1.70.0 10 43 609771 5161 3
	(200 -2) -4 5395711 Fa Mart 90.0 120.0 -15 6 54238.6 Larch her 120.0 +5.5 -3 59693.1 140.0 +5.5 -3 59693.1
	160.0 +25.0 + 4 57.904,2 File of Fat 160.0 +18.0 0.0 180.0 +14.0 - 4.0 53458.2 Krittobog 180.0 +14.0 - 4.0 53458.2 Krittobog
	220.0 -2.0 -8.0 33595.4 220.0 -6.0 -30 594994.0 240.0 -1.5 +20 55750.1 260.9 -0.5 +20 55239.1 Eenlot 260.9 -0.5 +20 55239.1 Eenlot
	300-0 +3.0 +10.0 550429 320-0 +1.0 +10.0 54642.5 320-0 +1.0 +10.0 54642.5
	PARTY CHIEF


Omni Plus Magnetometer / VLF-EM

OMNI-PLUS Tie-line MAG/VLF R22N Ser #428061	
VLF TOTAL FIELD DATA uncorrected	
Date 18 JUL 89	
Operator: 3001	
Records: 712	
Bat: 17.6 Volt Lithium: 3.48 Volt	
Last time update: 7/16 5:15:00	
Start of print: 7/18 18:44:17	
Line 000 E Date 18 JUL 89 24.0 #1	
POSITION I/P QUAD T.FLD TILT TIME CULT S DIR 4-FRA 5-FRA	
#1 −71.5 −0.1 2461. −8.0 7:23:34 99 0.0	
#2 7.3 -24.2 19.23 4.4 7:24:37 69 17.8	
#3 7.3 -22.3 19.42 4.4 7:24:56 69 6.4	1875S 42.6 -25.5 26.90 24.2 8:09:41 49 15.1 -8.7 -6.5
#4 6.1 -22.1 19.24 3.7 7:25:13 59 -8.8	200 S 37.0 -25.9 26.09 21.5 8:10:02 49 23.3 -10.5 -9.6
	21255 31.3 -26.6 25.73 18.5 8:10:20 59 17.6 -11.2 -10.9
Line 1200 E Date 18 JUL 89 24.0 #5	225 S 25.3 -27.1 25.49 15.2 8:10:38 49 15.7 -12.0 -11.6
POSITION I/P QUAD T.FLD TILT TIME CULT S DIR 4-FRA 5-FRA	23755 20.5 -27.1 25.27 12.4 8:11:02CROP 59 18.2 -12.4 -12.2
2100 N -28.7 -7.0 42.55 -16.1 9:54:32 65 16.4	250 S 18.3 -25.6 25.84 11.0 8:11:31 69 17.9 -10.3 -11.4
20875N -20.0 -3.4 44.64 -11.3 9:55:21 44 13.2	26255 16.9 -24.2 25.37 10.1 8:11:51 59 15.9 -6.5 -8.4
2075 N -8.7 -0.2 45.41 -4.9 9:55:40 69 18.5	275 S 15.3 -22.4 25.40 9.1 8:12:07 49 13.5 -4.2 -5.4
20625N -1.8 2.7 40.81 -1.0 9:56:00 59 11.6 21.5	28755 14.3 -21.1 25.27 8.5 8:12:26 59 16.5 -3.5 -3.9
2050 N -3.6 1.2 39.10 -2.1 9:56:24 49 16.6 13.1 17.3	300 S 11.7 -20.6 25.25 7.0 8:12:48CREC 59 19.2 -3.7 -3.6
20375N -11.3 -4.0 38.47 -6.4 9:56:53 58 13.3 -2.6 5.2	
2025 N -14.3 -7.2 41.04 -8.1 9:57:11 58 15.7 -11.4 -7.0	Line 1100 E Date 18 JUL 89 24.0 #146
20125N -7.0 -4.4 44.27 -4.0 9:57:47 49 4.9 -3.6 -7.5	POSITION I/P QUAD T.FLD TILT TIME CULT S DIR 4-FRA 5-FRA
2000 N 3.9 1.1 43.39 2.2 9:58:05 59 10.6 12.7 4.5	23755 16.0 -18.1 27.08 9.4 8:46:29 56 14.8
19875N 7.9 4.3 38.91 4.5 9:58:25 59 10.4 18.8 15.7	225 S 19.1 -18.6 27.12 11.2 8:47:14 56 16.4 0.6
1975 N 5.0 2.0 37.26 2.8 9:58:40 49 11.3 9.1 13.9	21255 23.6 -18.8 27.33 13.7 8:47:37 55 12.3 -3.7 -1.6
19625N 3.2 0.8 36.54 1.8 9:59:01 49 7.0 -2.1 3.5	200 S 28.0 -18.2 27.30 16.1 8:47:55 44 16.5 -9.2 -6.5
1050 27 0.1 0.0 0.6 1.0 0.50.16 40 0.1 4.0 0.0	18755 32.4 -18.0 28.35 18.4 8:48:14 54 13.0 -9.6 -9.4
	175 S 38.7 -17.4 28.72 21.6 8:48:32 42 12.2 -10.2 -9.9
	16255 40.3 -18.6 29.53 22.5 8:48:53 55 13.8 -9.6 -9.9
	150 S 46.5 -17.0 30.88 25.4 8:49:11 64 16.0 -7.9 -8.8
	13755 54.1 -15.7 32.92 28.8 8:49:31 64 16.0 -10.1 -9.0
	125 S 61.2 -13.2 34.79 31.7 8:49:46 52 20.2 -12.6 -11.4
	11255 67.3 -12.5 40.63 34.2 8:50:09 54 10.9 -11.7 -12.2
	100 S 70.3 -10.7 46.56 35.3 8:50:24 52 9.6 -9.0 -10.4
	08755 57.0 -10.3 60.00 29.9 8:50:42 63 13.9 0.7 -4.2
	075 S 18.6 -10.8 71.55 10.6 8:51:02 55 17.0 29.0 14.8
	06255 -5.7 -0.8 59.82 -3.3 8:51:22 59 11.0 57.9 43.4
	050 S -9.9 1.8 55.35 -5.6 8:51:39 49 13.9 49.4 53.6
	03755 -14.4 6.6 52.23 -8.2 8:51:56 59 5.2 21.1 35.2 025 5 -21.8 3.9 49.66 -12.3 8:52:14 49 7.9 11.6 16.3

			Esker l	Road	EM-1	S Sur	vey	(Apri	I2001)							
ſ		1								ke @ 25	meter	interv	als faci	ng East			
			Start a														
			otart a	C Ono	. 200	00000	04	01101 0	00000-								
		Series 2															
1	0		West														
2	-3		West														
4	-2																-
5	-2		80) —													
6	-2																
7	-1	-11	70														_
8	1		60) +													
9	3		50														
10 11	4	-10 -9															
12	3		40) +													
13	ŏ		30													 	
14	-2																
15	-4	-5	20) +													
16	-3		10	\perp						/							
17	0						_	~	~								
18	5		0) +	~							· · · · ·			<u>/</u>	 	
19 20			-10) Ĺ			3 12			8 V V	- P _ P		ଙ୍କ କୃ	15 15	Â,		
21	10																
22	12		-20														_
23	14	_	-30) 🔶													
24	14																
25	13		-40														
26 27	13 10	_	-50) +													
28	8	-	-60														
29	7	_															
30	5	-7	-70) +													
31	3		-80														
32	1	-	-														
33	0		-90) +													-
34 35	-1	-	-100	<u>ل</u> (
36	-4		-100	·													
37	-5	_	-										Series 1				
38	-5												Series 2				
39	-5																
40	-1		-														
41	4	-12															
			Noto: All	roadi	na are t	akon a	1 25 1	lotor let	onvale Er	acing Eas							
			Croccerry		ny are t	aken a	C 20 N	ieter illt L- Cri-	-2011-01	aciliy cas 340186	N. 11TM59	63994					
			CIOSSOV	er LOC	acion @	readin #3	9 = 13 130	Srid20	-200-0.	67711	01M33 M5963	912					
	_	-10	Note: All Crossove	readi er Loc	ng are t ation @	readin	g # 13	3 Grid-	-200-03	acing Eas 340186	UTM59	63994 912.					

	🔏 Cut			· 11 · /	A^ A =	= _ % -	Wrap T	ext N	umber		
Past	e Copy	R	I <u>U</u> -	- 🖉 -	A - 🔳		🚔 Merge	& Center 🕤 🤇	5 - % 9 €.0 .00 .00 →.0	Conditional Formatting	
	Clipboard	E.	F	ont	G.	Aligr	nment	E.	Number 5	_	
SUI	- N	· : 🗙	× .	<i>f</i> x =(D3	+ <mark>D</mark> 4)-(D5+	D6)					
	А	В	С	D	E	F	G	Н		I	к
1	~	Grid X	Mag	In-Phase	Quad	Fraser Filter			Easting	Northing	
2	Line	9900	0							0	
3	9900.0	9700.0	397.0	-2.2	-3.0				549386.46	5394762.01	
4	9900.0	9712.5	400.7	-8.6	-7.3		13.5	9706.3	549397.55	5394756.24	
5	9900.0	9725.0	372.4	-11.7	-10.4	=(D3+D4)-(D5	-6.1	9718.8	549408.64	5394750.47	
6	9900.0	9737.5	364.4	-3.7	-7.5	-16.7	-13.6	9731.3	549419.72	5394744.69	
7	9900.0	9750.0	358.2	0.1	-5.6	-10.4	-3.6	9743.8	549430.81	5394738.92	
8	9900.0	9762.5	328.1	-5.1	-9.2	3.3	-0.1	9756.3	549441.90	5394733.15	
9	9900.0	9775.0	500.2	-1.8	-9.0	-3.4	-5.7	9768.8	549452.99	5394727.38	
10	9900.0	9787.5	392.6	0.2	-9.1	-7.9	-5.8	9781.3	549464.07	5394721.61	
11	9900.0	9800.0	379.9	0.8	-10.4	-3.7	-3.4	9793.8	549475.16	5394715.84	
12	9900.0	9812.5	375.7	1.3	-10.9	-3.1	-4.0	9806.3	549486.25	5394710.06	
13	9900.0	9825.0	371.3	2.8	-11.2	-4.9	-4.7	9818.8	549497.34	5394704.29	
14	9900.0	9837.5	364.2	4.2	-12.0	-4.5	-4.8	9831.3	549508.42	5394698.52	
15	9900.0	9850.0	363.0	4.4	-12.5	-5.0	-7.7	9843.8	549519.51	5394692.75	
16	9900.0	9862.5	341.3	7.6	-12.3	-10.3	-11.7	9856.3	549530.60	5394686.98	
17	9900.0	9875.0	332.2	11.3	-11.6	-13.1	-10.7	9868.8	549541.69	5394681.20	
18	9900.0	9887.5	318.8	13.8	-11.0	-8.3	-5.7	9881.3	549552.77	5394675.43	
19	9900.0	9900.0	282.9	13.4	-12.4	-3.1	-3.2	9893.8	549563.86	5394669.66	
20	9900.0	9912.5	333.8	14.8	-13.3	-3.2	-4.8	9906.3	549574.95	5394663.89	
21	9900.0	9925.0	719.9	15.6	-15.5	-6.3	-8.3	9918.8	549586.04	5394658.12	
22	9900.0	9937.5	687.2	18.9	-15.4	-10.3	-13.2	9931.3	549597 . 12	5394652.35	
23	9900.0	9950.0	702.7	21.8	-15.3	-16.0	-16.9	9943.8	549608.21	5394646.57	
24	9900.0	9962.5	1031.1	28.7	-12.5	-17.8	-15.0	9956.3	549619.30	5394640.80	
25	9900.0	9975.0	558.5	29.8	-14.2	-12.2	-10.2	9968.8	549630.39	5394635.03	
26	9900.0	9987.5	454.2	32.9	-13.8	-8.2	-7.3	9981.3	549641.47	5394629.26	

