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ABSTRACT

The Montgomery Lake Cu–Au showing is located in the Andre Lake map area (NTS 23I/12) in the eastern part of the
Labrador Trough, where trenching and diamond drilling have recognized low­grade Cu and Au mineralization in strongly
altered and brecciated graphitic shales of the Menihek Formation. Mineralization is associated with a zone of intense meta­
somatic alteration that occurs for >1.5 km in a linear belt parallel to the Walsh Lake Fault, a major crustal structure in the
Labrador Trough. The mineralized zones are best exposed in a series of trenches, but similar mineralization has been record­
ed along the alteration trend.

Two generations of alteration are recognized. An early, widespread­scale alteration is characterized by almost complete
albitization and silicification of the host shales and siltstones. This early alteration is synchronous with peak deformation dur­
ing the New Québec Orogen but is not associated with any significant enrichment in Cu or Au. The second phase of alteration
is associated with fracturing and hydrothermal brecciation of previously altered units, with fragments of quartz–albite in a
matrix of carbonate–quartz–albite–chalcopyrite–pyrrhotite. This later alteration is associated with the main mineralization
phase, in which hydrothermal breccias is significantly enriched in Cu, Au and Ag.

The Montgomery Lake Cu‒Au showing displays many features typical of Iron­Sulphide Copper Gold (ISCG) deposits, a
group with strong affinities to Iron­Oxide Copper Gold (IOCG) deposits. These include: 1) early Na­metasomatism, overprint­
ed by a later mineralizing event; 2) location of mineralization close to a major crustal structure (Walsh Lake Fault); 3)
graphite­bearing host rocks that inhibit formation of magnetite­rich IOCG deposits; 4) association of mineralization with brec­
ciation; and 5) identification of hypersaline, halite­bearing fluid inclusions. The ISCG deposits are typically spatially and tem­
porally associated with magnetite­group IOCG mineral deposits (e.g., Cloncurry District); hence the identification of ISCG­
style mineralization at Montgomery Lake may have wider implications for exploration in this part of the Labrador Trough.

INTRODUCTION

The Montgomery Lake Cu–Au showing is located in
the eastern part of the Labrador Trough, approximately 80
km east of the town of Schefferville, Québec (NTS map
sheet 23I/12). It is hosted in metasedimentary and metavol­
canic rocks of the Kaniapiskau Supergroup, which were
deposited on the margin of the Superior Craton in the
Paleoproterozoic, and subsequently deformed during the
New Québec Orogeny. The Montgomery Lake showing
was first discovered in the 1940s, but has only been the sub­
ject of sporadic and limited exploration since then (Moss,
1942; Love, 1967; Labonté et al., 2009). Mineralization
occurs in a zone of intense metasomatism that can be traced
for more than 1.5 km. Swinden and Santaguida (1995) ten­
tatively suggested that the Montgomery Lake showing rep­
resented orogenic­gold type mineralization. However, this

genetic model does not explain many unusual features of
the occurrence and the associated metasomatic alteration;
hence this study was initiated to develop a more detailed
genetic model.

The Geological Survey of Newfoundland and Labrador
visited the Montgomery Lake showing in 2013, 2017 and
2018 as part of a regional study of the metallogenic evolu­
tion of the Labrador Trough (Smith et al., 2018; Conliffe et
al., 2019). This report presents the results of field observa­
tions, as well as petrographic and geochemical studies of
samples collected during this fieldwork. The aim of this
work was to better characterize the alteration and mineral­
ization styles at Montgomery Lake, and to compare it to
other mineralization, hosted in zones of intense metasoma­
tism, elsewhere in the Labrador Trough (e.g., Romanet
Horst, Corriveau et al., 2014), as well as to global examples
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of Iron­Sulphide Copper Gold (ISCG) mineralization (e.g.,
Cloncurry District, Australia, Mark et al., 2006). This is fol­
lowed by a short, critical discussion on the regional impli­
cations, including the potential of the Montgomery Lake and
Andre Lake areas to host Iron­Oxide Copper Gold (IOCG)
and affiliated deposit types.

