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VMSSTYLE MINERALIZATION IN THE KETTLE POND FORMATION,

GLOVER ISLAND (NTS MAP AREAS 12A/12 AND 13)

J. Conliffe

Mineral Deposits Section

ABSTRACT

The Kettle Pond Formation on Glover Island in western Newfoundland is part of a thick sequence of CambroOrdovician
ophiolitic rocks and associated cover rocks that are correlated with similar rocks on the Baie Verte Peninsula. The Kettle Pond
Formation is predominantly interbedded mafic and felsic volcanic and volcanoclastic units and minor sedimentary rocks.
Previous exploration on Glover Island has concentrated on orogenic gold deposits in the Kettle Pond Formation, and little
work has focused on the potential for VMSstyle mineralization, despite possible correlations with VMSprospective belts,
elsewhere in Newfoundland. This study highlights the VMS potential of the Kettle Pond Formation, combining geological and
petrographic descriptions with lithogeochemistry and short wavelength infrared (SWIR) analysis.

Mafic tuffs show a wide range of geochemical compositions, ranging from islandarc tholeiites to MORB signatures,
which is consistent with formation on a juvenile oceanic island volcanic arc associated with episodic intraarc rifting.
Felsic tuffs and quartzfeldspar porphyritic (QFP) rhyolites have geochemical characteristics typical of FIVtype rhyolites,
indicating they formed via crustal melting of basaltic material at shallow crustal levels (<10 km). These lithogeochemical
signatures demonstrate that the Kettle Pond Formation has geochemical characteristics favourable for the formation of
VMSstyle mineralization.

A number of VMSstyle mineral occurrences are hosted in the Kettle Pond Formation on Glover Island. The most exten
sive zone of VMSstyle mineralization is reported from the Rusty Trickle area, where stringerstyle sphalerite–chalcopyrite
mineralization is associated with a zone of intense hydrothermal alteration in deformed QFP rhyolites (grab samples up to
12.9% Zn, 1.58% Cu, 1.16% Pb and 15.6 g/t Ag). Hydrothermal alteration is characterized by Nadepletion, enrichment in
Mg, K, Ba and Hg, and high Ba/Sr, Hg/Na2O, AI and CCPI values. SWIR analysis of white mica records a shift to more phen
gitic compositions (>2210 nm) in the alteration zone. These alteration signatures are characteristic of hydrothermal alter
ation associated with VMS mineralization and are similar to alteration zones at other VMS deposits in central Newfoundland
(e.g., Lemarchant and Boundary deposits). The metal content and host lithologies at Rusty Trickle are typical of bimodal mafic
VMS deposits.

Other VMSstyle mineral occurrences in the Kettle Pond Formation include the Glover Island North and Glover Island
East showings. These showings consist of thin (<2 m) massive to semimassive sulphide units interbedded with altered felsic
to mafic tuffs and minor black shales. These sulphide occurrences have low, but anomalous, basemetal and silver contents
and are not associated with intense hydrothermal alteration as observed at Rusty Trickle.

INTRODUCTION

Glover Island is a large (39 x 5 km) island situated at

the southern end of Grand Lake in western Newfoundland,

approximately 30 km southeast of Corner Brook. It is pre

dominantly underlain by a sequence of Cambrian to

Ordovician ophiolitic rocks and associated cover rocks

(Knapp, 1982; Cawood and van Gool, 1998; Szybinski et
al., 2006), which formed in a narrow tract of ocean volcanic

arcs between the Laurentian continental margin and the

Dashwoods microcontinent (Waldron and van Staal, 2001;

van Staal et al., 2007). These rocks are inferred to represent

the southern extension of the Baie Verte Oceanic Tract

(BVOT) of the Baie Verte Peninsula (van Staal et al., 2007).

The BVOT is host to numerous economic VMS occur

rences, including the Rambler Ming Mine (M&I resources

of 23.4 Mt at 1.64% Cu, 0.32 g/t Au and 2.52 g/t Ag as of

December 2017, Rambler Metals and Mining Ltd.), as well

as past producing mines at Tilt Cove, Rambler and Betts

Cove. However, previous studies on Glover Island have
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focused on the potential for orogenic gold mineralization

(Barbour et al., 2012; Conliffe, 2021). Basemetal occur

rences were reported in some of these studies, but the poten

tial of Glover Island to host significant VMSstyle base

metal deposits is underexplored.

The current study focusses on the VMS potential of the

Kettle Pond Formation in central Glover Island (Figure 1),

which forms part of a broader study investigating the min

eral potential of the Glover Island and Grand Lake area.

Central Glover Island has been covered by a number of

recent highresolution geophysical (magnetic, EM) surveys

(Basha et al., 2001; Ingram et al., 2009), which have identi

fied a number of geophysical anomalies that correspond

with known VMSstyle occurrences (Figure 2). This study

includes detailed descriptions of these occurrences based on

field mapping, relogging of historical drillcore, petrography,

lithogeochemical data of outcrop and drillcore samples, and

short wavelength infrared (SWIR) data collected during

fieldwork in 2019 and 2021. These data are evaluated and

discussed in the context of known VMSstyle mineralization

systems elsewhere in Newfoundland and globally, and this

research will aid in future mineral exploration surveys on

Glover Island and other VMSprospective belts in

Newfoundland. 