SCANNED IMAGE

012A/09/0606 MAP 012A/09/0606/1-16

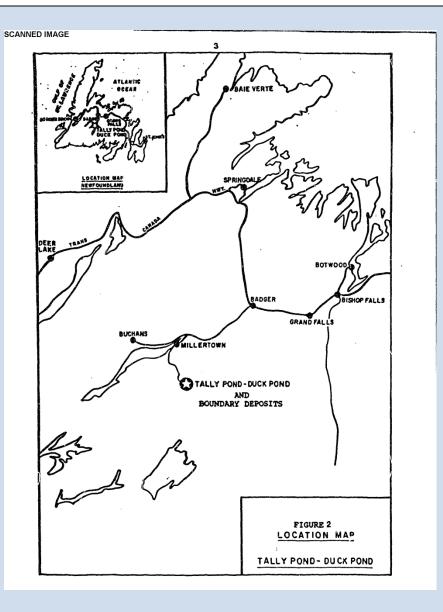
CONFIDENTIAL

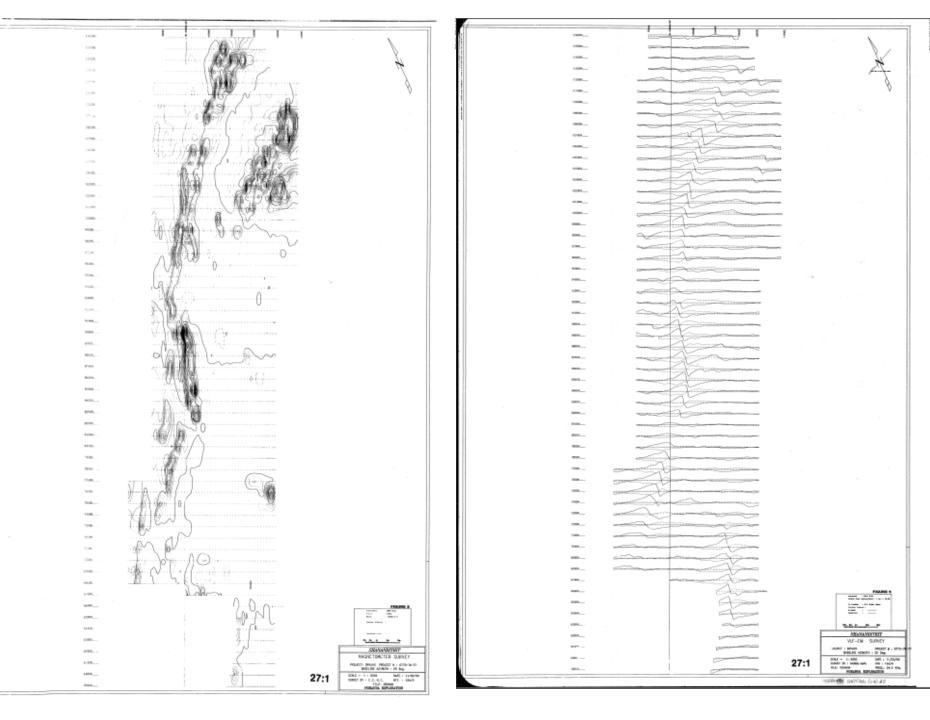
Fourth Year Assessment Report

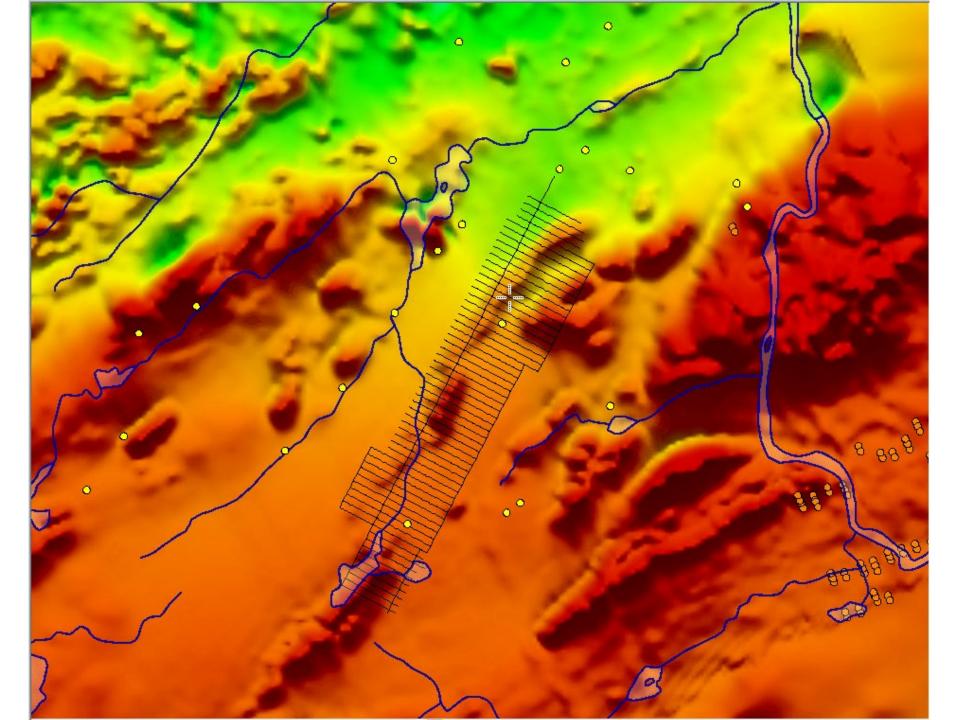
Burnt Pond Property (6777)

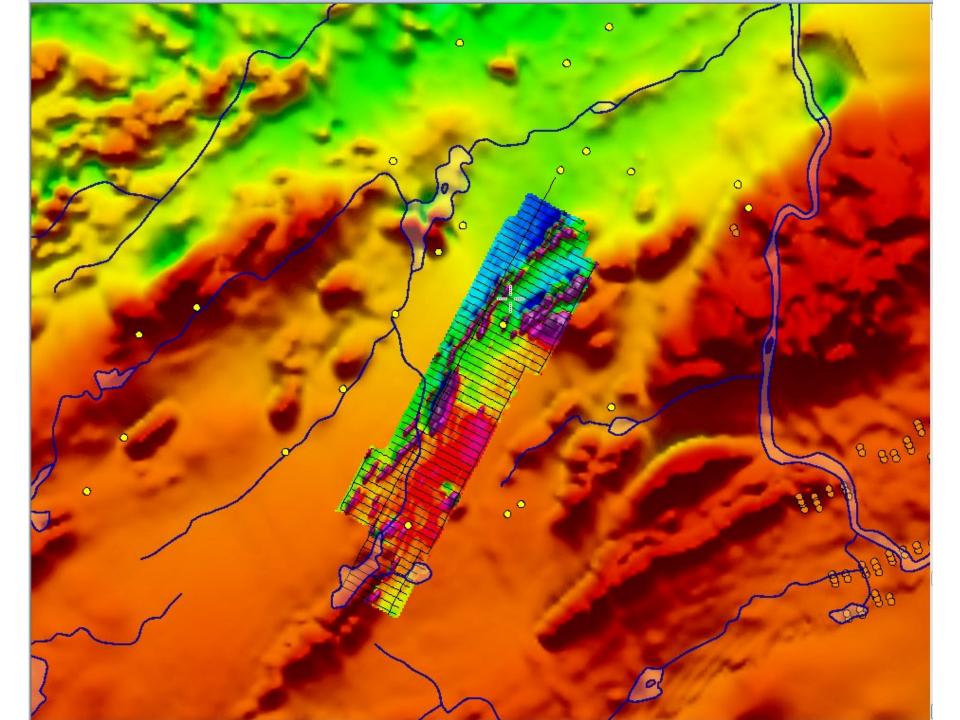
NTS 12A/9

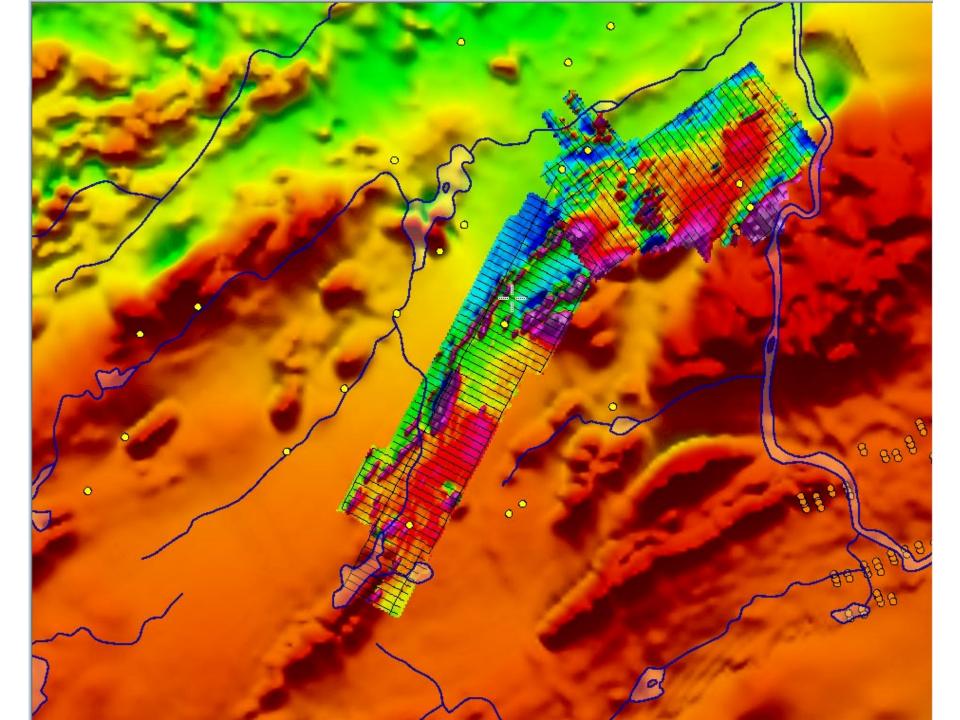
Licence 3881, 3107, 3108

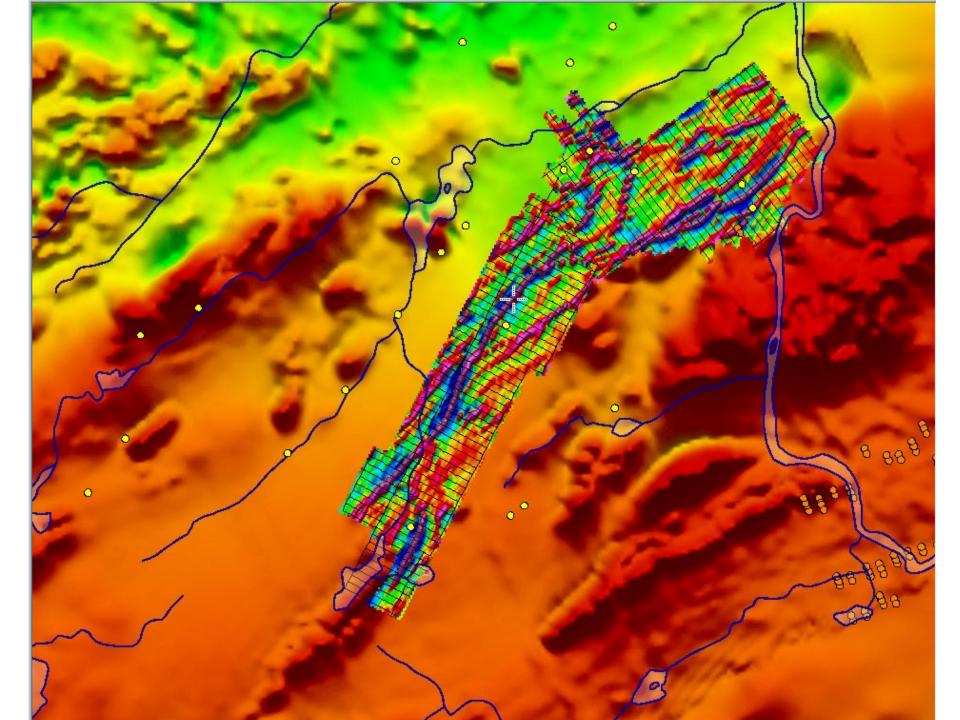

by

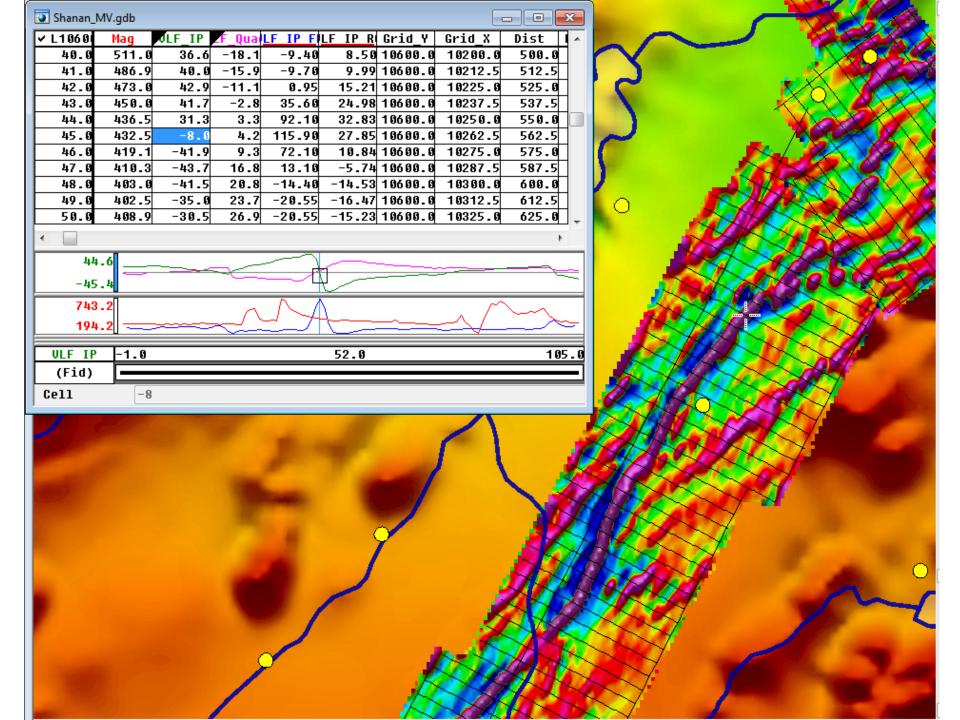

Chris Collins, P.Geo.