REGIONAL SETTING

The Montgomery Lake area is located in the hinterland
of the New Québec Orogen. The geology consists of a
series of Paleoproterozoic supracrustal sedimentary and
volcanic units formed on the margin of the Superior conti­
nent during initial rifting at ~2.17 Ga (Rohan et al., 1993),
and during the subsequent development of a long­lived
marginal marine basin (Wardle and Bailey, 1981; Le Gallais
and Lavoie, 1982; Clark and Wares, 2005). These
supracrustal units are collectively known as the
Kaniapiskau Supergroup (Wardle and Bailey, 1981; Le
Gallais and Lavoie, 1982; Clark and Wares, 2005), and
have traditionally been subdivided into three distinct cycles
of sedimentation and volcanism separated by unconformi­
ties (Frarey and Duffell, 1964; Clark and Wares, 2005).
However, Clark et al. (2006) showed continuous sedimen­
tation occurred between Cycle 1 and Cycle 2, and therefore,
the Kaniapiskau Supergroup can instead be subdivided into
early rift­related sediments (Seward Group), passive mar­
gin to shallow­marine sediments (Swampy Bay,
Attikamagen and Ferriman groups in western Labrador)
and associated deeper water equivalents (Doublet Group),
and foreland basin sedimentation and flysch related to the
development of the New Québec Orogen (Rachel­Laporte
Group and Tamarack River Formation). Recent detrital zir­
con data from the Menihek Formation at the top of the
Ferriman Group indicate that it may also, in part, be related
to sedimentation in a foreland basin (Corrigan et al., 2019).

There are at least two main phases of magmatic activi­
ty; a ~2.17–2.14 Ga event associated with initial rifting and
voluminous mafic magmatism (Wardle and Bailey, 1981;
Rohan et al., 1993), and a later phase of igneous activity
from ~1.88 to 1.87 Ga (Findlay et al., 1995; Bleeker and
Kamo, 2018). This later phase of igneous activity includes
gabbro sills of the Gerido Intrusive Suite (formerly
Montagnais Gabbro; Bilodeau and Caron­Côté, 2018), as
well as the mafic to intermediate volcanic and volcanoclas­
tic rocks of the Nimish Formation (Findlay et al., 1995). In
the study area, all units of the Kaniapiskau Supergroup were
deformed during the New Québec Orogen, recording the
oblique convergence and collision of the Archean Superior
Craton to the west and the Archean to Paleoproterozoic Core
Zone to the east at between 1.82 to 1.77 Ga, during the
Trans­Hudson Orogeny (Wardle et al., 1990, 2002).

Recent 1:50 000­scale bedrock mapping of the Andre
Lake map area has broadly subdivided the region into three
lithotectonic zones, separated by west­verging thrust faults
(Butler, 2019; Figure 1). The western zone consists of a
sequence of supracrustal rocks of the Kaniapiskau
Supergroup (Swampy Bay, Attikamagen and Ferriman
groups) and is separated from the central zone by the Mina
Lake Fault in the south and the Quartzite Lake Fault in the
north (Butler, 2019). The central zone is underlain by gener­
ally north‒south­striking rocks of the Kaniapiskau
Supergroup, which form a north­plunging anticline
(Snelgrove Lake Anticline, Wardle, 1979; Butler, 2019). The
Snelgrove Lake Basement Complex (SLBC), comprising
Archean orthogneiss with a margin of undeformed granite,
is located in the centre of the anticline (Wardle, 1979;
Butler, 2019). The SLBC is flanked to the west by rocks of
the Seward, Swampy Bay and Attikamagen groups, with the
contact between the SLBC and supracrustal rocks marked
by a steeply dipping thrust (Wade Lake Fault). On its east­
ern margin, the SLBC is separated from the Seward Group
by an inferred east­dipping thrust (Quartzite Lake Fault),
with the Seward Group overlain by rocks of the Swampy
Bay, Attikamagen and Ferriman groups. In the northern part
of the central zone, rocks of the Ferriman Group are sepa­
rated from deeper water sedimentary and volcanic rocks of
the Doublet Group by the Walsh Lake Fault (Butler, 2019),
a major thrust fault that can be traced for 100s of km to the
north (Clark and Wares, 2005). Metamorphic grades of the
Kaniapiskau Supergroup rocks in the central zone generally
reached greenschist facies, with lower amphibolite­facies
metamorphism recorded along the eastern edge of the SLBC
(Butler, 2019). The Montgomery Lake showing and other
areas discussed in this paper are located in the central zone.
The eastern zone, which is separated from the central zone
by the Ashuanipi River shear zone, consists of Archean
orthogneiss and Paleoproterozoic tonalities of the
MacKenzie River domain (James et al., 1996; Butler, 2019).