GEOLOGICAL SETTING

Glover Island is located on the boundary between the

Humber and Dunnage zones of the Newfoundland

Appalachians (Williams, 1979), which are separated by the

Baie Verte Brompton Line–Cabot Fault Zone (BCZ), a

major crustalscale lithotectonic boundary in the Canadian

Appalachians (Williams and St. Julien, 1982; Brem, 2007).

Rocks of the Humber Zone are restricted to the west coast of

the Island (Figure 1). They form part of the Corner Brook

Lake Block (CBLB) and consist of strongly deformed

schists of the South Brook Formation (Knapp, 1982;

Cawood and van Gool, 1998) overlying basement gneisses

of the Corner Brook Lake Complex (~1.5 Ga, Cawood et al.,
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Figure 1. Geological map of the Glover Island and Grand Lake area, compiled from published geological maps (Whalen and
Currie, 1988; Whalen, 1993; Cawood and van Gool, 1998; Szybinski et al., 2006) and detailed geological maps in industry
assessment reports (Coates et al., 1992; Barbour et al., 2012).
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Figure 2. Geological and geophysical maps of the Glover Island showing EM anomalies associated with known massive sul
phide occurrences (see text for details). A) Simplified geology map, legend as in Figure 1; B) Aeromagnetic data (first vertical
derivative) from the Glover Island area (data from Basha and Frew, 2001); C) DIGHEMV frequencydomain EM survey (data
from Basha and Frew, 2001); D) Versatile Time Domain Electromagnetic (VTEM) survey (data from Ingram et al., 2009).
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1996). The CBLB is interpreted to represent an allochtho

nous terrane transported to its current location by significant

(>400 km) orogenparallel strike‒slip motion after the

Taconic Orogeny (Brem, 2007; Lin et al., 2013), or a base

ment domain on the distal margin of eastern Laurentia

(Hodgin et al., 2021).

Rocks to the east of the BCZ form part of the Notre

Dame Subzone of the Dunnage Zone, a series of continental

and oceanic arcs, backarc basins and ophiolites of peri

Laurentian affinities (van Staal et al., 2007). On Glover

Island, a sequence of ophiolite rocks known as the Grand

Lake Complex is structurally overlain by oceanic to back

arc volcanic, volcaniclastic and sedimentary successions

collectively grouped together as the Glover Group (Knapp,

1982; Cawood and van Gool, 1998; Szybinski et al., 2006).

These rocks have been correlated with ophiolitic and asso

ciated volcanic and sedimentary cover rocks of the BVOT

on the Baie Verte Peninsula, and together are interpreted to

have formed in a narrow tract of ocean volcanic arcs

between the Laurentian continental margin and the

Dashwoods microcontinent (Waldron and van Staal, 2001;

van Staal et al., 2007).

The Cambrian to Early Ordovician Grand Lake

Complex on Glover Island consists of a lower sequence of

altered ultramafic units overlain by a series of massive to

layered gabbros. The upper part of the gabbro sequence is

intruded by numerous small trondhjemite bodies, dated by

Cawood et al. (1996) at 490 ± 4 Ma (U–Pb zircon). This

portion of the Grand Lake Complex is interpreted to repre

sent the base of an ophiolite complex (Knapp, 1982;

Cawood and van Gool, 1998). A sequence of relatively

unaltered and undeformed sheeted dykes, pillow lavas and

gabbros occur on the southern end of Glover Island and in

the southwestern Grand Lake area, and these are intruded

by large trondhjemite and tonalite plutons east of Grand

Lake (Figure 1; Szybinski et al., 2006). Geochemical analy

sis suggests that this sequence represents the upper portion

of the Grand Lake Complex on Glover Island (Knapp,

1982).

The Early Ordovician Glover Group is in fault contact

with the Grand Lake Complex, but is interpreted to repre

sent the cover sequence to the ophiolite (Knapp, 1982;

Szybinski et al., 1995, 2006; Cawood and van Gool, 1998).

The Kettle Pond Formation represents the stratigraphically

lowest part of the Glover Group, and is divided into a lower

conglomerate unit (Basal Conglomerate Member) overlain

by felsic to mafic volcanic rocks (Szybinski et al., 1995).

Numerous plagioclaseporphyritic mafic sills and dykes

intrude the Kettle Pond Formation. The upper contact of the

Kettle Pond Formation is marked by the disappearance of

felsic volcanic units (Szybinski et al., 1995; Barbour et al.,

2012). The Tuckamore Formation overlies the Kettle Pond

Formation and is composed of a thick (<5 km) sequence of

dominantly pillow basalts and plagioclaseporphyritic

flows, with minor red to purple shales, iron formations, mas

sive sulphides and interstitial jasper (Knapp, 1982;

Szybinski et al., 2006). The uppermost unit in the Glover

Group is the Corner Pond Formation, which occurs to the

east of Grant Lake. It is composed predominantly of felsic

epiclastic (graded conglomerate to finegrained siltstone)

units with minor rhyolites, pillow basalts, shales, chert, and

carbonate rocks. A black shale near the top of the Corner

Pond Formation contains Laurentian graptolites spanning

the P. fruticosus and D. bifidus biozones (Williams, 1989),

indicating a midFloian (477.7 to 470 Ma) age (Loydell,

2012).

The Glover Group is intruded by a number of latestage

intrusions, including the Glover Island Granodiorite (440 ±

2 Ma; Cawood et al., 1996) on the northeastern side of

Glover Island and by gabbros and diorites that are included

in the 435 ± 1 Ma Rainy Lake Complex (Whalen et al.,
2006). These intrusions display arclike geochemical signa

tures (Whalen et al., 2006), and are possibly related to the

final stages of northwestdirected subduction of Ganderia

below the Notre Dame Subzone (Whalen et al., 2006). On

the northern end of Glover Island, Carboniferous sedimen

tary rocks of the Deer Lake Basin unconformably overlie the

Glover Group (Cawood and van Gool, 1998).