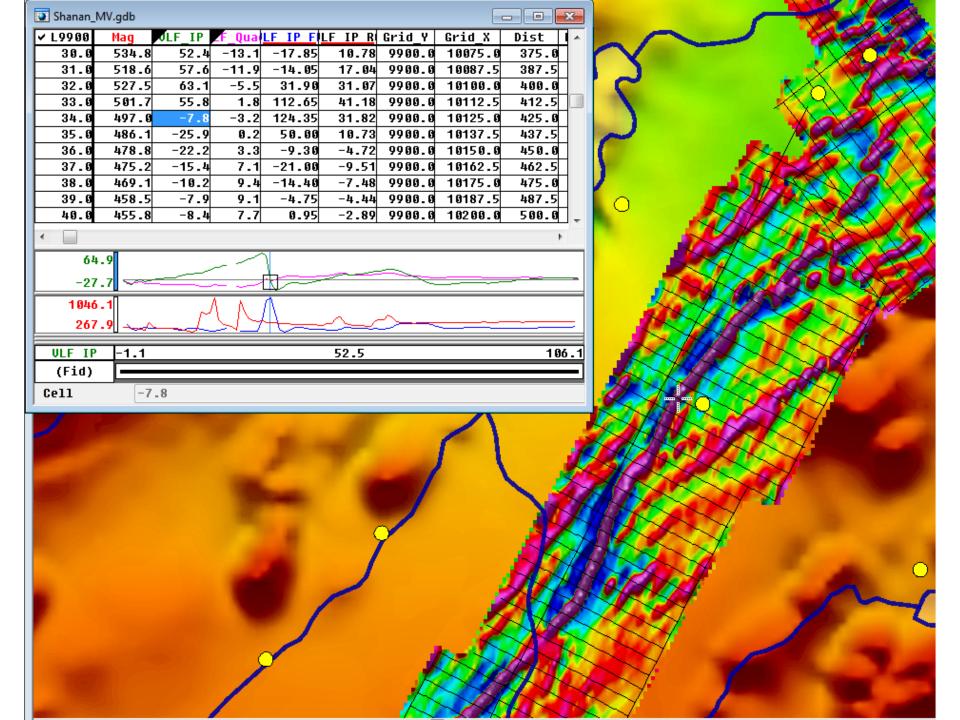

for

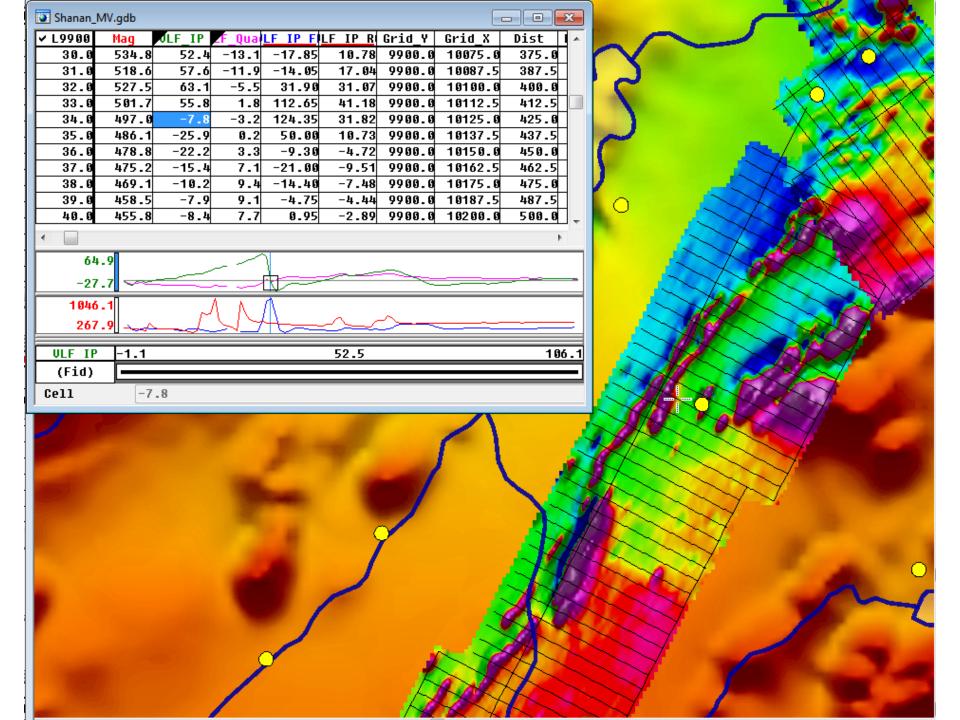

Noranda Exploration Company, Limited (No Personal Liability)