PREVIOUS WORK

The Montgomery Lake showing was discovered in
1942 during regional geological mapping and prospecting
by Labrador Mining and Exploration (LM&E; Moss, 1942).
Mineralization was exposed in a number of trenches, with
samples averaging 0.53% Cu and 0.6 g/t Au (80 samples,
Moss, 1942). Two short (<60 m) diamond­drill holes were
collared close to the trenches but failed to intersect similar
mineralization at depth (Murdock and Moss, 1944).
Subsequent soil and geophysical surveys (EM, magnetics,
gravity and seismic) over the Montgomery Lake showing
identified a number of additional anomalies (Crichton and
Macpherson, 1959; Hogg, 1964). In 1966, follow­up geo­
chemical and geophysical surveys expanded these anom­
alies, and 11 drillholes (totalling 1255 m) were completed in
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Figure 1. Geological map of the Andre Lake map area (NTS 23I/12), adapted from Butler (2019). Inset map shows detailed
geology of the Montgomery Lake area, including outline of the alteration trend, historic drillhole collars and location of the
main showing and samples collected in 2013, 2017 and 2018. ARSZ=Ashuanipi River shear zone; MLF=Mina Lake Fault;
QLF=Quartzite Lake Fault; WaLF=Wade Lake Fault; WLF=Walsh Lake Fault.
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the area of the showing (Love, 1967). Multiple drillholes
encountered similar mineralization and alteration to that
recorded in the trenches, with assays of 0.31% Cu over 14.5
m, 0.17% Cu over 25.5 m, 0.12% Cu over 36.1 m, 1.0 g/t Au
over 1.5 m and 9.2 g/t Ag over 1.5 m (Love, 1967). No fur­
ther work on the Montgomery Lake showing was carried out
by LM&E.

In the early 1990s, the Geological Survey of
Newfoundland and Labrador conducted regional metallo­
genic studies throughout the eastern Labrador Trough, with
particular emphasis on known occurrences (Swinden, 1991).
Based on this work, Swinden and Santaguida (1995) pro­
duced a report on the Montgomery Lake showing, including
detailed trench maps and lithogeochemical studies. These
authors concluded that the Montgomery Lake showing
occurred within a zone of strongly metasomatised rocks, and
suggested that the mineralization may represent an orogenic
gold­type deposit. Further exploration in the Montgomery
Lake area in the 2000s showed that this zone of metasoma­
tised rocks continues along strike from the main showing for
more than 1 km, and the altered host rocks are locally brec­
ciated (Labonté et al., 2009; Labonté and Kieley, 2009).

Most other base­metal exploration in the eastern
Labrador Trough focused on syngeneic VMS­type sediment
hosted mineralization (e.g., Martin Lake showing) or
Ni–Cu–PGE mineralization in gabbro sills (e.g.,
Frederickson Lake showing). However, exploration by
LM&E in the Andre Lake area identified a number of other,
unclassified mineral occurrences. At the southern end of
Andre Lake, two sulphide occurrences are reported in
altered and brecciated shales close to the contact with gab­
bro sills (Kozela, 1960). Diamond drilling of EM anomalies
identified in this area intersected similar mineralization hav­
ing strongly altered and brecciated sulphide­rich zones (up
to 90% sulphides over 10 m) and up to 0.17% Cu over 9.75
m (Love, 1961). Drilling of magnetic anomalies on Andre
Island encountered strong potassic (biotite) alteration in
strongly deformed and sheared sedimentary and volcanic
units, with abundant magnetite and pyrrhotite, and minor Cu
mineralization (Hogg, 1968). Prospecting along the shores
of Andre Lake and Montgomery Lake has identified numer­
ous Cu­enriched boulders (Labonté et al., 2009), and an
interpretation of a recent airborne magnetic and radiometric
survey has identified a number of high priority base­metal
and uranium targets close to known copper occurrences
(Labonté and Kieley, 2009).

LOCAL GEOLOGY

The Montgomery Lake showing, located immediately
west of the Walsh Lake Fault (Figure 1; Swinden and
Santaguida, 1995), is hosted by shales and siltstones of the

Menihek Formation, which is locally intruded by gabbros of
the Gerido Intrusive Suite. Due to the pervasive intense
alteration surrounding the mineralized zone, the host rocks
types are often difficult to determine. The following descrip­
tions are based on the least altered units in the Montgomery
Lake area, as well as unaltered rock types along strike.

The Menihek Formation consists of thin­bedded shales
and siltstones (Plate 1A), that were deposited in a shallow­
water environment (Wardle, 1979). In the Montgomery
Lake area, the Menihek Formation shales are commonly
highly graphitic, particularly where shale layers are
interbedded with altered and mineralized zones (Love,
1967). The gabbro sills are fine to medium grained and have
subophitic textures. Love (1967), and Swinden and
Santaguida (1995) demonstrated that the Montgomery Lake
showing was located in a high­strain zone, apparently relat­
ed to the Walsh Lake Fault. In places the rocks have a
mylonitic texture, and two generations of folding have been
recorded: an early generation of flat­lying recumbent folds
that are refolded by later upright, asymmetric, west­verging
folds with steep western and shallow eastern limbs
(Swinden and Santaguida, 1995). 