Rocks of the Grand Lake Complex and the Glover

Group have experienced regional greenschistfacies meta

morphism (Knapp, 1982; Cawood and van Gool, 1998).

Four main phases of deformation have been identified, rep

resenting a complex deformational history from the

Ordovician to the Carboniferous (Knapp, 1982; Szybinski et
al., 1995, 2006; Cawood and van Gool, 1998; Barbour et al.,
2012). D1 deformation is responsible for a regionally pene

trative S1 fabric with common mylonitization, which is

strongly developed in the Grand Lake Complex and Kettle

Pond Formation on Glover Island, but decreases in intensity

to the east (Barbour et al., 2012). S1 fabrics were subse

quently folded during D2 and D3 deformation, resulting in

spectacular mesoscopic folds with chevron, cuspatelobate

and ptygmatic styles developed parasitic on decametre to

kilometrescale folds (Barbour et al., 2012). D4 deformation

consists of highangle faults, which formed in an extension

al environment, potentially during the Carboniferous move

ment on the BCZ (Cawood and van Gool, 1998).

PREVIOUS WORK

The first geological mapping in the Glover Island‒

Grand Lake area was completed by Riley (1957) as part of

a regionalscale mapping project of the Red Indian Lake
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area. Knapp (1982) completed a Ph.D. thesis on the Glover

Island‒Grand Lake area, and identified and described most

of the map units shown in Figure 1. More detailed regional

mapping by the Geological Survey of Canada resulted in the

publication of geological maps of NTS map areas 12A/12

and 13 (see Whalen and Currie, 1988; Whalen, 1993;

Cawood and van Gool, 1998; Szybinski et al., 2006).

Mineral exploration on Glover Island has mostly

focused on the gold potential of the area (summarized by

Barbour et al., 2012; Conliffe, 2021). Gold mineralization

was first reported in the mid1980s, and subsequent explo

ration led to the discovery of 15 gold occurrences in the

Tuckamore Formation close to the contact with the Grand

Lake Complex, with a strike length of >7 km (Barbour et al.,
2012). Exploration by various companies from 1985 to 2012

included airborne and ground geophysics, prospecting, soil

sampling, geological mapping, trenching and diamond

drilling (summarized by Barbour et al., 2012). Based on

this, Puritch and Barry (2017) reported a NI 43101

Indicated Mineral Resource for the Lunch Pond South East

zone of 58 200 oz. gold (1.03 Mt at 1.76 g/t Au) with addi

tional Inferred Mineral Resources of 120 600 oz. gold (2.08

Mt at 1.81 g/t Au).

Exploration for VMSstyle basemetal deposits on

Glover Island began in the late 1970s, based on regional

exploration by Hudson’s Bay Oil and Gas Limited (HBOG).

This work included geological mapping, soil geochemistry

and airborne and ground geophysical surveys on Glover

Island (Dean, 1977; Lassila, 1979a, b), and was successful

in identifying a number of EM anomalies that were subse

quently tested by 10 shallow (<85 m) diamonddrill holes in

three locations (Rusty Trickle, Glover Island East and

Glover Island North). Although drillholes in all three loca

tions intercepted altered mafic and felsic volcanic rocks

with some stringer and massive sulphide mineralization,

basemetal values from assayed intervals were low (<200

ppm Cu + Zn) and further work was not recommended

(Lassila, 1979a, b). However, detailed relogging and resam

pling of select drillholes in 1983 identified intervals of

altered felsic and mafic tuffs with elevated Zn (up to 681

ppm), Ag (up to 30.2 g/t) and Ba (up to 11 400 ppm), result

ing in a recommendation for further exploration and drilling

on these targets (McHale and Tuach, 1983).

New Island Minerals Limited carried out prospecting,

trenching, soil geochemical surveys and VLFEM magne

tometer surveys over the Glover Island North occurrence

(French, 1995; Ralph and French, 2002). Two massive to

semimassive sulphide occurrences were identified, but

assay results for base metals were low (<1000 ppm com

bined Cu, Zn, Pb). Numerous unsourced massive sulphide

boulders were also found nearby along a small road, with

assay values from float up to 4.7% Cu, 0.45% Zn and 58.4

g/t Ag (French, 1995).

In 1998, a new VMSstyle basemetal occurrence was

reported from the Rusty Trickle area (Barbour and Hodge,

1998). Between 1998 and 2000, geological mapping, soil

geochemistry and ground geophysics (magnetics, IP, EM)

identified a large zone of strongly silica‒sericitealtered fel

sic tuffs with a minimum dimension of 150 x 550 m (Basha

et al., 2001). A number of grab samples from this anomalous

zone returned values ranging from 0.5 to 12.9% Zn, 0.2 to

1.58% Cu, 0.15 to 1.16% Pb and 5.0 to 15.6 g/t Ag (Basha

et al., 2001). 

A number of highresolution airborne geophysical sur

veys have been flown over Glover Island as part of regional

exploration programs (Basha et al., 2001; Ingram et al.,
2009). Although these exploration programs were primarily

focused on gold mineralization, they identified a number of

anomalies coincident with known zones of VMS mineral

ization on Glover Island (Figure 2). 