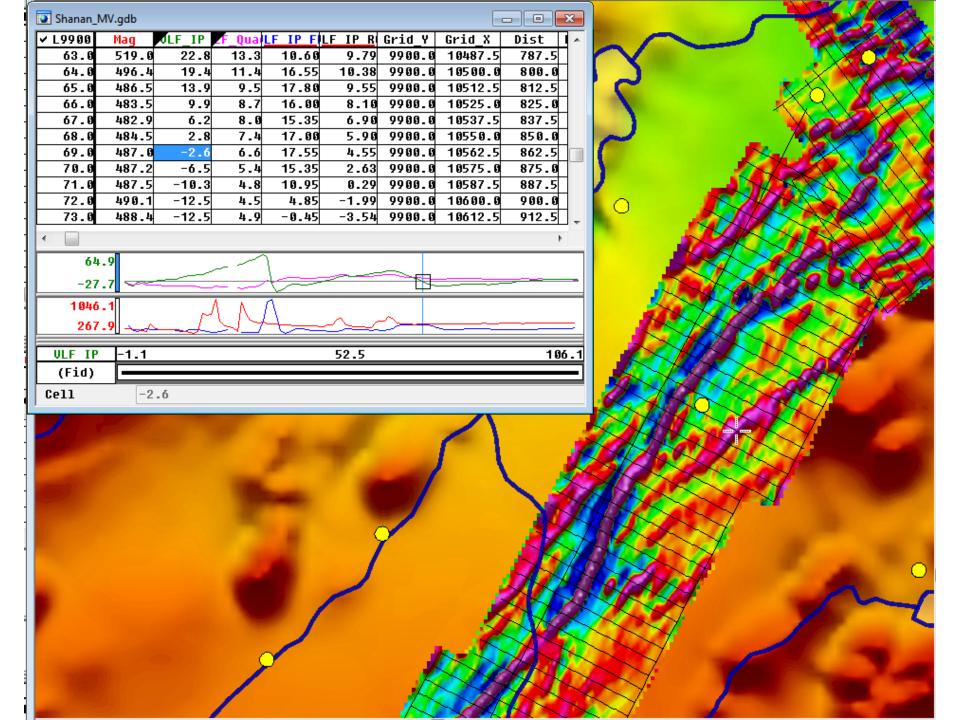

September, 1991

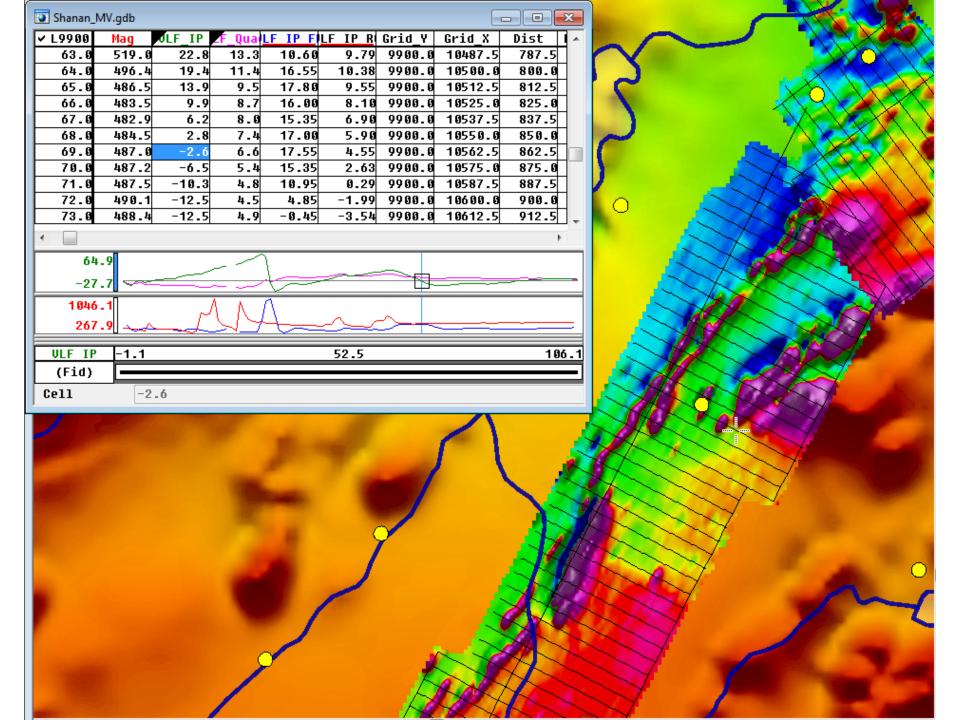


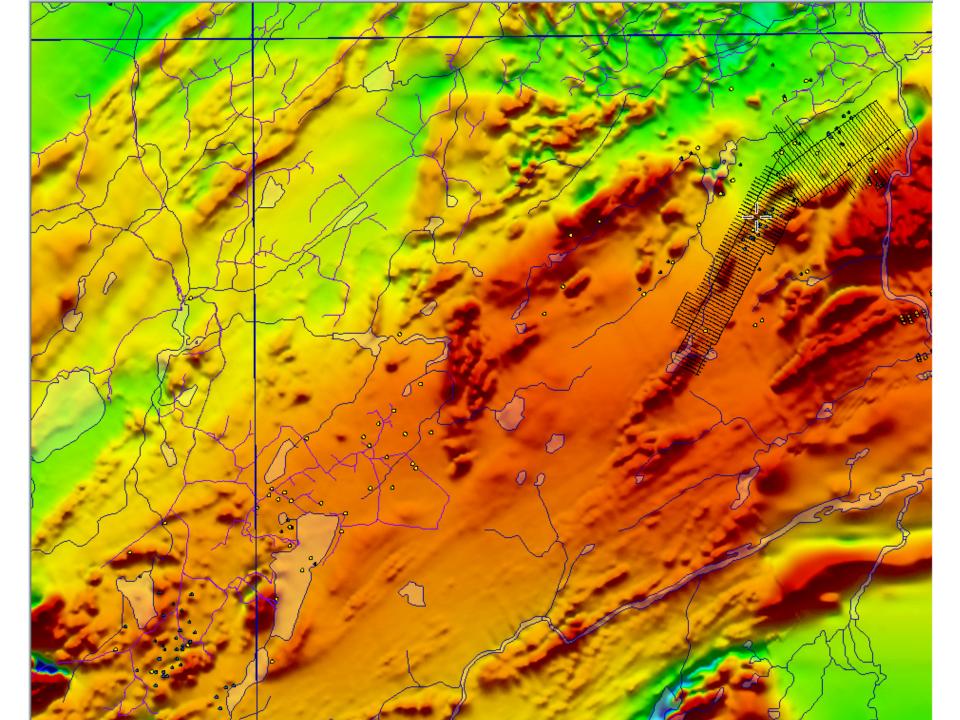


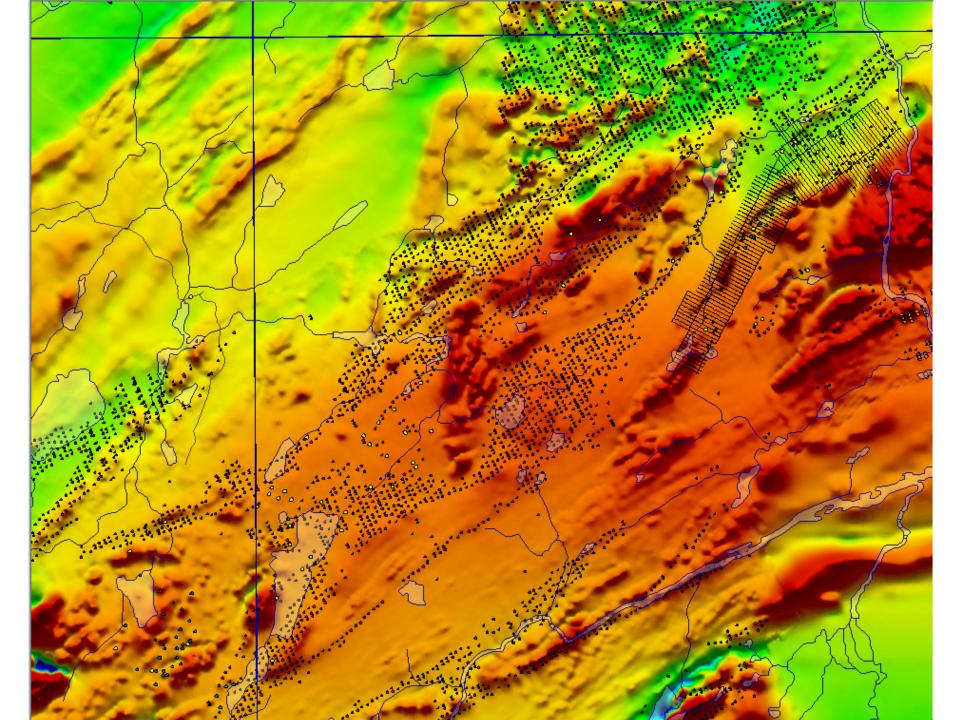


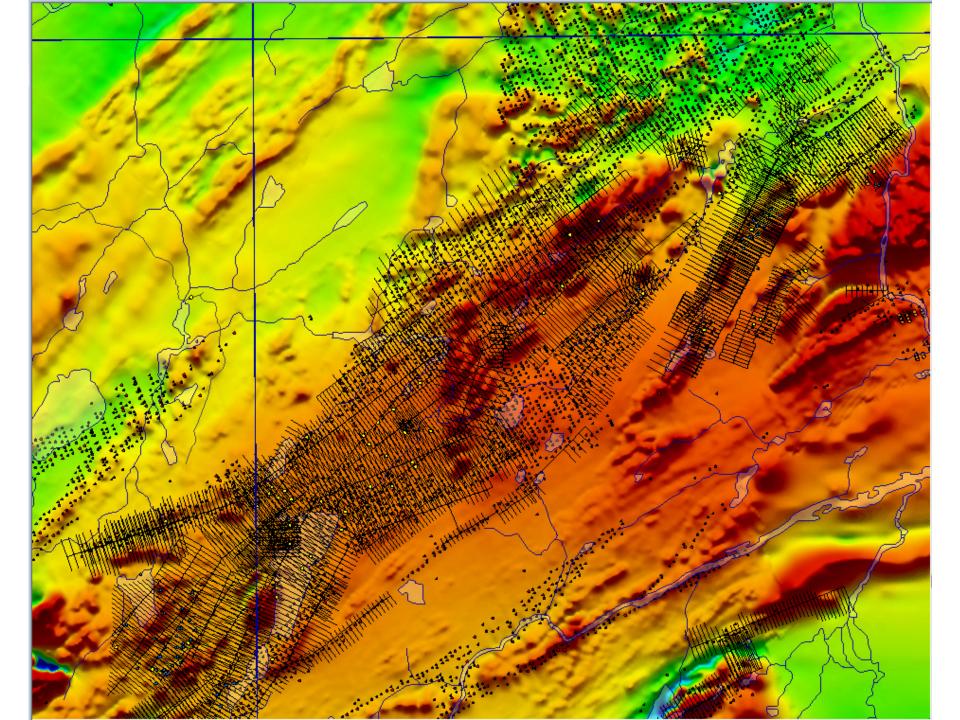




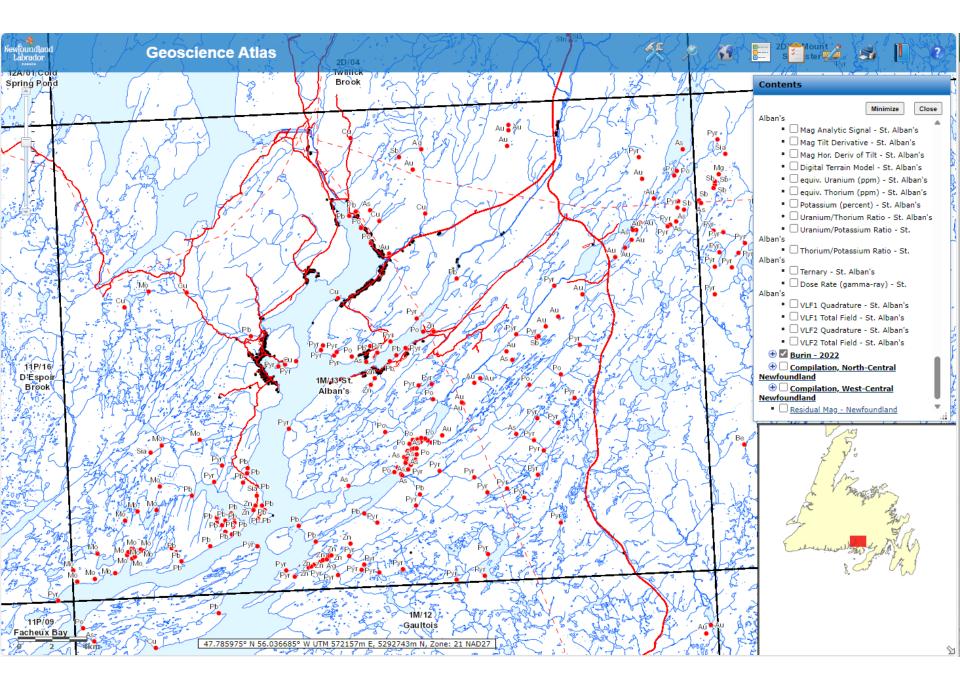


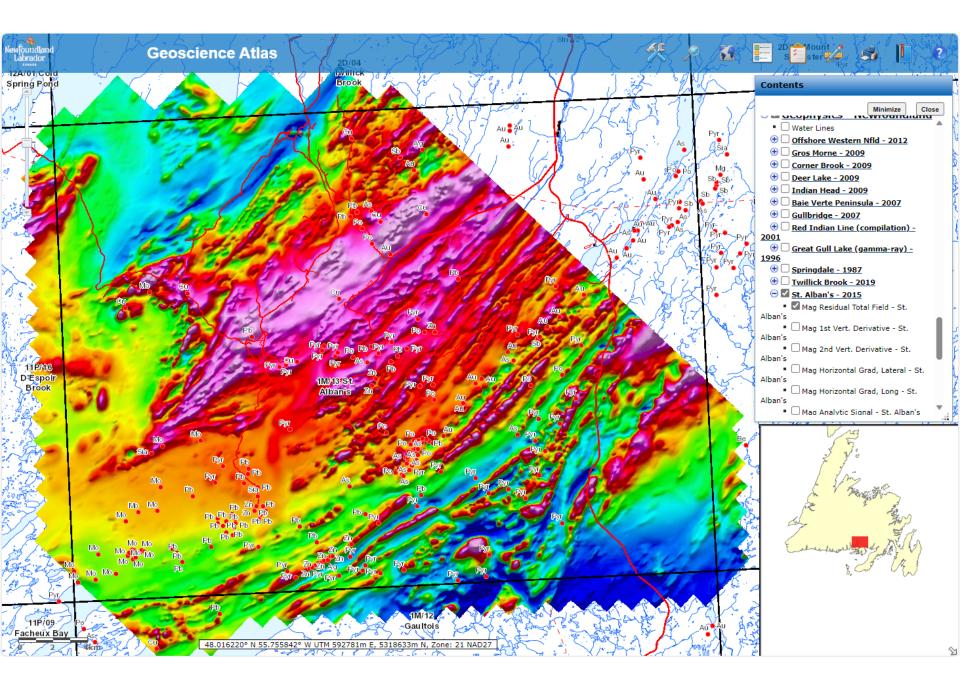


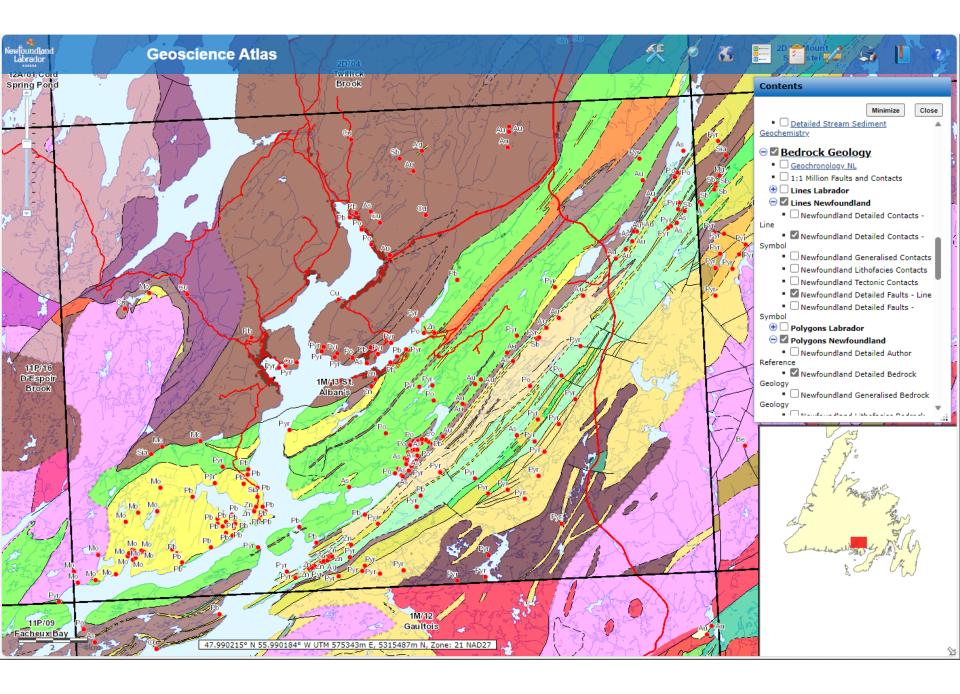


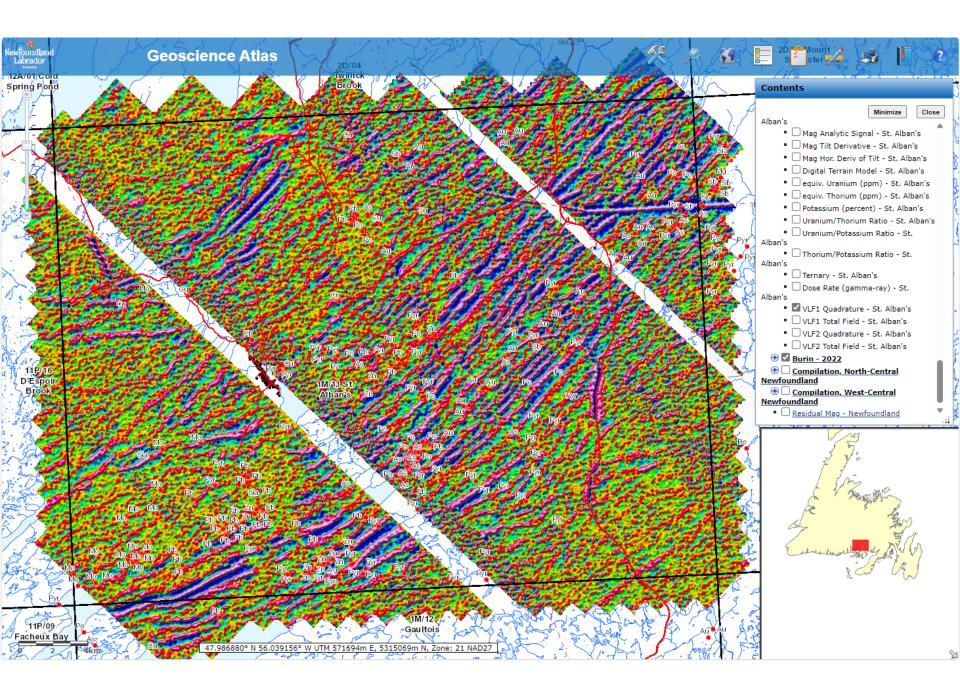


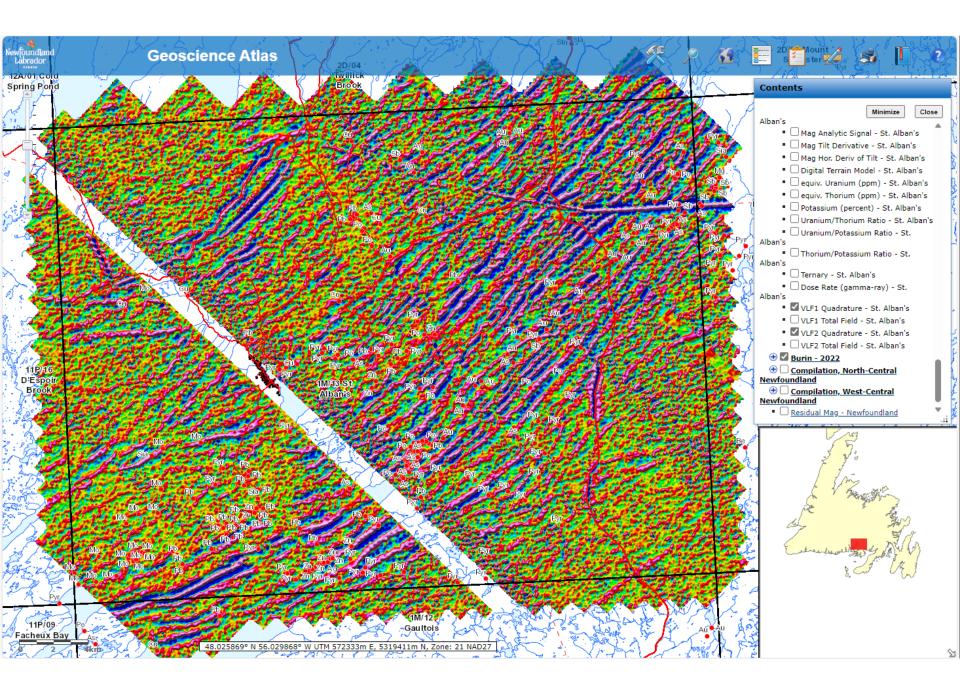
-	Y cut					_																∑ Auto∑							
	🔏 Cut	Cali				= ** *			mber	▼	- Date	Normal	Bac	d	Good		Neutral	Ca	alculation		- 🖹	∑ AutoSun ↓ Fill -	^m [•] ^A Z	ρ					
Paste	✓ Copy ▼ ✓ Format	D	I <u>U</u> -	🗄 • 💩 • 📕	A - ≣ ≣		Merge & G	Center - \$	• % • • •.0	.00 Conditional Formatting *	Format as	Check Ce	ll Exp	planatory	Input		Linked Cell	Nc	ote	Ţ Ins	ert Delete Form	at 🧶 Clear 🕶	Sort & Fir Filter ▼ Sel	ind &					
	Clipboard	6	Font		6	Alignm				Formatting *	able *				Styles						Cells		Filter * Sel Editing	Sect '					
F37		: x	$\sqrt{-f_x}$		+D36)-(D27	-																							
. 37																													
1	A	B Grid X	C Mag In	D n-Phase	-	F Fraser Filter F	G EF intern G	H Srid X+1/2	 Fasting	J	K	L	М	N	0	Р	Q	R	S	Т	U	v w	/ X	Y	Z	AA	AB	AC	AD
1 2 L		9900	Mag In	i nase	Quad F	Fraser Filter F	merp G		casting	Northing																			
3	9900.0	9700.0	397.0	-2.2	-3.0				549386.46	5394762.01												0.00	,						
4	9900.0	9712.5	400.7	-8.6	-7.3		13.5	9706.3		5394756.24										Sha	nan Line 9	1900 - VLF	-						
5	9900.0	9725.0	372.4	-11.7	-10.4	4.6	-6.1	9718.8		5394750.47		180																	
6 7	9900.0 9900.0	9737.5 9750.0	364.4 358.2	-3.7 0.1	-7.5 -5.6	-16.7 -10.4	-13.6 -3.6	9731.3 9743.8		5394744.69 5394738.92																			
8	9900.0 9900.0	9750.0 9762.5	358.2 328.1	-5.1	-5.6	-10.4 3.3	-3.6	9743.8 9756.3		5394738.92 5394733.15		160																	
9	9900.0	9775.0	500.2	-1.8	-9.2	-3.4	-5.7	9768.8		5394727.38							1	1						D					
10	9900.0	9787.5	392.6	0.2	-9.1	-7.9	-5.8	9781.3		5394721.61		140						1					In	n-Phase					
11	9900.0	9800.0	379.9	0.8	-10.4	-3.7	-3.4	9793.8		5394715.84								1					— Qu	uad					
12	9900.0	9812.5	375.7	1.3	-10.9	-3.1	-4.0	9806.3		5394710.06		120						11											
13	9900.0	9825.0	371.3	2.8	-11.2	-4.9	-4.7	9818.8		5394704.29								11					Fr	raser Filt	er				
14 15	9900.0 9900.0	9837.5 9850.0	364.2 363.0	4.2 4.4	-12.0 -12.5	-4.5 -5.0	-4.8	9831.3 9843.8		5394698.52 5394692.75		100					Ļ	4											
15 16	9900.0 9900.0	9850.0 9862.5	363.0	4.4 7.6	-12.5	-5.0	-7.7	9843.8 9856.3									I												
17	9900.0	9802.3	332.2	11.3	-12.3	-10.3	-10.7	9868.8		5394681.20		80					<u> </u>	4											
18	9900.0	9887.5	318.8	13.8	-11.0	-8.3	-5.7	9881.3	549552.77																				
19	9900.0	9900.0	282.9	13.4	-12.4	-3.1	-3.2	9893.8		5394669.66		60					A												
20	9900.0	9912.5	333.8	14.8	-13.3	-3.2	-4.8	9906.3		5394663.89							/N												
21	9900.0	9925.0	719.9	15.6	-15.5	-6.3	-8.3	9918.8		5394658.12		40						\square											
22	9900.0 9900.0	9937.5 9950.0	687.2 702.7	18.9 21.8	-15.4 -15.3	-10.3 -16.0	-13.2 -16.9	9931.3 9943.8	549597.12 549608.21	5394652.35 5394646 57						1	†												
23	9900.0 9900.0	9950.0 9962.5	1031.1	21.8	-15.3	-16.0	-16.9	9943.8 9956.3		5394646.57 5394640.80		20																	
24	9900.0	9962.5 9975.0	558.5	28.7	-12.5	-17.8	-10.2	9956.3		5394640.80 5394635.03		20			~	/				~		\sim							
26	9900.0	9987.5	454.2	32.9	-13.8	-8.2	-7.3	9981.3		5394629.26		0						V	\sim	1~	/	14		~					
27		10000.0	428.2	33.8	-14.7		-6.0	9993.8	549652.56	5394623.49		9600		ASC	\sim	20	000 V	1	6200	$\langle N \rangle$	10400	Ner	10	108	100	11000)	1120	0
28		10012.5	401.5					10006.3		5394617.71		-20	`	V		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	1V		\sim				100	-	1000			
29		10025.0	337.9	36.9	-17.4			10018.8		5394611.94		23						V											
30 31		10037.5 10050.0	970.1 695.7	40.0 44.4	-19.5 -15.9	-16.6	-14.4 -16.9	10031.3 10043.8	549685.83 549696 91	5394606.17 5394600.40		-40																	
31		10050.0	573.1	44.4	-13.9	-16.6	-16.9	10043.8		5394600.40 5394594.63		40																	
33		10075.0	534.8	52.4	-13.1	-17.1	-17.9	10050.3		5394588.86																			
34		10087.5	518.6	57.6	-11.9	-19.2	-14.1	10081.3		5394583.08																			
35	9900.0	10100.0	527.5	63.1	-5.5	-8.9	31.9	10093.8	549741.26	5394577.31																			
36		10112.5	501.7	55.8	1.8	72.7	112.7	10106.3		5394571.54																			
37		10125.0	497.0	-7.8	-3.2	152.6	124.4	10118.8		5394565.77																			
38 39		10137.5 10150.0	486.1 478.8	-25.9 -22.2	0.2	96.1 3.9	50.0 -9.3	10131.3 10143.8		5394560.00 5394554.22																			
40		10150.0	478.8	-22.2	3.3	-22.5	-9.3	10143.8 10156.3		5394554.22 5394548.45																			
41		10102.3	473.2	-13.4	9.4	-22.5	-21.0	10156.5		5394542.68																			
42		10187.5	458.5	-7.9	9.1	-9.3	-4.8	10181.3	549818.88																				
43	9900.0	10200.0	455.8	-8.4	7.7	-0.2	1.0	10193.8	549829.96	5394531.14																			
44		10212.5	452.1	-9.5	6.2	2.1	0.1	10206.3		5394525.37																			
45		10225.0	448.7	-8.9	5.6	-1.9	-4.0	10218.8		5394519.59																			
46 47		10237.5 10250.0	450.2 446.1	-7.1 -5.2	6.4 6.3	-6.1 -7.9	-7.0	10231.3 10243.8		5394513.82 5394508.05																			
47		10250.0	446.1 435.7	-5.2 -2.9	6.3 7.8	-7.9 -8.2	-8.1 -8.0	10243.8 10256.3		5394508.05 5394502.28																			
49		10282.3	433.7	-2.9	8.4	-0.2	-8.3	10258.8		5394502.28																			
50		10275.5	482.7	0.8	9.3	-8.9	-10.4	10281.3		5394490.73																			
51		10300.0	476.6	4.0	10.7	-11.9	-12.8	10293.8																					
52		10312.5	585.9	7.5	12.6	-13.7	-12.9	10306.3		5394479.19																			
53		10325.0	623.3	11.0	14.9	-12.1	-8.4	10318.8		5394473.42																			
54	9900.0	10337.5	465.2	12.6	14.2	-4.7	-1.5	10331.3	549951.93																				