ALTERATION AND MINERALIZATION

The following description of alteration and mineraliza­
tion in the Montgomery Lake area are based on field obser­
vations, hand­sample descriptions, petrographic analysis of
21 thin sections and short wavelength infrared (SWIR) spec­
tral data (see Sparkes, 2019) from samples along the alter­
ation zone. 

A zone of intense metasomatic alteration overprints the
regional greenschist metamorphism, and has been traced for
more than 1.5 km, southeast, along strike, from the southern
shore of Montgomery Lake to ~700 m south of the trenches
at the Montgomery Lake showing (Figure 1). The alteration
zone is approximately 100–200­m wide, and is locally
observed to be in sharp contact with unaltered shales and
gabbros, and the alteration locally crosscutting bedding
(Plate 1B). Quartz veins are rare except at the margins of the
alteration zone where numerous small quartz veins are
observed extending into relatively unaltered shales (Plate
1B).

The alteration zone is characterized by widespread and
pervasive albitization, silicification and carbonitization,
with the Menihek Formation shales completely altered to
fine­grained quartz, albite and carbonate (Plate 2A, B) as
well as minor muscovite and phengite (identified by SWIR
analysis). Relict bedding is observed in places, and the
altered shales have a beige to pale pink appearance (Plate
1C). The altered shales commonly have 1–5% disseminated
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Plate 1. Selected photographs from fieldwork in the Montgomery Lake area. A) Unaltered graphitic shales of the Menihek
Formation; B) Contact between unaltered shales and albitized Menihek Formation, with minor quartz veining; C) Intensely
metasomatized (albitized and silicified) Menihek Formation Shale; D) Hydrothermal breccia with angular fragments of
albitized shale in fine­grained matrix (from mineralized boulders south of Montgomery Lake); E) Mineralized breccia with
subrounded fragments of albitized shale in matrix of dolomite, albite and chalcopyrite (from main Montgomery Lake show­
ing); F) Albitized shale cut by veinlets of pyrrhotite and carbonate.
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pyrite and pyrrhotite, minor hematite in some samples, and
trace chalcopyrite. Localized sericitization of the shale units
is also observed, with up to 50% muscovite and phengite
(Plate 2C, D). Alteration of the gabbro sills is generally less
pervasive, with the altered gabbros comprising fine­grained
quartz, biotite, chlorite and Fe­carbonate and 1–10%
pyrrhotite (trace chalcopyrite).

Copper mineralization has been recorded from a num­
ber of locations along the alteration trend. In the main
trenches (Figure 1), mineralized rock containing up to 10%
chalcopyrite has been recorded (see Swinden and
Santaguida (1995) for a detailed trench map). Similar min­
eralization, with up to 5% chalcopyrite, has also been
observed in a series of large (up to 10 m across) boulders or
subcrops, located in an area of boggy ground ~50 m south of
Montgomery Lake. Mineralization postdates the earlier

albite–quartz–carbonate alteration phase in all locations. In
the main trenches and boulders south of Montgomery Lake,
mineralized material consists of rounded to angular clasts of
previously altered (albitized and silicified) fine­grained host
rocks in a matrix­supported breccia cemented by medium­
grained albite, dolomite, quartz and chalcopyrite (± tourma­
line), and minor pyrrhotite (Plates 1D, E and 3A–D). The
abundance of rounded clasts in some areas gives the rock the
appearance of a pebble conglomerate (Love, 1967; Swinden
and Santaguida, 1995). However, the clasts are often angu­
lar, have ragged edges with evidence of dissolution in a
hydrothermal fluid, and in places are clearly brecciated with
albite–carbonate–chalcopyrite filling fractures in the clasts
(Plate 3A, B), and therefore can be classified as hydraulic
breccias with matrix­supported clasts in a hydrothermal
cement matrix (Jébrak, 2010).
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Plate 2. Photomicrographs of altered samples from Montgomery Lake area. A) Albitized shale with fine­grained albite, quartz
and carbonate and disseminated pyrrhotite (plane­polarized light, sample 17JC107A01); B) Same view as A, in cross­polar­
ized light; C) Altered shale with fine­grained muscovite/phengite layer (plane­polarized light, sample 17JC110C01); D) Same
view as C, in cross­polarized light.
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Plate 3. Photomicrographs of mineralized samples from Montgomery Lake area. A) Mineralized breccia, with fine­grained
albitized clast (top right) in matrix of albite, dolomite, chalcopyrite and quartz (cross­polarized light, sample 18JC001A01);
B) Same view as A, in reflected light, showing disseminated chalcopyrite in matrix and filling fractures in albitized clast; C)
Hydrothermal matrix with medium­grained albite, dolomite, quartz, chalcopyrite and pyrrhotite (cross­polarized light, sam­
ple 18JC006A01); D) Same view as C, in reflected light; E) Mineralized sample with abundant fine­grained tourmaline (light
brown) cut by veinlet of chalcopyrite and pyrrhotite (plane­polarized light, sample 18JC002A01); F) Same view as E, in
reflected light.