GEOPHYSICAL SURVEYS

Volcanogenic massive sulphide deposits are commonly

characterized by a strong geophysical signature, with high

resolution magnetic and electromagnetic (EM) data com

monly used during exploration for these deposits types

(Morgan, 2012). Magnetic surveys are useful in determining

the broad geological framework of an area, as well as iden

tifying structural features or magnetitedestructive alteration

typically associated with the footwall of VMS deposits

(Morgan, 2012). Electromagnetic surveys can identify

bedrock anomalies related to VMS deposits, due to the high

conductivity of sulphide minerals (pyrite, pyrrhotite, chal

copyrite) relative to typical host rocks. However, care must

be taken in interpreting these anomalies, as they can be

indistinguishable from graphitic sedimentary rocks, or non

economic VMS deposits (Morgan, 2012). In addition, spha

leriterich, subseafloor replacementstyle mineralization

may not be associated with significant EM anomalies. 

Regional aeromagnetic and EM maps generated from

surveys flown over Glover Island in 2000 and 2008 are

shown in Figure 2. Aeromagnetic data (Figure 2B) corre

lates well with bedrock geology maps (Figure 2A), high

lighting the highly magnetic ultramafic rocks of the Grand

Lake Complex and the change in strike of the Glover Group

volcanic rocks from northeast trending in central Glover

Island to southeast trending in the Rusty Trickle area. In

2000, a DIGHEMV frequencydomain EM survey was flown

over Glover Island, which identified a number of large EM
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anomalies that were interpreted to represent bedrock anom

alies (Figure 2C; Basha et al., 2001). A helicopterborne

Versatile Time Domain Electromagnetic (VTEM) survey

was flown in 2008 (Ingram et al., 2009). Timedomain sur

veys generally transmit a much greater EM signal into the

ground, and therefore are able to attain greater depthpene

tration than frequency domain surveys. In contrast to the

broad anomalies identified in the frequency domain survey

(Figure 2C), the VTEM survey identified a number of small

er, more discrete anomalies in the Kettle Pond Formation of

the Glover Group (Figure 2D), which are likely related to

bedrock conductors. Although these anomalies correlate

with known areas of VMSstyle mineralization and alter

ation on Glover Island, no followup work has been done in

these areas to date. 

GEOLOGICAL CHARACTERISTICS OF

VMSSTYLE OCCURRENCES ON

GLOVER ISLAND

All known VMSstyle occurrences on Glover Island are

hosted in the Kettle Pond Formation, the lowermost member

of the Glover Group. The Basal Conglomerate Member

forms the lower part of the Kettle Pond Formation that out

crops extensively in central Glover Island (Figure 1). It con

sists of strongly deformed, clastsupported polymictic peb

ble to cobble conglomerate and matrixrich polymictic con

glomerates that grade upward into arenaceous schists with

rare clasts (Barbour et al., 2012; Plate 1A).

6

Plate 1. Representative photographs from the Kettle Pond Formation. A) Strongly altered and deformed matrixrich polymic
tic conglomerate from the Basal Conglomerate Member (drillhole LPN2 @ 32.2 m); B) Interbedded mafic tuffs (left) and
strongly altered felsic tuffs (right) exposed in trenched outcrop at the Jacomar showing; C) Finegrained chloritealtered
mafic tuff (drillhole LPSE1157 @ 39.4 m); D) Typical moderately deformed and weakly altered QFP rhyolite (drillhole
LPSE1157 @ 82.3 m).

A B

C D



J. CONLIFFE

Above the Basal Conglomerate Member, the Kettle

Pond Formation consists of interlayered, finegrained mafic

and felsic tuffs and volcanic rocks (Plate 1B) interspersed

with thicker units of mafic volcanic rocks (Szybinski et al.,
1995; Barbour et al., 2012). The mafic tuffs and volcanic

rocks are strongly deformed and commonly form chlorite

rich schists (Plate 1C). Felsic rocks range from aphanitic fel

sic tuffs to quartzfeldspar porphyritic (QFP) rhyolites, and

range in thickness from <1 to >30 m. The QFP rhyolites are

host to orogenic gold mineralization on Glover Island,

which is associated with intense albite–carbonate alteration

that obscures many primary volcanic features (Conliffe,

2021). A thick (>100 m) sequence of distinctive QFP rhyo

lites occurs at the southern end of Glover Island (Plate 1D).

This unit has been identified in drilling at the Lunch Pond

South East gold deposit (Barbour et al., 2012), as well as at

the Rusty Trickle showing. The volcanic rocks are interlay

ered with minor, thin (<2 m) massive sulphide, black shale,

chert, iron formation, and reddishgrey hematitic chert units

(Szybinski et al., 1995). These are interpreted as synvol

canic exhalites, which are commonly associated with VMS

deposits, and indicate seafloor hydrothermal activity (Galley

et al., 2007; Slack, 2012).

RUSTY TRICKLE SHOWING

The Rusty Trickle showing represents the largest

known VMSstyle occurrence on Glover Island, and coin

cides with a number of discrete EM anomalies (Figure 3A,

B). The mineralized zone consists of stringerstyle

Zn–Cu–Ag mineralization hosted in a 200–250mthick,

northnorthwesttrending, steeply dipping sequence of QFP

rhyolites. These are conformably overlain by a sequence of

finegrained mafic tuffs and thin (<3 m) graphitic shales to

the east, underlain by mafic tuffs and mediumgrained gab

bro sills to the west (Basha et al., 2001).