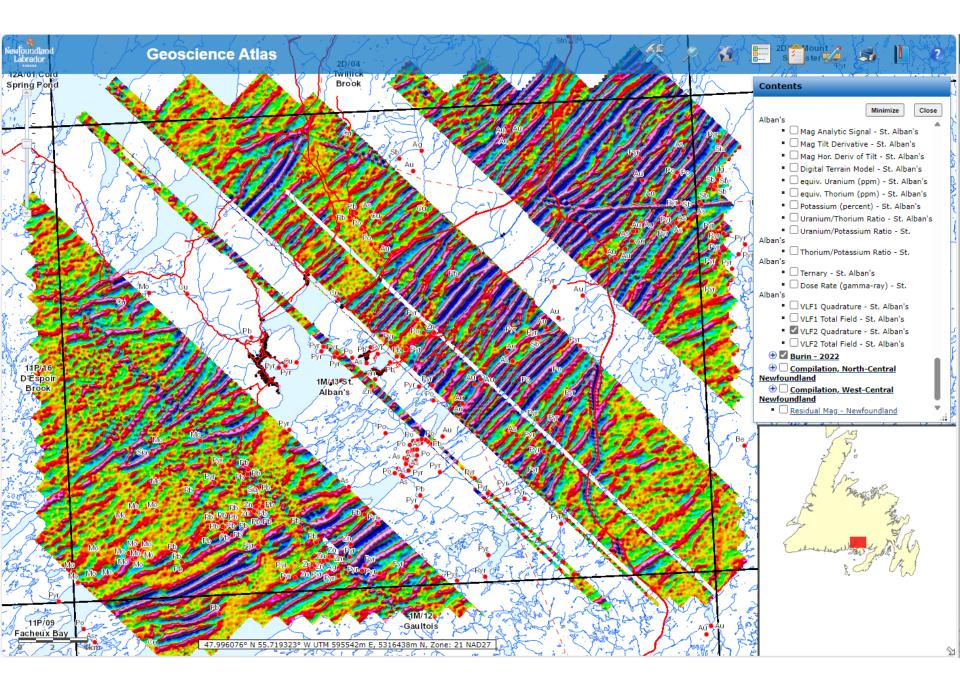

F.	5 •∂)					Cha	art Tools						Shanan	MV_L99.xlsx -	- Excel		_										团	- 0	×
		_	Page Lavo	out Formul	as Data	Review View			○ Tell me what					Shanan	_mv_c/9.xisx -	LACEI													− ∟ Sign in 2	
	Cut		ruge Luye									News		D - J	Coord		Neutral	0	- Louis Maria		L 5.	Σ	AutoSum -						3 igir in 74	Share
Past	Copy	-				= % -				⊻ ≢									alculation	È	T III		Fill -	A Z Sort & Find &						
Past	🔷 ؇ Forma	t Painter	<u>IU</u> -		A • 🖹 🗐		⇔ Merge &	Center - \$	~ % 9 .00 -	Conditional Formatting ~	Table -	Check	Cell		Input		Linked Cell	No	ote	↓ III	sert Delete	- Villiat		Filter - Select -						
	Clipboard	rş.	F	ont		Alignm	ient		Number						Styles						Cells		Edi	iting						
Cha	rt 1	· · · ×	<	fx =SERI	ES(" In-Pha	se",Shanan_N	/IV_L99!\$B\$	\$3:\$B\$108,SH	nanan_MV_L9	9!\$D\$3:\$D\$108	3,1)																			_
	А	В	с	D	E					J	к	L	м	N	0	Р	Q	R	S	т	U	v	w	х	Y	Z	AA	AB	AC A	D
1	Line	Grid X 9900	Mag	In-Phase	Quad F	Fraser Filter F	F_interp G	Grid_X+1/2	Easting	Northing																				
3	9900.0		397.0	-2.2	-3.0				549386.46	5394762.01	c) ——									0									,
4	9900.0	9712.5	400.7	-8.6	-7.3		13.5	9706.3		5394756.24										Sha	inan Lir	ne 9900	- VLF							
5	9900.0	9725.0	372.4		-10.4	4.6	-6.1	9718.8		5394750.47		180																		
6 7	9900.0 9900.0	9737.5 9750.0	364.4 358.2	-3.7 0.1	-7.5 -5.6	-16.7 -10.4	-13.6 -3.6	9731.3 9743.8		5394744.69 5394738.92																				_
8	9900.0	9762.5	328.1	-5.1	-9.2	3.3	-0.1	9756.3		5394733.15		160																		
9	9900.0	9775.0	500.2	-1.8	-9.0	-3.4	-5.7	9768.8		5394727.38								1						— In-Pha						
10	9900.0	9787.5	392.6	0.2	-9.1	-7.9	-5.8	9781.3		5394721.61		140						1						- m-Phas	be					
11	9900.0 9900.0	9800.0 9812.5	379.9	0.8	-10.4	-3.7	-3.4	9793.8		5394715.84								1						— Quad						
12 13	9900.0	9812.5	375.7 371.3	1.3 2.8	-10.9 -11.2	-3.1 -4.9	-4.0 -4.7	9806.3 9818.8		5394710.06 5394704.29		120						11							Filter					
14	9900.0	9837.5	364.2	4.2	-12.0	-4.5	-4.8	9831.3		5394698.52								11						114301						
15	9900.0	9850.0	363.0	4.4	-12.5	-5.0	-7.7	9843.8		5394692.75		100																		
16 17	9900.0 9900.0	9862.5 9875.0	341.3	7.6	-12.3	-10.3	-11.7	9856.3 9868.8		5394686.98		80																		
17	9900.0	9875.0	332.2 318.8	11.3 13.8	-11.6 -11.0	-13.1 -8.3	-10.7 -5.7	9881.3		5394681.20 5394675.43																				_
19	9900.0	9900.0	282.9	13.4	-12.4	-3.1	-3.2	9893.8		5394669.66		60																		
20	9900.0	9912.5	333.8	14.8	-13.3	-3.2	-4.8	9906.3		5394663.89		00						¥												
21	9900.0 9900.0	9925.0 9937.5	719.9 687.2	15.6 18.9	-15.5 -15.4	-6.3 -10.3	-8.3 -13.2	9918.8 9931.3		5394658.12 5394652.35		40																		_
22 23	9900.0	9937.5	702.7	21.8	-15.4	-10.3	-13.2	9931.3 9943.8		5394652.35						~	88													
24	9900.0	9962.5	1031.1	28.7	-12.5	-17.8	-15.0	9956.3		5394640.80		20									*		~							
25	9900.0	9975.0	558.5	29.8	-14.2	-12.2	-10.2	9968.8		5394635.03					×				~	\sim		\sim								
26	9900.0	9987.5 10000.0	454.2 428.2	32.9 33.8	-13.8 -14.7	-8.2	-7.3 -6.0	9981.3 9993.8		5394629.26		0	8	A Ar		<u> </u>		NK-	\wedge						88					_
27 28	9900.0 9900.0	10000.0	428.2	33.8	-14.7		-6.0	10006.3		5394623.49 5394617.71		960	00	V~×	200	20	000	111	10200	\sim	10400		10600		10800		11000)	11200	
29	9900.0	10025.0	337.9	36.9	-17.4			10018.8		5394611.94		-20				~	~~	V												
30	9900.0	10037.5	970.1	40.0	-19.5		-14.4	10031.3		5394606.17																				
31 32	9900.0 9900.0	10050.0 10062.5	695.7 573.1	44.4 49.1	-15.9 -13.7	-16.6 -17.1	-16.9 -16.8	10043.8 10056.3		5394600.40 5394594.63		-40																		
33	9900.0	10002.5	534.8	52.4	-13.1	-17.1	-10.8	10050.3		5394588.86																				
34	9900.0	10087.5	518.6	57.6	-11.9	-19.2	-14.1	10081.3		5394583.08	Ċ)									0								ċ	· · · · ·
35	9900.0	10100.0	527.5		-5.5	-8.9	31.9	10093.8		5394577.31																				
36 37	9900.0 9900.0	10112.5 10125.0	501.7 497.0	55.8 -7.8	1.8 -3.2	72.7 152.6	112.7 124.4	10106.3 10118.8		5394571.54 5394565.77																				
38	9900.0	10125.0	497.0	-25.9	-3.2	96.1	50.0	10118.8		5394560.00																				
39	9900.0	10150.0	478.8	-22.2	3.3	3.9	-9.3	10143.8		5394554.22																				
40	9900.0	10162.5	475.2	-15.4	7.1	-22.5	-21.0	10156.3		5394548.45																				
41 42	9900.0 9900.0	10175.0 10187.5	469.1 458.5	-10.2 -7.9	9.4 9.1	-19.5 -9.3	-14.4 -4.8	10168.8 10181.3		5394542.68 5394536.91																				
42 43	9900.0	10187.5	458.5	-7.9	7.7	-9.3	-4.8	10181.3		5394536.91																				
44	9900.0	10212.5	452.1	-9.5	6.2	2.1	0.1	10206.3	549841.05	5394525.37																				
45	9900.0	10225.0	448.7	-8.9	5.6	-1.9	-4.0	10218.8		5394519.59																				
46 47	9900.0 9900.0	10237.5 10250.0	450.2 446.1	-7.1 -5.2	6.4 6.3	-6.1 -7.9	-7.0 -8.1	10231.3 10243.8		5394513.82 5394508.05																				
47	9900.0	10250.0	440.1	-3.2	7.8	-7.9	-8.1	10245.8		5394502.28																				
49	9900.0	10275.0	427.4	-1.2	8.4	-7.7	-8.3	10268.8		5394496.51																				
50	9900.0	10287.5	482.7	0.8	9.3	-8.9	-10.4	10281.3		5394490.73																				
51 52	9900.0 9900.0	10300.0 10312.5	476.6 585.9	4.0 7.5	10.7 12.6	-11.9 -13.7	-12.8 -12.9	10293.8 10306.3		5394484.96 5394479.19																				
52	9900.0	10312.5	623.3	11.0	12.6	-13.7	-12.9	10306.3		5394479.19																				
54	9900.0		465.2	12.6	14.2	-4.7	-1.5		549951.93																					
			1																											