CURRENT RESEARCH, REPORT 20­1

During this study, mineralization was also identified in
a series of outcrops ~300 m south of the main trenches, close
to the contact with a relatively unaltered gabbro sill. This
mineralization is characterized by abundant fine­grained
black to dark­brown tourmaline (up to 20%) in altered and
mineralized shales. Mineralization is fracture controlled
with numerous stockwork veinlets of quartz–albite–
pyrrhotite–chalcopyrite–tourmaline cutting fine­grained
quartz–albite–tourmaline (Plate 3E, F). Similar pyrrhotite–
quartz–carbonate­albite veinlets and trace chalcopyrite have
been observed cutting albitized and silicified shales else­
where along the alteration trend (Plate 1F).

SEM­MLA ANALYSIS

To further examine mineralogical compositions, two
thin sections of mineralized samples (18JC001A01 from the
main trench, and 18JC006A01 from mineralized boulders
close to Montgomery Lake) were selected for Scanning
Electron Microscopy­Mineral Liberation Analysis (SEM­
MLA). Representative MLA false­colour images from both
samples are shown in Figure 2 and the modal mineralogy is
shown in Table 1.

Sample 18JC001A01 consists of ~50% subrounded
clasts in a hydrothermal matrix (Figure 2A). The clasts con­
sist predominantly of albite with minor quartz and dolomite,
whereas the matrix consists of approximately equal propor­
tions of dolomite, albite and chalcopyrite, and minor quartz
and pyrite. Accessory minerals observed include horn­
blende, tourmaline, pyrite, pyrrhotite, rutile and apatite. A
number of small (<25 μm) gold grains were also recorded,
on the margins of, or inside, chalcopyrite grains. 

Sample 18JC006AO1 has a higher proportion of
hydrothermal cement matrix, with silicified and albitized
clasts making up <20% of the thin section (Figure 2B).
Clasts display embayed margins and are commonly brec­
ciated with chalcopyrite­ and dolomite­filled fractures. The
hydrothermal cement matrix consists of variable proportions
of dolomite, albite, quartz, pyrrhotite and chalcopyrite with
common tourmaline (2.5% wt. % of the sample) and acces­
sory pyrite, hornblende, apatite, muscovite and rutile.
Apatite is relatively coarse grained, with one grain >500 μm
recorded (top left of Figure 2B). No gold grains were
observed in this sample.
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Figure 2. False colour SEM­MLA images of mineralized breccias in the Montgomery Lake area. A) Sample 18JC001A01 from
the main trenches; B) Sample 18JC006A02 from mineralized boulders close to Montgomery Lake (see text for details.) 

Table 1. Modal mineralogy calculated from SEM­MLA
analysis of mineralized breccias from the Montgomery
Lake area

Sample 18JC001A01 18JC006A01

Mineral Wt% Wt%
Albite 62.53 39.31
Dolomite 17.82 26.46
Quartz 4.65 12.91
Chalcopyrite 9.87 5.71
Pyrrhotite 0.22 7.88
Pyrite 1.2 1.32
Tourmaline 0.94 2.49
Hornblende–Fe 1.52 1.08
Apatite 0.26 0.59
Rutile 0.3 0.36
Muscovite 0.02 0.45
Gold 0.01 0
Other 0.66 1.44

Albite

Dolomite

Chalcopyrite

Quartz

Pyrrhotite

Tourmaline

Pyrite

Hornblende

Apatite

2 mm 2 mm

Rutile

A B



J. CONLIFFE

LITHOGEOCHEMISTRY

A representative suite of rock types from the
Montgomery Lake area were analyzed for major and trace
elements at the Geological Survey laboratory using the
methods outlined by Finch et al. (2018). Additional analyses
(for trace elements including Au) of selected samples were
conducted by Maxxam Analytics. These samples are subdi­
vided based on their presumed protolith, alteration type and
presence or absence of Cu mineralization (>0.25% Cu) as
follows: 1) unmineralized altered shale with strong albitiza­
tion; 2) unmineralized altered shale with strong sericitiza­
tion; 3) unmineralized altered gabbro; 4) mineralized
hydrothermal breccia with abundant albite, dolomite and
chalcopyrite/pyrrhotite; and 5) mineralized altered shale
with abundant albite, tourmaline and chalcopyrite–
pyrrhotite. Full geochemical data, methods and sample loca­
tions are included in Conliffe (2020).