The QFP rhyolites comprise abundant large (up to 3

mm) quartz and Kfeldspar phenocrysts in a finegrained

matrix of quartz, feldspar, muscovite and chlorite (Plates 2A

and 3A, B). Alteration is variable, ranging from strong sili

ca‒sericite ± chlorite ± carbonate alteration in the mineral

ized zone to moderate silica‒sericite alteration more distal

to mineralization. Latestage Fecarbonate alteration has

also been recorded overprinting earlier alteration in drillcore

(Plate 2B). The QFP rhyolites are moderately to strongly

deformed and have a welldeveloped S1 schistocity parallel

to bedding, and tight isoclinal folding has been recorded in

some areas (Basha et al., 2001).

Outcropping sulphide mineralization at the Rusty

Trickle showing occurs along a small brook, where mineral

ization has been traced for >80 m. Mineralization occurs as

up to 20% stringerstyle sulphide mineralization in strongly

sericite–silica–chlorite–carbonatealtered QFP rhyolites,

with sulphides composed of variable amounts of sphalerite,

pyrite, chalcopyrite and galena (Plates 2C and 3C–E). These

stringers are commonly deformed and recrystallized, and are

aligned parallel to the regional northnorthwesttrending S1

schistosity. Grab samples from the mineralized trend

assayed from 0.5 to 12.9% Zn, 0.2 to 1.58% Cu, 0.15 to

1.16% Pb and 5.0 to 15.6 g/t Ag (Basha et al., 2001). A thin

(>50 cm) exhalative mudstone layer is interbedded with the

mineralization exposed in the brook. This mudstone is fine

ly laminated, brown to black, graphiterich and carbona

ceous, with abundant euhedral pyrite and trace chalcopyrite

and sphalerite (Plates 2D and 3F). The sulphides occur par

allel to bedding and are commonly associated with fibrous

barite crystals. This mudstone has elevated Zn, Ag and Ba

contents, with up to 0.7% Zn, 5.7 g/t Ag and >1% Ba (Basha

et al., 2001).

Similar stringerstyle mineralization has been recorded

in outcrops up to 400 m southeast of the main mineralized

trend, with ~10% sphalerite–chalcopyrite stringers and

assay values up to 2.85% Zn and 0.38% Cu (Basha et al.,
2001). Dean (1977) recorded mineralized rhyolites from the

southern shore of Glover Island, ~800 m southeast of the

main occurrence, which assayed 0.4% Zn, 0.47% Pb, 0.11%

Cu and 3.7 g/t Ag. Hudson’s Bay Oil and Gas Limited also

carried out diamond drilling ~300 m north of the main

occurrence (Lassila, 1979a). Drillhole BR378 terminated

at 47.6 m in a sequence of strongly altered QFP rhyolites

with 5–10% stringerstyle pyrite and sphalerite mineraliza

tion (McHale and Tuach, 1983), with 30.2 g/t Ag over 1.5 m,

1.08% Ba over 3.26 m and 681 ppm Zn over 4.6 m (Lassila,

1979a; McHale and Tuach, 1983). Overall, these exploration

results indicate that mineralized QFP rhyolites can be traced

along strike at Rusty Trickle for more than 1 km.

GLOVER ISLAND NORTH SHOWING

Numerous thin (<2 m) massive sulphide units have

been reported from outcrop and drillcore in the Glover

Island North area (Figure 3C). The main Glover Island

North showing occurs in outcrop in a small stream (Plate

4A) and traced along strike for at least 20 m northeast dur

ing trenching (Lassila, 1979b; French, 1995). Mineralization

consists of semimassive sulphides with up to 50% dissem

inated pyrite in strongly altered mafic and felsic tuffs (Plate

4B). Assay values in grab samples are generally low with a

maximum of 580 ppm Zn, 397 ppm Cu and 1.1 g/t Ag

(Collins, 1987). A large number of unsourced massive sul

phide boulders are located over >1 km along a road to the

north of the main showing (French, 1995). Although most of

these boulders have low basemetal values (<0.1% Cu + Zn

+ Pb), one boulder assayed 4.7% Cu, 0.45% Zn and 58.4 g/t

Ag (French, 1995).
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Figure 3. Detailed geological
maps and electromagnetic data
from individual occurrences on
Glover Island, showing sample
locations and historical drillhole
collars. A) Detailed geological
map of the Rusty Trickle area; B)
VTEM survey data from the Rusty
Trickle area (from Ingram et al.,
2009) showing discrete EM
anomalies; C) Detailed geologi
cal map of the Glover Island
North area, showing location of
massive sulphide outcrop and
mineralized boulder train; D)
DIGHEMV frequencydomain
EM survey from the Glover
Island North area (from Basha
and Frew, 2001) showing numer
ous EM anomalies; E) Detailed
geological map of the Glover
Island East area, showing loca
tion of massive sulphide outcrop;
F) VTEM survey data from the
Glover Island East area (from
Ingram et al., 2009) showing dis
crete EM anomalies.
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In 1979, HBOG completed five shallow drillholes (total

306.3 m) on a number of EM anomalies in the Glover North

area (Lassila, 1979b). These drillholes intersected interbed

ded mafic and felsic tuffs of the Kettle Pond Formation.