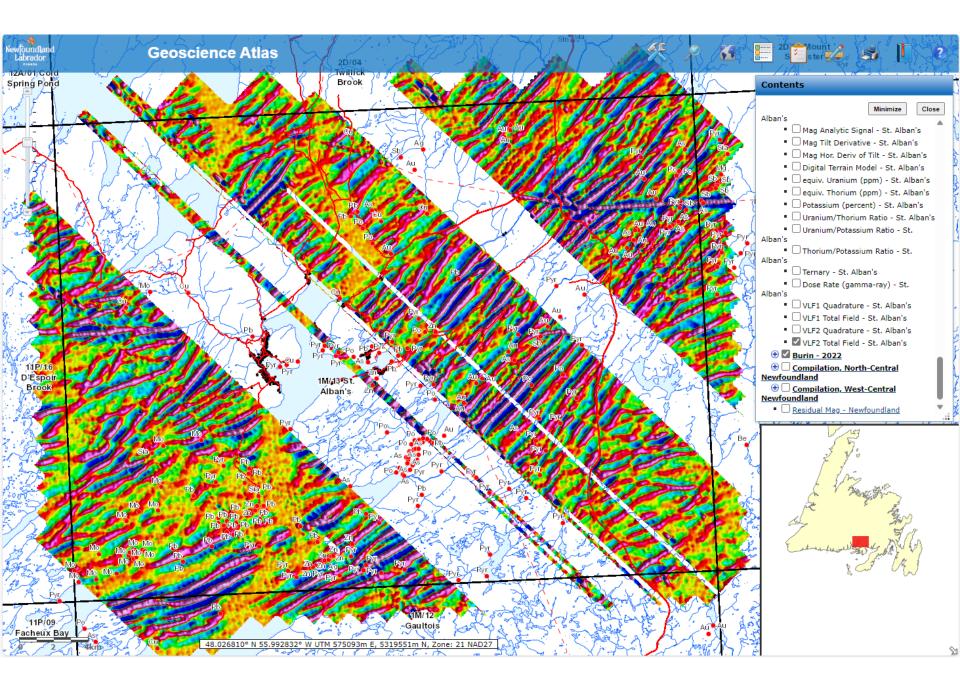

	ي • و	_												Shanan_M\	/_L99.xlsx - Exc	el														
		e Insert	Page Layo	out Formul	as Data	Review View	w Design	Format	\bigcirc Tell me what yo	ou want to do																			Sign i	n 🔏 Share
	🔏 Cut	Cal	libri (Body)	~ 10 ~ A	• A* = =	= _ % -	Wrap Tex	t C	General -			Normal	Bad		Good	Ne	utral	Calcul	ation	€ =	*	∑ Autos	Sum - A	QT						
Paste	Copy •								\$ - % 9 €.0 .00 .00 →.0	Conditional F	ormat as	Check Cell				Lin	ked Cell	Note		Insert	Delete Forma	↓ Fill -	Sort	t & Find &						
	 Format Clipboard 			ont					Number 5	Formatting -	Table -				Styles						v v Cells	Credit	Filte Editina	er - Select -						~
_						Aigini	num.								Jeynus						cena		carting							
Char		: ×																												*
1	A	B Grid X	C Mag		E Quad	F Fraser Filter F	G E intern (J Northing	К	L	М	N	0	Р	Q	R	S	T	U	V	W	Х	Y	Z	AA	AB	AC	AD 🔺
2 Li	ne	9900	IVIAB	III-Fildse	Quau	ridsei riitei r	r_interp	311u_X+1/2	Easting	Northing											-									
3	9900.0	9700.0	397.0		-3.0					5394762.01											0 9900 - V	16								0
4	9900.0 9900.0	9712.5 9725.0	400.7 372.4	-8.6	-7.3 -10.4	4.6	13.5 -6.1	9706.3 9718.4		5394756.24 5394750.47										Line	9900 - 1	LF								
6	9900.0	9737.5	364.4	-3.7	-7.5	-16.7	-13.6	9731.		5394744.69		180																		
7	9900.0	9750.0	358.2	0.1	-5.6	-10.4	-3.6	9743.		5394738.92		160																		
8	9900.0 9900.0	9762.5 9775.0	328.1 500.2	-5.1 -1.8	-9.2 -9.0	3.3 -3.4	-0.1 -5.7	9756. 9768.		5394733.15 5394727.38								1								_				-
10	9900.0	9787.5	392.6		-9.1	-7.9	-5.8	9781.		5394721.61		140						1	-					- In-P	Phase					- 🗖
11	9900.0	9800.0	379.9		-10.4	-3.7	-3.4	9793.		5394715.84								1						— Qua	ad					
12 13	9900.0 9900.0	9812.5 9825.0	375.7 371.3	1.3	-10.9 -11.2	-3.1 -4.9	-4.0 -4.7	9806. 9818.		5394710.06 5394704.29		120						11						- Fras	ser Fil+	er				+ $+$
14	9900.0	9837.5	364.2	4.2	-11.2	-4.5	-4.8	9831.		5394698.52								11						1103	Jer Fill					
15	9900.0	9850.0	363.0		-12.5	-5.0	-7.7	9843.				100																		1 []
16 17	9900.0 9900.0	9862.5 9875.0	341.3 332.2		-12.3 -11.6	-10.3 -13.1	-11.7 -10.7	9856. 9868.		5394686.98 5394681.20		80																		L H
18	9900.0	9887.5	318.8	11.3	-11.0	-13.1 -8.3	-10.7	9881.		5394675.43		0																		
19	9900.0	9900.0	282.9	13.4	-12.4	-3.1	-3.2	9893.	8 549563.86	5394669.66		60																		
20 21	9900.0 9900.0	9912.5 9925.0	333.8 719.9	14.8 15.6	-13.3 -15.5	-3.2 -6.3	-4.8 -8.3	9906.3 9918.4		5394663.89 5394658.12																				$ $
21	9900.0	9925.0	687.2		-15.5	-0.3	-8.3	9918.		5394658.12		40																		
23	9900.0	9950.0	702.7	21.8	-15.3	-16.0	-16.9	9943.	8 549608.21	5394646.57						\square					-									
24	9900.0 9900.0	9962.5 9975.0	1031.1 558.5	28.7 29.8	-12.5 -14.2	-17.8	-15.0	9956.3 9968.4		5394640.80 5394635.03		20			~							\sim								1
25 26	9900.0 9900.0	9975.0 9987.5	558.5 454.2	29.8 32.9	-14.2 -13.8	-12.2 -8.2	-10.2 -7.3	9968.				0		۱۸-					\succ	1.		X	+				~	4		
27	9900.0	10000.0	428.2		-14.7		-6.0	9993.	8 549652.56	5394623.49		960	0	AX		200	00			$\langle \rangle$	10400		0600	\sim	108	300	110	000	1	1200
28	9900.0	10012.5	401.5	26.0				10006.		5394617.71		-20	-	V			\triangleleft	V		\sim					100		11		1	
29 30	9900.0 9900.0	10025.0 10037.5	337.9 970.1	36.9 40.0	-17.4 -19.5		-14.4	10018.		5394611.94 5394606.17		-						V												
31		10050.0	695.7	44.4	-15.9	-16.6	-16.9	10043.		5394600.40		-40																		
32	9900.0	10062.5	573.1		-13.7	-17.1	-16.8	10056.		5394594.63																				
33 34		10075.0 10087.5	534.8 518.6	52.4 57.6	-13.1 -11.9	-16.5 -19.2	-17.9 -14.1	10068.		5394588.86 5394583.08		6	1			1					0									
35	9900.0	10100.0	527.5	63.1	-5.5	-19.2	31.9	10093.		5394577.31																				
36		10112.5	501.7		1.8	72.7	112.7	10106.		5394571.54																				
37 38	9900.0 9900.0	10125.0 10137.5	497.0 486.1		-3.2 0.2	152.6 96.1	124.4 50.0	10118.		5394565.77 5394560.00																				
39		10150.0	478.8		3.3	3.9	-9.3	10131.		5394554.22																				
40		10162.5	475.2	-15.4	7.1	-22.5	-21.0	10156.	3 549796.70	5394548.45																				
41 42		10175.0 10187.5	469.1 458.5	-10.2 -7.9	9.4 9.1	-19.5 -9.3	-14.4 -4.8	10168.		5394542.68 5394536.91																				
42	9900.0	10187.5	458.5	-7.9	7.7	-9.3	-4.8	10181.																						
44	9900.0	10212.5	452.1	-9.5	6.2	2.1	0.1	10206.3	3 549841.05	5394525.37																				
45		10225.0	448.7	-8.9	5.6	-1.9	-4.0	10218.		5394519.59																				
46 47	9900.0 9900.0	10237.5 10250.0	450.2 446.1	-7.1	6.4 6.3	-6.1 -7.9	-7.0 -8.1	10231.		5394513.82 5394508.05																				
48	9900.0	10262.5	435.7	-2.9	7.8	-8.2	-8.0	10256.																						
49	9900.0	10275.0	427.4	-1.2	8.4	-7.7	-8.3	10268.																						
50 51	9900.0 9900.0	10287.5 10300.0	482.7 476.6	0.8 4.0	9.3 10.7	-8.9 -11.9	-10.4 -12.8	10281.																						
52		10312.5	585.9	7.5	12.6	-13.7	-12.9	10205.																						
53		10325.0	623.3	11.0	14.9	-12.1	-8.4	10318.		5394473.42																				
54		10337.5	465.2	12.6	14.2	-4.7	-1.5	10331.		5394467.65																				-
	Sh	anan_MV_																: •												•
Enter																											## E	<u> </u>		+ 100%

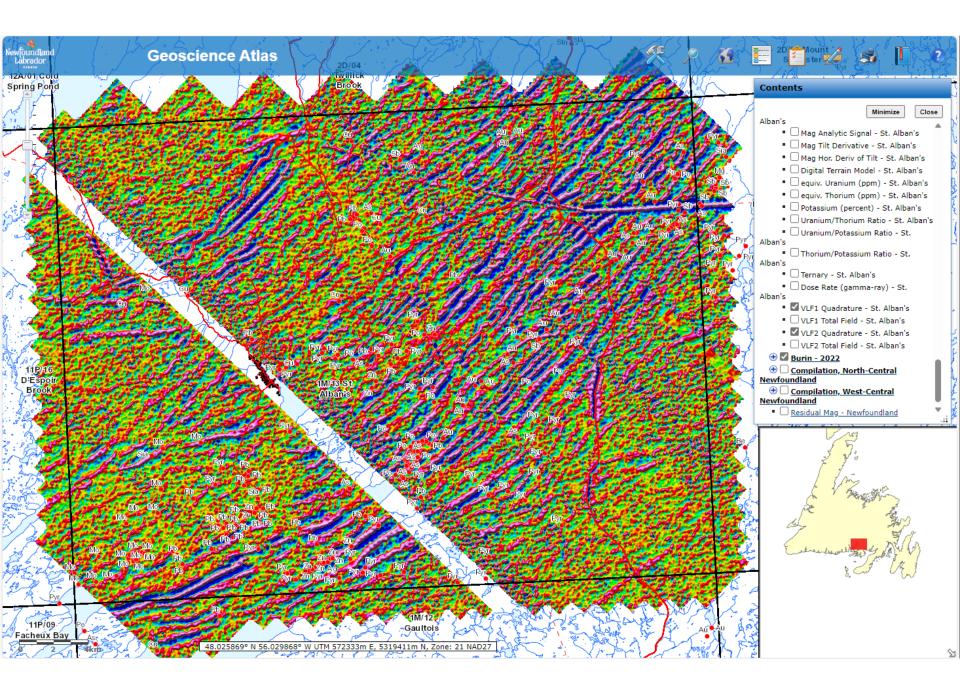

Pitfalls for VLF-EM

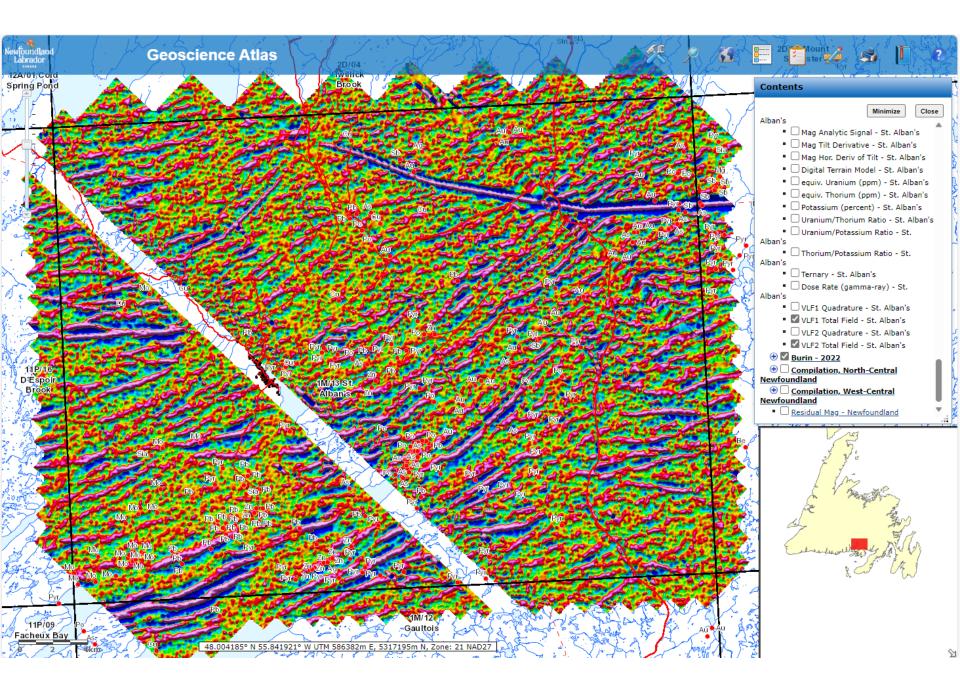

- Recording the sign (+/-) of the numbers correctly
- Switching the facing direction or orientation during survey
- Presence of cultural features power lines, cables fences, culverts, rebar, asphalt roadways, etc.
- Unforeseen causes of anomalies eg. Permafrost contacts, conductive surficial sediments