All of the samples analyzed have been exposed to alter­
ation processes, and therefore their geochemical composi­
tion may not reflect the composition of the unaltered pro­
tolith. During alteration, immobile elements such as Al, Ti,
Zr, Nb and Yb are typically considered immobile (Barrett
and MacLean, 1994). However, Montreuil et al. (2016)
showed that in zones of intense metasomatism and alter­
ation, elements that are generally considered immobile (e.g.,
Al, Ti, Zr) can be significantly depleted or enriched. With
the exception of a single sample of presumed gabbroic affin­
ity, all samples are thought to represent similar protoliths
(i.e., Menihek Formation shales and siltstones). Binary plots
of immobile elements (Al, Ti, Zr, Nb) show that these sam­
ples form two distinct groups (Figure 3). Ten samples dis­
play linear trends with R2 factors of >0.9, indicating that
they represent alteration of a similar protolith in a rock­
buffered system (Barret and MacLean, 1994). In contrast, all
other samples show no linear relationships, potentially indi­
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cating variations in protolith, or intense
alteration that resulted in mobility of
elements typically thought to be immo­
bile (Montreuil et al., 2016).

Mobile major elements, such as
Na, K and Ca, show distinct variations
depending on the dominant alteration
style (Figure 4). Unmineralized sam­
ples dominated by early albitization and
silicification have very low K contents
(<0.75 wt. % K2O) and generally have
Na>Ca, which is consistent with albite
as the dominant alteration mineral. In
contrast, sericite­altered samples hav­
ing abundant muscovite and phengite
have higher K contents (up to 3.40 wt.
% K2O). Mineralized samples generally
have low K contents and show an
increase in Ca compared with unminer­
alized samples, which reflects the abun­
dance of dolomite in hydrothermal
breccia cement. A single tourmaline­
rich mineralized altered shale sample
(18JC002A01) has much lower Ca con­
tents, reflecting the absence of carbon­
ates. Montreuil et al. (2013) developed
an IOCG alteration discrimination dia­
gram for intensely metasomatised rocks
using the molar ratio of major elements,
which incorporates the alteration facies
of Corriveau et al. (2010). When sam­
ples from this study are plotted, all sam­
ples of unmineralized altered shales
plot close to the boundary between Na
and Na–Ca–Fe (Mg) alteration (Figure
5). Mineralized samples cluster in the
field for Na–Ca–Fe (Mg) alteration, and
sericite­altered samples plot closer to
the fields defined for potassic alteration
(Figure 5).

Bivariate plots of metal values
show a strong correlation between Cu
contents and other metals such as Au,
Ag and Zn (Figure 6). Although gold
contents are generally low (<500 ppb),
samples with >100 ppb Au correspond
to high Cu contents (>1000 ppm Cu;
Figure 6A). Copper contents also show
a strong correlation with Ag and Zn con­
tents, with R2 values of >0.8 (Figure 6).
However, there is no significant correla­
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tion between Cu or Au contents with other metals that are
commonly used as pathfinder metals in orogenic gold sys­
tems (e.g., As, Sb). Rare­earth­element (REE) plots shows
that samples with consistent immobile element ratios have
relatively consistent profiles, with enrichment in light­rare­
earth­elements (LREE) and negative Eu anomalies (Figure
7A). In contrast, samples with inconsistent immobile ele­
ment ratios have much more variable REE contents, particu­
larly in LREE (Figure 7B). This may reflect higher fluid­rock
ratios, with LREE mobilized in the hydrothermal fluids.

DISCUSSION

The Montgomery Lake showing is located in a high­
strain zone parallel to the Walsh Lake Fault, a major crustal
structure in the eastern part of the Labrador Trough.
Mineralization is associated with two main phases of alter­
ation. The first stage of alteration is a widespread sodic­sili­
cic alteration, which results in the almost complete albitiza­
tion and silicification of the host shales and siltstones (local
sericitization also observed). Primary lithological features
are almost completely destroyed, but some relict bedding
has been recorded (Labonté et al., 2009). This alteration is
associated with disseminated pyrite and pyrrhotite mineral­
ization, but there is no significant enrichment in Cu, Au or
Ag. Early alteration appears to be synchronous with peak
deformation, with some altered units displaying intense
deformation, whereas other units are relatively undeformed
(Swinden and Santaguida, 1995). 