Thin (up to 1.7 m), massive to semimassive sulphide units

are interbedded with felsic tuff units (Plate 4C), and minor

chert and graphitic shale. The massive sulphides consist pre

dominantly of pyrrhotite, with minor euhedral and brecciat

ed pyrite overgrowing pyrrhotite (Plate 4D), and trace spha

lerite, chalcopyrite and magnetite (Plate 4E). Lassila

(1979b) reported low (<100 ppm) Cu and Zn values in the

massive sulphide units. However, resampling indicates that

many of the massive sulphides and interbedded felsic tuff

and cherty shale units have elevated Zn (up to 1356 ppm),

Cu (up to 508 ppm), Ag (up to 3.2 g/t) and Ba (up to 5796

ppm). All units are moderately to strongly deformed, and the

massive sulphides are commonly brecciated and contain

deformed, rounded to elongate clasts of the surrounding

lithologies (Plate 4F). These fragments are interpreted to

represent adjacent lithologies, which were incorporated into

the sulphides due to differential brittle and ductile deforma

tion during postdepositional tectonic movement

(Durchbewegung textures; Marshal and Gilligan, 1989).

GLOVER ISLAND EAST SHOWING

The Glover Island East showing outcrops in a brook on

the eastern side of Glover Island and is coincident with a

large EM anomaly in the Kettle Pond Formation (Figure 3E,

F). Mineralization consists of a series of massive to semi

massive sulphide beds (0.3 to 2.2 m thick) interbedded with

mafic to felsic tuffs and graphitic shales (Plate 5A, B), all

9

Plate 2. Representative photographs of lithologies from the Rusty Trickle area. A) Moderately altered, unmineralized QFP
rhyolite; B) Strongly altered QFP rhyolite with overprinting Fecarbonate alteration (drillhole BR378 @ 39.7 m); C)
Mineralized QFP rhyolite with strong chlorite‒sericite alteration and stringers of sphalerite and pyrite parallel to schistoci
ty; D) Black graphitic shale with disseminated pyrite. 
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10

Plate 3. Representative photomicrographs from the Rusty Trickle area. A) Typical QFP rhyolite with large feldspar and quartz
phenocrysts, strong S1 schistocity and moderate sericite alteration (planepolarized light, sample 21JC009A01); B) Same
view as A), in crosspolarized light; C) Mineralized QFP with strong chlorite and sericite alteration (planepolarized light,
sample 21JC016A01); D) Mineralized QFP with sphalerite (sph) and chalcopyrite (cpy) in stringers parallel to S1 schistoc
ity (reflected light, sample 19JC034A02); E) Sphalerite (sph), chalcopyrite (cpy) and pyrite (py) in mineralized QFP rhyolite
(reflected light, sample 21JC016A02); F) Black shale with layers of pyrite and barite parallel to bedding (planepolarized
light, sample 21JC017A01).
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11

Plate 4. Representative photographs and photomicrographs from the Glover Island North area. A) Semimassive sulphide out
crop in brook; B) Semimassive sulphide with pyrite and minor pyrrhotite in shale matrix; C) Interbedded altered felsic tuffs
and semimassive sulphides (drillhole RL223178 at 56.6 m); D) Euhedral pyrite (py) in massive pyrrhotite (po), with trace
chalcopyrite (cpy) (reflected light, drillhole RL223178 at 74.8 m); E) Pyrrhotite (po), chalcopyrite (cpy) and sphalerite (sph)
in semimassive sulphide layer (reflected light, drillhole RL223278 at 36 m); F) Massive sulphide with deformed elongate
shale clasts forming Durchbewegung textures (planepolarized light,, drillhole RL223178 at 36.6 m). 
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cut by plagioclase phyric mafic dykes (Lassila, 1979a).

Channel samples from across the massive sulphide beds are

anomalous in Zn, Pb and Ag, with assay values up to 1300

ppm Zn, 800 ppm Pb and 11 g/t Ag over 2.2 m (French and

Wilton, 2005). Massive sulphides consist predominantly of

finegrained pyrrhotite overgrown by large euhedral pyrite

crystals (Plate 5C), with trace chalcopyrite, galena and spha

lerite grains (Plate 5D). The massive sulphides also include

numerous elongate to rounded shale and silicate fragments

(Plate 5B), which generally align parallel to the regional S1

fabric and represent Durchbewegung textures formed during

regional deformation (Marshal and Gilligan, 1989). 

Two diamonddrill holes have targeted VMSstyle min

eralization to the south of the main occurrence (Figure 3E;

Lassila, 1979a). Both drillholes intersected a sequence of

mafic volcanic rocks with lesser shales and silicic tuffs. A

number of thin (>1 m) massive to semimassive sulphide

horizons are interbedded with shale and felsic tuff units,

with low basemetal values (<200 ppm Cu + Zn; McHale

and Tuach, 1983). However, a sequence of interbedded sili

cic tuffs, graphitic shales and semimassive sulphides in

drillhole BR678 contains elevated Ba, with assays up to

1.14% Ba over 1.5 m (McHale and Tuach, 1983).

LITHOGEOCHEMISTRY

METHODOLOGY

Samples for lithogeochemical analysis were collected

from the three known VMS occurrences (Rusty Trickle,

Glover Island North and Glover Island East) in the Kettle

12

Plate 5. Representative photographs and photomicrographs from the Glover Island East area. A) Massive sulphide outcrop
interbedded with intensely altered shale and tuff; B) Massive sulphide with deformed shale clasts forming Durchbewegung
textures; C) Euhedral pyrite (py) in massive pyrrhotite (po), with trace chalcopyrite (reflected light, sample 19JC029C03); D)
Massive sulphide with chalcopyrite (cpy) and sphalerite (sph) inclusions in euhedral pyrite (py) (reflected light, sample
19JC029C03). 
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Pond Formation, and are representative of all main rock

types present. In total, 103 samples were analyzed, includ

ing 41 outcrop samples, 11 samples of massive sulphide

boulders from the Glover Island North area, and 51 drillcore

samples from the Government of Newfoundland and

Labrador Core Storage facilities in Pasadena and

Springdale. The geochemical data from these samples will

be published later in an upcoming Open File report.