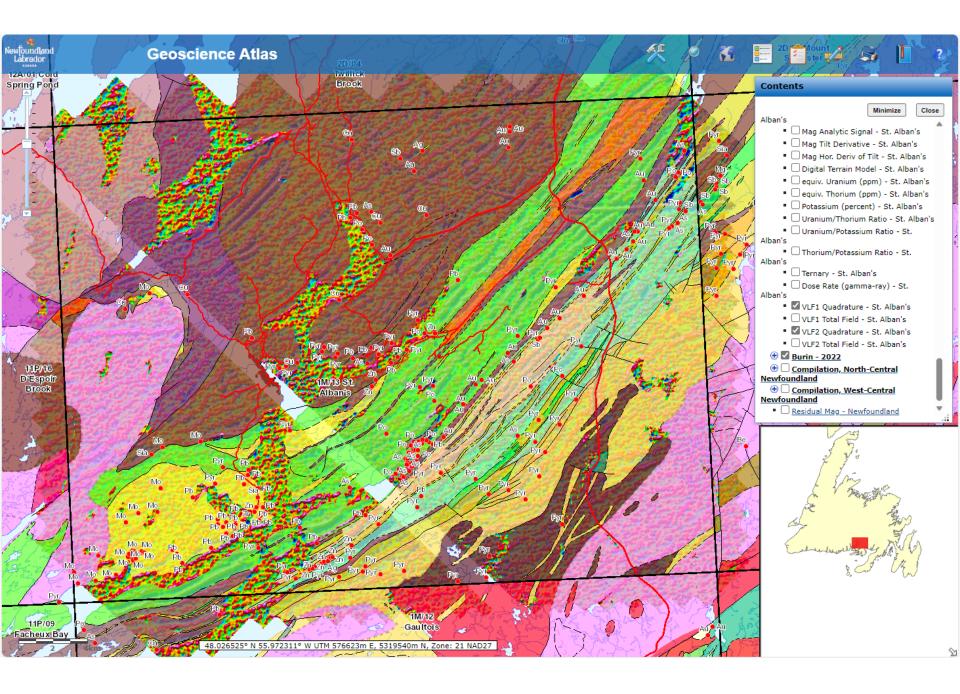

VLF-EM St. Alban's Airborne Survey

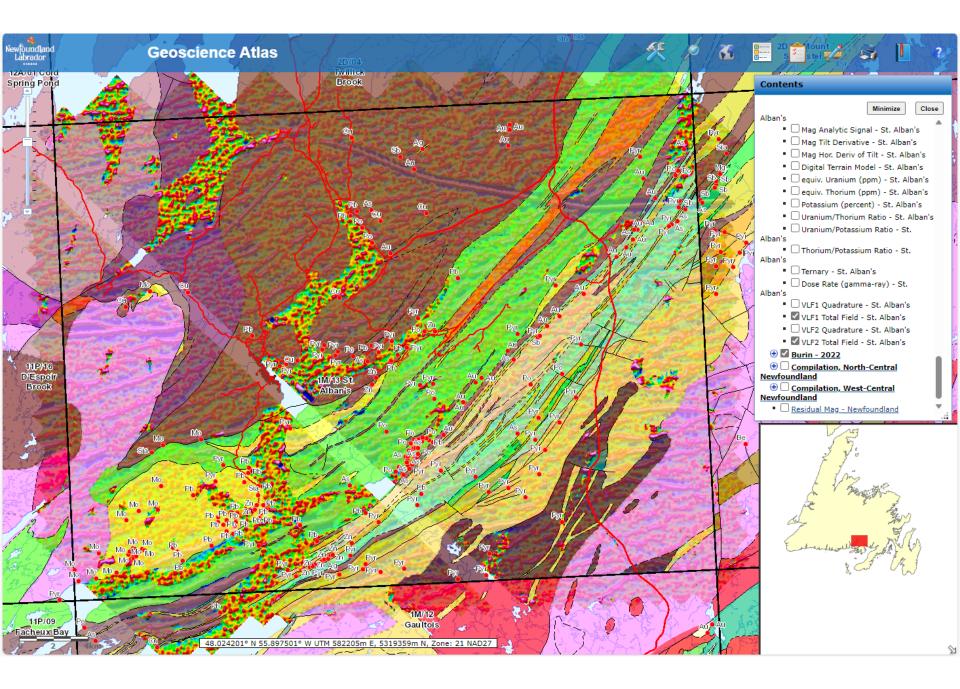


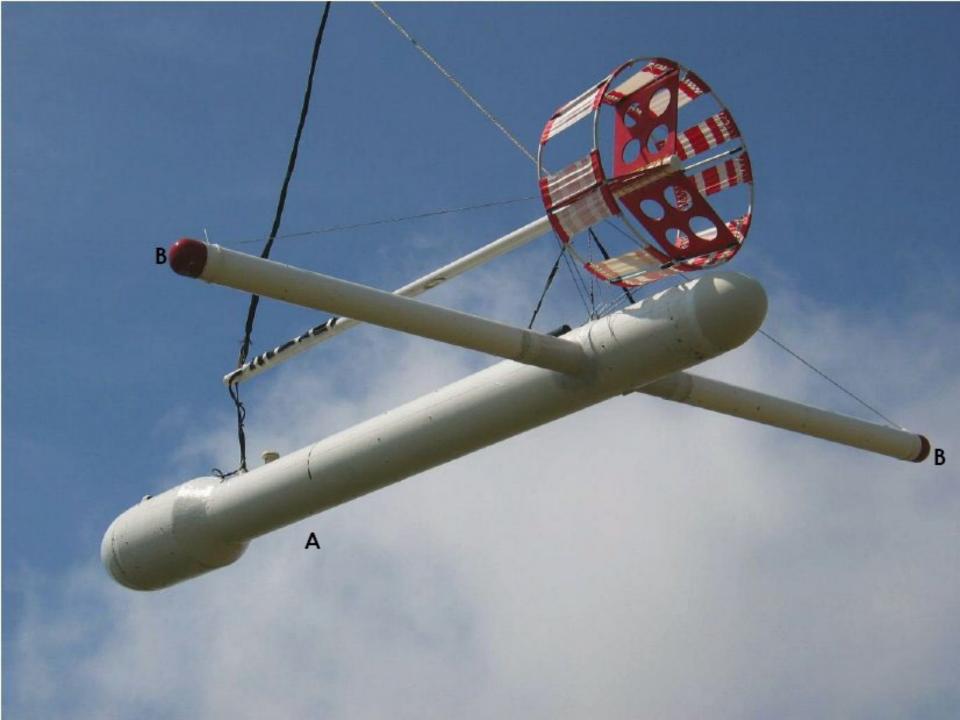


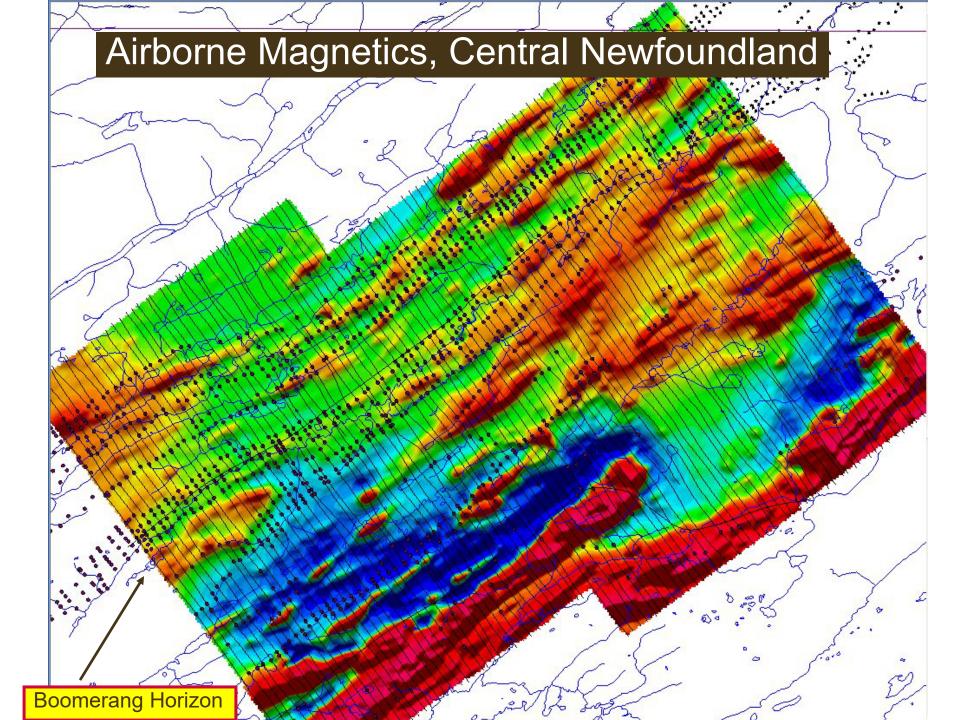


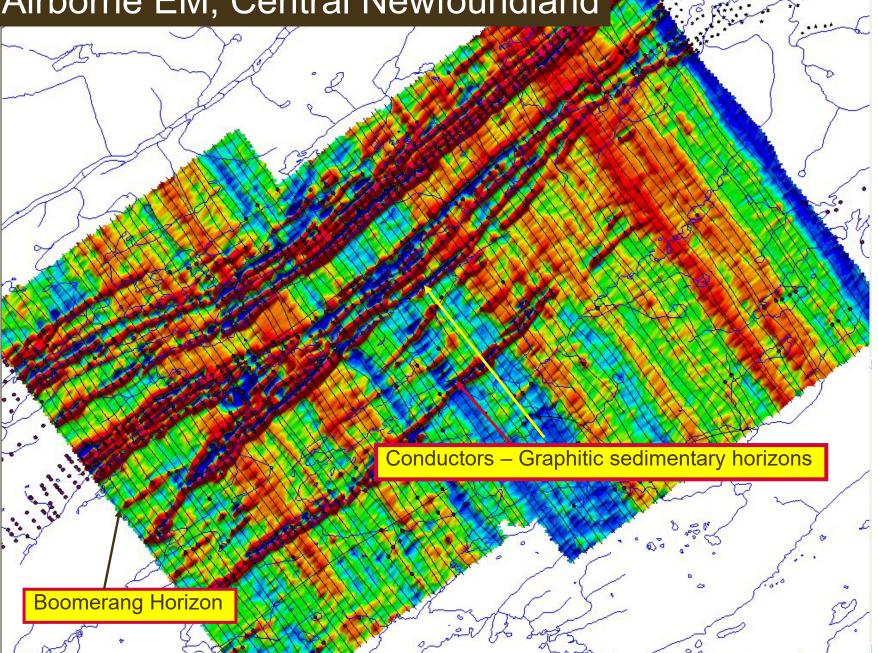












Airborne EM, Central Newfoundland

450 *Electrical properties of rocks*

Normally the sample will be equivalent to a resistance and capacitance in parallel. In some cases it may be necessary to interchange the series and parallel arms of the bridge.

5.4 Typical values of electrical constants of rocks and minerals

5.4.1 Resistivities of rocks and minerals

Of all the physical properties of rocks and minerals, electrical resistivity shows the greatest variation. While the range in density, elastic wave velocity and radioactive content is quite small, in magnetic susceptibility it may be as large as 10^5 . However, the resistivity of metallic minerals may be as small as $10^{-5} \Omega m$, that of dry, close-grained rocks like gabbro as large as $10^7 \Omega m$. The maximum possible range is even greater, from native silver ($1.6 \times 10^{-8} \Omega m$) to pure sulphur ($10^{16} \Omega m$).

A conductor is usually defined as a material of resistivity less than $10^{-5} \Omega m$, while an *insulator* is one having a resistivity greater than $10^7 \Omega m$. Between these limits lie the so-called *semiconductors*. Within this grouping the metals and graphite are all conductors; they contain a large number of free electrons whose mobility is very great. The semiconductors also carry current by mobile electrons but have fewer of them. The insulators are characterized by ionic bonding so that the valence electrons are not free to move; the charge carriers are ions which must overcome larger barrier potentials than exist either in the semiconductors or conductors.

A further difference between conductors and semiconductors is found in their respective variation with temperature. The former vary inversely with temperature and have their highest conductivities in the region of $0^{\circ}K$. The semiconductors, on the other hand, are practically insulators at low temperatures.

In a looser classification, rocks and minerals are considered to be good, intermediate and poor conductors within the following ranges:

- (a) minerals of resistivity 10^{-8} to about 1 Ω m,
- (b) minerals and rocks of resistivity 1 to $10^7 \Omega m$,
- (c) minerals and rocks of resistivity above $10^7 \Omega m$.

Group (*a*) includes the metals, graphite, the sulphides except for sphalerite, cinnabar and stibnite, all the arsenides and sulpho-arsenides except $SbAs_2$, the antimonides except for some lead compounds, the tellurides and some oxides such as magnetite, manganite, pyrolusite and ilmenite. Most oxides, ores and porous rocks containing water are intermediate conductors. The common rock-forming minerals, silicates, phosphates and the carbonates, nitrates, sulphates, borates, etc., are poor conductors.

The following tables list characteristic resistivities for various minerals and rocks. The data are from various sources, including Heiland (1940), Keller (1966), Parasnis (1956, 1966), Jakosky (1950) and Parkhomenko (1967).

The variation in resistivity of particular minerals is enormous, as can be seen from table 5.2. Among the more common minerals, pyrrhotite and graphite

Table 5.1. Resistivities of metals and elements

	Resistivit	y (Ωm)		Resistivity	(Ωm)
Element	Range	Average	Element	Range	Average
Antimony		4.5×10^{-7}	Molybdenum		5.7×10^{-8}
Arsenic		2.2×10^{-7}	Nickel		7.8×10^{-6}
Bismuth		1.2×10^{-6}	Platinum		10-7
Copper		1.7×10^{-8}	Silver		1.6×10^{-8}
Gold		2.4×10^{-8}	Sulphur	$10^{7} - 10^{16}$	1014
Graphite	$5 \times 10^{-7} - 10$	10^{-3}	Tellurium	$10^{-4} - 2 \times 10^{-3}$	10-3
Iron		10^{-7}	Tin		1.1×10^{-7}
Lead		2.2×10^{-7}	Uranium		3×10^{-7}
Mercury		9.6×10^{-7}	Zinc		5.8×10^{-1}

appear to be the most consistent good conductors, while pyrite, galena and magnetite are often poor conductors in bulk form, although the individual crystals have high conductivity. Hematite and sphalerite, in pure form, are practically insulators, but when combined with impurities may have resistivities as low as $0.1 \Omega m$. Graphite is often the connecting link in mineral zones which makes them good conductors.