The second phase of alteration is more localized in dis­
tribution, and is associated with fracturing and hydraulic
brecciation of early alteration. Fragments of earlier alter­
ation are commonly cemented by later dolomite, albite,
chalcopyrite, quartz and pyrrhotite (± tourmaline, apatite),
with enrichments in Cu, Au and Ag. Rare occurrences of
quartz and carbonate veins are observed crosscutting earlier
alteration, and may be related to this later alteration.
Petrographic studies have identified fluid inclusions having
abundant cubic and rhombic isotropic trapped minerals
interpreted to be halite and/or sylvite crystals (Plate 4),
which indicates that the later alteration, brecciation and min­
eralization was associated with high salinity (>> 20 eq. wt.
% NaCl) fluids.

Swinden and Santaguida (1995) suggested that miner­
alization at Montgomery Lake was representative of oro­
genic­gold type mineralization, due to the strong structural
control on mineralization and the local presence of carbon­
ate alteration and possible fuchsite. However, the mineral­
ization lacks many features typical of orogenic­gold type
mineralization, with Cu>>Au, lack of quartz–carbonate
veining, absence of CO2­rich mineralizing fluids and pre­
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dominance of sodic alteration; therefore alternative genetic
models should be considered. The widespread Na­alter­
ation, with more localized Ca–Na–Fe–(Mg) alteration asso­
ciated with mineralization at Montgomery Lake is typical
of Iron­Oxide and Alkali­calcic Alteration (IOAA) systems
that have been associated with IOCG mineralization
(Corriveau et al., 2016). In addition, evidence of hydrother­
mal brecciation in the presence of hypersaline fluids and
strong structural control of alteration and mineralization is
typical of many IOCG mineralization systems (Groves et
al., 2010; Corriveau and Mumin, 2010; Williams, 2010).
The lack of Fe­oxides associated with mineralization at

Montgomery Lake precludes classification of this deposit
as IOCG senso stricto. Based on the characteristic alter­
ation and mineralization, the deposit can instead be classi­
fied as ISCG mineralization, a subset of IOCG­type
deposits that do not have appreciable Fe­oxides (Haynes,
2000). The ISCG mineralization is hosted in relatively
reduced rock types, such as carbonaceous and graphitic
metasedimentary rocks (Mark et al., 2006; Williams, 2010).
Interaction between mineralizing fluids and the reduced
host rocks is believed to inhibit the precipitation of Fe­
oxides, and these deposits instead contain significant Fe­
sulphides (pyrite or pyrrhotite) as the main iron­bearing
mineral (Mark et al., 2006; Williams, 2010). Diamond
drilling at the Montgomery Lake deposit shows that the
least altered shale units are highly graphitic (Love, 1967),
which is consistent with the reduced environment typical of
ISCG­type mineralization. Global analogies for this miner­
alization type include a number of deposits in the Cloncurry
District, Australia (Krcmarov and Stewart, 1998;
Habermann, 1999; Mark et al., 2006) and northern
Scandinavia (Ettner et al., 1994; Lindblom et al., 1996).

Similar ISCG­type mineralization associated with sodic
alteration has been reported from elsewhere in the eastern
portion of the Labrador Trough, particularly from the
Romanet Horst in Québec (Corriveau et al., 2014;
McLaughlin et al., 2016). The Romanet Horst represents a
similar geological setting to the Montgomery Lake and
Andre Lake areas, with a northwest­plunging, fault­bound
anticline consisting of an Archean basement complex over­
lain by rift­related and passive margin sediments
(Konstantinovskaya et al., 2019). Copper and gold mineral­
ization at the Delhi­Pacific showing in the Romanet Horst is
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Plate 4. Photomicrograph of quartz­hosted fluid inclusion
in mineralized breccia, showing presence of abundant solid
phases (possible halite?), potentially indicating hypersaline
mineralizing fluids (sample 18JC006A01).
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hosted in hydrothermal breccia consisting of albitized frag­
ments cemented by a calcite–albite–pyrite–actinolite–
biotite–chalcopyrite–titanite matrix, with diamond drilling
intersecting 0.8% Cu, 0.34 g/t Au and 2.4 g/t Ag over 29.46
m (McLaughlin et al., 2016). The Romanet Horst is also
host to numerous other polymetallic (Cu, Au, U, Co, Mo)
mineral occurrences within alteration facies typical of
IOCG­type mineralizing systems (Clark and Wares, 2005;
Corriveau et al., 2014).