Samples were prepared at the GSNL geochemical labo

ratory in St. John’s, where majorelement, traceelement and

rareearthelement (REE)analyses were carried out; the

analytical methods are described in Finch et al. (2018).

Additional analyses for trace elements including Au, Cd, Sb

and As were conducted on selected samples by Maxxam

Analytics (now Bureau Veritas) using Instrumental Neutron

Activation Analysis (INAA). Analytical duplicates were

inserted at a frequency of one in 20, with the duplicates

selected at random. In addition, a selection of reference stan

dards was analyzed, also at a frequency of one in 20.

IGNEOUS LITHOGEOCHEMISTRY

Geochemical data was collected for 57 volcanic rock

samples from the Kettle Pond Formation, including 25

mafic tuff samples, 11 aphanitic felsic tuffs and 21 QFP rhy

olites. All volcanic rock units sampled for lithogeochemical

analysis have been variably affected by regional metamor

phism/alteration and/or hydrothermal alteration (see below).

This suggests that most major elements (except Al, Ti) and

lowfieldstrength elements (LFSE; e.g., Cs, Rb, Ba, Sr) are

likely to have been mobile during alteration, and the appli

cation of these elements for wholerock classification and

deducing magma affinity will be compromised (MacLean,

1988; MacLean and Barrett, 1993). In contrast, elements

thought to be immobile in hydrothermal fluids, such as Al,

Ti, highfieldstrength elements (HFSE; e.g., Zr, Y, Nb) and

the REEs (e.g., MacLean, 1988; MacLean and Barrett,

1993) can be used to infer the primary magmatic and tec

tonic affinities of igneous rock types.

Mafic tuffs are subalkaline and plot in the basaltic field

on the Zr/TiO2 vs. Nb/Y plot (Figure 4A). They have tholei

itic to transitional affinities on the Th/Yb vs. Zr/Y magmat

ic affinity diagram of Ross and Bédard (2009). Although

mafic tuffs have similar textures and mineralogy, they can

be divided into three types based on their immobileelement

geochemistry. Type 1 mafic tuffs are characterized by strong

negative Nb anomalies and weakly negative Ti anomalies,

and have flat to slightly lightrareearthelement (LREE)

enriched profiles (Figure 5A), and plot within the volcanic

arc basalt field in tectonic discrimination diagrams (Figure

6). Type 2 mafic tuffs have less pronounced negative Nb

anomalies, are relatively depleted in Th compared to Type 1

mafic tuffs, and have flat REE profiles (Figure 5B). These

tuffs have geochemical characteristics of volcanicarc

basalts, backarc basin basalts and normal midocean ridge

basalts (NMORB) on extended traceelement and tectonic

discrimination diagrams (Figures 5B and 6). However, there

is significant overlap between the geochemical characteris

tics of Type 1 and 2 mafic tuffs. Type 3 mafic tuffs lack a Nb

anomaly, display flat to LREEenriched REE profiles

(Figure 5C) and resemble enriched midocean ridge basalts

(EMORB; Piercey, 2011). These tuffs plot close to the fields

of NMORB to EMORB basalts on tectonic discrimination

diagrams (Figure 6).

Felsic rocks in the Kettle Pond Formation all display

similar geochemical characteristics with high SiO2 (73.2 ±

6.2% SiO2) and low TiO2 (0.22 ± 0.07% TiO2) contents, and

have tholeiitic to transitional affinities (Figure 4C; Ross and

Bédard, 2009). Quartzfeldspar porphyritic rhyolites plot in

the rhyolitic/dacitic field on the Zr/TiO2–Nb/Y plot, where

as aphanitic felsic tuffs have variable Zr/Ti ratios, which

indicate variable degrees of detrital contamination in these

tuffs (Figure 4A). Extended traceelement plots show that

these rocks have strong negative Nb, P and Ti anomalies

(Figure 7), and QFP rhyolites also show slight LREE

enrichment with flat heavyrareearth elements (HREE) pat

terns and variable Eu anomalies (Figure 7). 

The low Zr content (<185 ppm), Nb content (<5.2 ppm)

and chondrite normalized La/Yb ratio (La/Ybcn generally

<2) of felsic volcanic rocks are consistent with formation

from postArchean juvenile crust (Figure 8A; Piercey, 2009,

2011). On petrochemical affinity diagrams for felsic vol

canic rocks, the samples plot in the field for Type IV rhyo

lites and to a lesser extent Type FIIIa rhyolites as defined by

Lesher et al. (1986) and Hart et al. (2004; Figure 8B, C). 

On the Nb vs. Y plot, the samples cluster close to the

boundary between arctype and oceanridge type felsic

rocks (Figure 4B), which may indicate mantle or mafictype

(Mtype) volcanic arc rocks derived from a mafic substrate

(Piercey, 2011). This suggests that these felsic volcanic

rocks formed due to shallow (<10 km), lowpressure melt

ing of depleted tholeiitic basalt (Hart et al., 2004). This

melting likely occurred during rifting in an intraoceanic

islandarc setting on oceanic crust (Hart et al., 2004), and

suggests that they formed in an environment favourable for

VMS formation (Hart et al., 2004; Piercey, 2009, 2011).