Table 5.2. Resistivities of minerals

		Resistivity (Ω	lm)
Mineral	Formula	Range	Average
Argentite	Ag ₂ S	2×10^{-3} -10 ⁴	1.7×10^{-3}
Bismuthinite	Bi_2S_3	18-570	
Covellite	CuS	$3 \times 10^{-7} - 8 \times 10^{-5}$	2×10^{-5}
Chalcocite	Cu ₂ S	$3 \times 10^{-5} - 0.6$	10^{-4}
Chalcopyrite	CuFeS ₂	$1.2 \times 10^{-5} - 0.3$	4×10^{-3}
Bornite	Cu ₅ FeS ₄	$2.5 \times 10^{-5} - 0.5$	3×10^{-3}
Marcasite	FeS_2	10 ⁻³ -3·5	5×10^{-2}
Pyrite	FeS ₂	$2.9 \times 10^{-5} - 1.5$	3×10^{-1}
Pyrrhotite	Fe _n S _m	$6.5 \times 10^{-6} - 5 \times 10^{-2}$	10^{-4}
Cinnabar	HgS		2×10^{7}
Molybdenite	MoS_2	$10^{-3} - 10^{6}$	10
Galena	PbS	$3 \times 10^{-5} - 3 \times 10^{2}$	2×10^{-3}
Millerite	NiS		3×10^{-7}
Stannite	Cu ₂ FeSnS ₂	$10^{-3}-6 \times 10^{3}$	
Stibnite	Sb_2S_3	105-1012	5×10^{6}
Sphalerite	ZnS	$1.5 - 10^{7}$	10^{2}
Cobaltite	CoAsS	$3.5 \times 10^{-4} - 10^{-1}$	
Smaltite	CoAs ₂		5×10^{-5}
Arsenopyrite	FeAsS	2×10^{-5} - 15	10-3
Niccolite	NiAs	$10^{-7}-2 \times 10^{-3}$	2×10^{-5}
Sylvanite	AgAuTe ₄	$4 \times 10^{-6} - 2 \times 10^{-5}$	
Bauxite	Al ₂ O ₃ .nH ₂ O	$2 \times 10^{2} - 6 \times 10^{3}$	

452 Electrical properties of rocks

Mineral	Downald	Resistivity	(Ωm)
Mineral	Formula	Range	Average
Braunite	Mn ₂ O ₃	0.16-1.2	
Cuprite	Cu ₂ O	10^{-3} -300	30
Chromite	FeCr ₂ O ₄	$1 - 10^{6}$	6 10-2
Specularite	Fe_2O_3	$2.5 \times 10^{-3} 10^{7}$	6×10^{-3}
Hematite	Fe_2O_3	$3.5 \times 10^{-3} - 10^{7}$ $10^{3} - 10^{7}$	
Limonite	$2Fe_2O_3.3H_2O$	$5 \times 10^{-5} - 5.7 \times 10^{3}$	
Magnetite Ilmenite	Fe ₃ O ₄ FeTiO ₃	$10^{-3}-50$	
Wolframite	Fe, Mn, WO ₄	10^{-50} $10-10^{5}$	
Manganite	MnO(OH)	10^{-10} 10^{-2} -0.3	
Pyrolusite	MnO ₂	$5 \times 10^{-3} - 10$	
Quartz	SiO ₂	$4 \times 10^{10} - 2 \times 10^{14}$	
Cassiterite	SnO_2	$4 \times 10^{-2} \times 10^{-4}$ 4×10^{-4}	0.2
Rutile	TiO ₂	30-1000	500
Uraninite	110_{2}	30-1000	500
(Pitchblende)	UO_2	1-200	
Anhydrite	CàSO ₄	1-200	10 ⁹
Calcite	CaCO ₃		2×10^{12}
Fluorite	CaF ₂		8×10^{13}
Siderite	$Fe_2(CO_3)_3$		70
Rock salt	NaCl	30-1013	10
Sylvite	KCl	$10^{11} - 10^{12}$	
Diamond	C	10-1014	
Serpentine	0	$2 \times 10^{2} - 3 \times 10^{3}$	
Hornblende		$2 \times 10^{2} - 10^{6}$	
Mica		$9 \times 10^{2} - 10^{14}$	
Biotite		$2 \times 10^{2} - 10^{6}$	
Phlogopite		10 ¹¹ -10 ¹²	
Bitum. coal		$0.6-10^{5}$	
Coals (various)		10-1011	
Anthracite		$10^{-3}-2 \times 10^{5}$	
Lignite		9-200	
Fire clay		/ 100	30
Meteoric waters		30–10 ³	50
Surface waters			
(ign. rocks)		$0.1-3 \times 10^{3}$	
Surface waters		0 1 0 7 10	
(sediments)		10-100	
Soil waters			100
Natural waters			100
(ign. rocks)		0.5-150	9
Natural waters			-
(sediments)		1-100	3
Sea water			0.2
Saline waters, 3%			0.15
Saline waters, 20%			0.05

The range of resistivities of various waters is notably smaller than for solid minerals; the actual resistivities are also lower than those of a great many minerals.

Table 5.3 lists resistivities for a variety of ores, from Parkhomenko (1967). In

general it appears that pyrrhotite in massive form has the lowest resistivity, that the resistivity of zinc ores is surprisingly low (possibly due to the presence of lead and copper fractions) and that molybdenite, chromite and iron ores have values in the range of many rocks.

Table 5.3. Resistivities of various ores

Ore	Other minerals	Gangue	$\rho(\Omega m)$
Pyrite			
18%	2% (chalco)	80%	300
40	20%	40	130
60	5% (ZnS) + 15%	20	0.9
75	10% (ZnS) + 5%	10	0.14
95	5% (ZnS)	10	1.0
95	$J_0(ZIIJ)$	5	7.0
		-	
Pyrrhotite		59%	2.2×10^{-4}
41%			
58		42	2.3×10^{-4}
79		21	1.4×10^{-5}
82		18	8.5×10^{-5}
95		5	1.4×10^{-5}
SbS ₂ in quartz			$4 \times 10^{3} - 3 \times 10^{7}$
FeAsS 60%	FeS 20%	20% SiO2	0.39
FeAsS			$10^{-4} - 10^{-2}$
Cu ₅ FeS ₄			3×10^{-3}
$Cu_5 FeS_4$ 40%		60% SiO2	7×10^{-2}
		$00/_0 310_2$	2×10^4
Fe, Mn, WO ₄ 80%	G 1 9		
Fe, Mn, WO ₄	CoAsS		$10^{3}-10^{7}$
PbS, massive			7×10^{-2}
PbS, near massive			0.8
PbS 50-80%			$10^{-2}-3$
Fe ₂ O ₃			0.1-300
Fe_2O_3 , massive			2.5×10^{3}
Iron			45
$Fe_3O_4 60\%$			$0.5 - 10^{2}$
Fe_3O_4 from contact met.			
Diss. brown iron oxide		250/	$8 \times 10^{2} - 3 \times 10^{6}$
75% brown iron oxide		25%	$2 \times 10^{4} - 8 \times 10^{5}$
Fe ₂ O ₃ fine grained			2.5×10^{3}
Fe ₃ O ₄			$5 \times 10^{3} - 8 \times 10^{3}$
Fe ₃ O ₄ in pegmatite			$7 \times 10^{3} - 2 \times 10^{5}$
Zinc			
	5% PbS, 15% FeS	50%	0.75
30%	$\frac{5}{0}$ rus, $\frac{15}{0}$ res	50/0	20
70%	3% chalco, 17% PbS, 10% FeS		20
80	10% PbS, 10% FeS		1.7×10^3
80	2% chalco, 1%	15%	1.3
00	PbS, 2% FeS	5%	130
90	5 % PbS	5/0	100

454 Electrical properties of rocks

Ore	Other minerals	Gangue	$\rho(\Omega \mathbf{m})$
Graphitic slate			0.13
Graphite, massive			$10^{-4}-5 \times 10^{-3}$
MoŜ ₂			$2 \times 10^{2} - 4 \times 10^{3}$
MnO ₂ colloidal ore			1.6
Cu ₂ S			3×10^{-2}
CuFeS ₂			$10^{-4} - 1$
CuFeS ₂ 80%	10% FeS	10%	0.66
$CuFeS_2 90\%$	2% FeS	8% SiO2	0.65
FeCr ₂ O ₄	2 /0 1 00	0/0 5102	10^{3}
FeCr_2O_4 95%		5 % Serp.	1.2×10^4

Tables 5.4 and 5.5 list typical values for rocks and unconsolidated formations. The ranges here are quite similar to water, which obviously is the controlling factor in many rocks.

Table 5.4.	Resistivities	of igneous	and metamor	phic rocks
2 00 10 01 11				

Rock type	Resistivity range (Ωm)		
Granite	$3 \times 10^{2} - 10^{6}$		
Granite porphyry	4.5×10^3 (wet)- 1.3×10^6 (dry)		
Feldspar porphyry	4×10^{3} (wet)		
Albite	3×10^{2} (wet)- 3.3×10^{3} (dry)		
Syenite	$10^{2}-10^{6}$		
Diorite	$10^{4} - 10^{5}$		
Diorite porphyry	1.9×10^3 (wet)- 2.8×10^4 (dry)		
Porphyrite	$10-5 \times 10^4 \text{ (wet)} - 3 \cdot 3 \times 10^3 \text{ (dry)}$		
Carbonatized porphyry	2.5×10^3 (wet)-6 $\times 10^4$ (dry)		
Quartz porphyry	$3 \times 10^{2} - 9 \times 10^{5}$		
Quartz diorite	$2 \times 10^{4} - 2 \times 10^{6}$ (wet) -1.8×10^{5} (dry)		
Porphyry (various)	60-104		
Dacite	2×10^4 (wet)		
Andesite	4.5×10^4 (wet) -1.7×10^2 (dry)		
Diabase porphyry	10^3 (wet)- 1.7×10^5 (dry)		
Diabase (various)	$20-5 \times 10^7$		
Lavas	$10^{2}-5 \times 10^{4}$		
Gabbro	$10^{3} - 10^{6}$		
Basalt	$10-1.3 \times 10^{7} (dry)$		
Olivine norite	$10^{3}-6 \times 10^{4}$ (wet)		
Peridotite	3×10^3 (wet) -6.5×10^3 (dry)		
Hornfels	8×10^3 (wet) -6×10^7 (dry)		
Schists (calcareous and mica)	20-104		
Tuffs	2×10^3 (wet)- 10^5 (dry)		
Graphite schist	10-102		
Slates (various)	$6 \times 10^{2} - 4 \times 10^{7}$		
Gneiss (various)	6.8×10^4 (wet)-3 × 10 ⁶ (dry)		
Marble	$10^2 - 2.5 \times 10^8 (dry)$		
Skarn	2.5×10^2 (wet)- 2.5×10^8 (dry)		
Quartzites (various)	$10-2 \times 10^{8}$		

Table 5.5. Resistivities of sediments

Rock type	Resistivity range (Ωm)		
Consolidated shales	$20-2 \times 10^{3}$		
Argillites	$10-8 \times 10^{2}$		
Conglomerates	$2 \times 10^{3} - 10^{4}$		
Sandstones	$1-6.4 \times 10^{8}$		
Limestones	50-107		
Dolomite	3.5×10^{2} - 5×10^{3}		
Unconsolidated wet clay	20		
Marls	3-70		
Clays	1-100		
Alluvium and sands	10-800		
Oil sands	4-800		

Very roughly, igneous rocks have the highest resistivity, sediments the lowest, with metamorphic rocks intermediate. However, there is considerable overlapping, as in other physical properties. In addition, the resistivities of particular rock types vary directly with age and lithology, since the porosity of the rock and salinity of the contained water are affected by both. For example, the resistivity range of Precambrian volcanics is 200–5000 Ω m, while for Quaternary rocks of the same kind it is 10–200 Ω m.

The effect of water content on the bulk resistivity of rocks has been frequently mentioned and is evident from table 5.4. Further data are listed in table 5.6, where samples with variable amounts of water are shown. In all cases a small change in the percentage of water effects the resistivity enormously.

Table 5.6. Variation of rock resistivity with water content

Rock	$\%~H_2O$	$\rho(\Omega m)$	Rock	$\% H_2O$	$\rho(\Omega m)$
Siltstone	0.54	1.5×10^{4}	Pyrophyllite	0.76	6×10^{6}
Siltstone	0.44	8.4×10^{6}	Pyrophyllite	0.72	5×10^{7}
Siltstone	0.38	5.6×10^{8}	Pyrophyllite	0.7	2×10^{8}
Coarse grain SS	0.39	9.6×10^{5}	Pyrophyllite	0	1011
Coarse grain SS	0.18	10 ⁸	Granite	0.31	4.4×10^{3}
Medium grain SS	1.0	4.2×10^{3}	Granite	0.19	$1.8 \times 10^{\circ}$
Medium grain SS	1.67	3.2×10^{6}	Granite	0.06	1.3×10
Medium grain SS	0.1	1.4×10^{8}	Granite	0	1010
Graywacke SS	1.16	4.7×10^{3}	Diorite	0.05	5.8×10
Graywacke SS	0.45	5.8×10^4	Diorite	0	6×10^{6}
Arkosic SS	1.26	10 ³	Basalt	0.95	4×10^4
Arkosic SS	1.0	1.4×10^{3}	Basalt	0.49	9×10^{5}
Organic limestone	11	0.6×10^{3}	Basalt	0.26	3×10^{7}
Dolomite	2	5.3×10^{3}	Basalt	0	1.3×10^{-3}
Dolomite	1.3	6×10^{3}	Olivine-pyrox.	0.028	2×10^4
Dolomite	0.96	8×10^{3}	Olivine-pyrox.	0.014	4×10^{5}
Peridotite	0.1	3×10^{3}	Olivine-pyrox.	0	$5 \cdot 6 \times 10$
Peridotite	0.03	2×10^{4}			
Peridotite	0.016	10^{6}			
Peridotite	0	1.8×10^{7}			

Pitfalls for VLF-EM

- Recording the sign (+/-) of the numbers correctly
- Switching the facing direction or orientation during survey
- Presence of cultural features power lines, cables fences, culverts, rebar, asphalt roadways, etc.
- Unforeseen causes of anomalies eg. Permafrost contacts

	Technique	Passive/ active	Physical property utilised	Source/signal
\longrightarrow	Magnetics	Passive	Magnetic susceptibility/ remanence	Earth's magnetic field
	Gravity	Passive	Density	Earth's gravitational field
\longrightarrow	Continuous Wave and Time- Domain Electromagnetics (EM)	Active/ passive	Electrical conductivity/ resistivity	Hz/kHz band electromagnetic waves
	Resistivity Imaging/ Sounding	Active	Electrical resistivity	DC electric current
	Induced Polarisation	Active	Electrical resistivity/ complex resistivity and chargeability	Pulsed electric current
	Self potential (SP)	Passive	Redox and electrokinetic	Redox, streaming and diffusion potentials
	Seismic Refraction and Reflection/ Sonic	Active/ passive	Density/elasticity	Explosives, weight drops, vibrations, earthquakes, sonic transducers
>	Radiometrics	Active/ passive	Radioactivity	Natural or artificial radioactive sources
	Ground Penetrating Radar (GPR)	Active	Dielectric properties (permittivity)	Pulsed or stepped frequency microwave EM (50–2000 MHz)
	Wireline Logging	Active/ passive	Various	Various