Based on the results of this study, a preliminary genetic
model is proposed for mineralization at Montgomery Lake.
Hydrothermal fluid flow was focused along major struc­
tures, such as the Walsh Lake Fault during the deformation
associated with the New Québec Orogen. These fluids pen­
etrated the graphitic shales and siltstones of the Menihek
Formation along second­ and third­order structures, and
were responsible for the early albitization and silicification
of the sediments and subsequent hydrothermal brecciation
and mineralization. The heat required to drive this
hydrothermal system may be associated with the emplace­
ment of the large I­type De Pas Batholith at ~1.84 to 1.81 Ga
(James and Dunning, 2000), which is located ~30 km to the
east of the Montgomery Lake showing. The high salinity
fluids may represent late­stage magmatic fluids, or alterna­
tively fluids that have leached significant salts from evapor­
ite horizons in the Denault Formation dolomites located in
the eastern Labrador Trough (Zentemeyer et al., 2011).
Future research should focus on detailed fluid­inclusion and
isotopic studies to better constrain the P­T­X conditions dur­
ing mineralization, as well as boron isotope studies of tour­
maline associated with mineralization to determine if the
high salinity fluids were derived from magmatic or evapor­
itic sources.

EXPLORATION IMPLICATIONS IN

ANDRE LAKE AREA

The recognition of ISCG mineralization and IOAA
facies in the Montgomery Lake area has important implica­
tions for the mineral exploration potential of the eastern
Labrador Trough. The ISCG mineralization typically occurs
in clusters with other IOCG and affiliated deposits, e.g., the
Cloncurry District in Australia (Mark et al., 2006) and the
Romanet Horst in the Labrador Trough (Corriveau et al.,
2014; McLaughlin et al., 2016). This is because hydrother­
mal systems associated with the intense metasomatism rec­
ognized at Montgomery Lake is expected to have been
active over a regional scale, and the possibility exists that
this hydrothermal system may have produced other affiliat­
ed deposit types. 

Skirrow et al. (2019) identified a number of mappable
criteria that can be used to determine if an area has potential

to host IOCG­type deposits. These criteria were based on a
“mineral systems” approach, which identifies a number of
criteria that are important in forming ore bodies, including
crustal architecture (fluid pathways), energy source to drive
hydrothermal systems, source of metals and hydrothermal
fluids, and development of ore­depositional gradients
(Skirrow et al., 2019). In the eastern Labrador Trough, the
Montgomery Lake and Andre Lake areas fulfill a number of
these criteria required to form IOCG deposits. These include
the proximity (<30 km) to large scale I or A­type intrusions
that may act as drivers for hydrothermal systems (De Pas
Batholith), presence of large­scale crustal faults and shear
zones that focus fluid flow (Walsh Lake and Quartzite Lake
faults, Ashuanipi River shear zone), and potential magmatic
and crustal sources of fluids, metals and ligands (iron for­
mation, former evaporite horizons, mafic and ultramafic
igneous rocks, sodic alteration zones). 

The mineral potential of this area is also highlighted by
the results of previous exploration efforts, with prospecting
identifying anomalous Cu values (>0.1% Cu) in grab sam­
ples over >23­km­strike length from Montgomery Lake to
the southern end of Andre Lake (Figure 8; Labonté et al.,
2009; Conliffe, 2020). These samples are also variably
enriched in LREE, Ag, Au, Co, U and Ba, which is typical
of IOCG­systems (Groves et al., 2010; Barton, 2014).
Additionally, four samples of biotite­altered shales were col­
lected from the southern end of Andre Lake during field­
work in 2017, with full geochemistry results available in
Conliffe (2020). These show strong enrichments in Cu (up
to 0.36%), Ag (up to 1.7 g/t), REE (up to 0.13% total REE)
and Ba (up to 0.37%).

Labonté and Kieley (2009) reported on numerous unex­
plained and untested magnetic and radiometric anomalies in
the Andre Lake area, and suggested that some of these may
be related to IOCG­type occurrences. In addition, diamond
drilling in the Andre Lake area in the 1960s intersected hori­
zons of strong biotite‒magnetite alteration, typical of the
high temperature K–Fe alteration associated with many
IOCG deposits (Corriveau et al., 2010) as well as intervals
of brecciated to massive pyrrhotite and magnetite with trace
chalcopyrite (Love, 1961; Hogg, 1968). Although the data
points to the overall prospectively of the area, and it is clear
that the mineral systems approach provides an opportunity
to create mineral potential maps for underexplored green­
field areas such as the eastern Labrador Trough, more base­
line geological, geochemical and geophysical data are
required to further develop these models. 
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