SEDIMENT LITHOGEOCHEMISTRY

Sedimentary samples collected for geochemical analy

sis include four variably altered graphitic shales interbedded

with, or within 5 m from, massive sulphide horizons or min

eralized QFP rhyolites (proximal), one graphitic shale

13
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interbedded with altered felsic tuff (intermediate), and five

mudstones interbedded with mafic to felsic tuffs with no

spatial relationship to mineralization (distal). 

The postArchean Australian Shale (PAAS) normalized

REE signatures of shales and mudstones are shown in

Figure 9. Proximal mudstones are characterized by LREE

depleted signatures (La/Yb PAAS of 0.16 to 0.30), with pos

itive PAAS normalized Eu anomalies (Eu/Eu* PAAS of 1.49

to 2.54) and small negative PAAS normalized Ce anomalies

(Ce/Ce* PAAS of 0.76 to 0.90) (Figure 9A, C). The inter

mediate graphitic shale has a similar REE profile (Figure

9A), with a slightly more pronounced negative Ce anomaly

but no positive Eu anomaly. The distal mudstones have vari

able LREE depletion (La/Yb PAAS of 0.11 to 0.54), but

have no Ce anomalies and no, to weakly positive, Eu anom

alies (Figure 9B, C). 

The positive Eu anomalies in the proximal shales are

consistent with precipitation of hydrothermal exhalites from

high temperature fluids (>250°C) close to a volcanic vent

(Lode et al., 2015; Piercey et al., 2018). The negative Ce

14

Figure 4. Immobileelement plots for igneous rocks from the Kettle Pond Formation. A) Zr/TiO2 vs. Nb/Y rock discrimination
diagram of Pearce (1996), modified after Winchester and Floyd (1977); B) NbY diagram showing Mtype affinities of felsic
rocks (modified from Piercey, 2009). C) Th/Yb vs. Zr/Y magmatic affinity diagram of Ross and Bédard (2009), illustrating the
tholeiitic to transitional affinity of igneous rocks.
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anomalies in these samples provide a proxy for redox con

ditions, suggesting that hydrothermal fluids were vented in

a buoyant plume into an oxygenated water column (Lode et
al., 2015; Piercey et al., 2018). This is supported by the ele

vated Ba content, indicative of barium sulphate (barite), of

some proximal shales (up to 21 775 ppm Ba; Figure 9D).

The lack of positive Eu and negative Ce anomalies in the

distal mudstones suggest that they were deposited away

from the active vent sites and/or have been significantly

diluted by detrital material. 

METAL ASSOCIATIONS

Assay data from mineralized samples in the Rusty

Trickle, Glover Island North and Glover Island East areas

are shown in Figure 10. Mineralized samples were classified

as those that contain >200 ppm combined Zn, Cu and Pb,

which included 59 of the 103 samples analyzed during this

study. In addition, assay data from 22 samples of mineral

ized QFP rhyolites and graphitic shale collected in the Rusty

Trickle area by Basha et al. (2001) were included.

Samples from the Rusty Trickle area have elevated Zn,

Cu and Ag contents, with 39% of mineralized samples hav

ing >0.5% Zn + Cu and up to 15.6 g/t Ag. These samples

show a strong correlation between Zn and Cu contents

(Pearson correlation coefficient value of 0.81) and are rela

tively enriched in Zn with Zn:Cu ratios generally >5 (Figure

10A). Samples from elsewhere on Glover Island have lower

total basemetal and Ag contents, with a maximum of 0.17%

Zn + Cu and 3.2 g/t Ag. No strong correlation between Zn

and Cu contents is observed (Pearson correlation coefficient

value of 0.44), but these samples generally have lower

Zn:Cu ratios compared to the Rusty Trickle samples (<5;

Figure 10A). These samples are also relatively enriched in

Co and Ni compared to samples from Rusty Trickle (Figure

10C, D).

ALTERATION

Majorelement lithogeochemistry from igneous rocks

has long been recognized as an important tool in identifying

hydrothermal alteration associated with VMS deposits

15

Figure 5. Primitive mantle normalized extended traceele
ment plots for mafic tuffs in the Kettle Pond Formation
(normalizing values from Sun and McDonough, 1989). Also
included are typical primitivemantle normalized values for
islandarc tholeiite (IAT), backarc basin basalt (BABB),
normal midocean ridge basalts (NMORB) and enriched
midocean ridge basalts (EMORB). Data from Sun and
McDonough (1989), Stoltz et al. (1990) and Ewart et al.

(1994).
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(Ishikawa et al., 1976; Spitz and Darling, 1978; Large et al.,
2001; Piercey, 2009). During hydrothermal alteration, most

major elements (except Al, Ti) and LFSE (e.g., Cs, Rb, Ba,

Sr) are likely to have been mobile (MacLean, 1988;

MacLean and Barrett, 1993), and therefore can be used to

identify zones of intense hydrothermal alteration. Similar

studies from known VMS deposits in the Canadian

Appalachians and globally have shown the applicability of

these methods in exploration for these deposit types (e.g.,

Hollis et al., 2014; Buschette and Piercey, 2016; Cloutier

and Piercey, 2020; Sparkes, 2020; Hollis et al., 2021).

Geochemical data from this study have been combined

with previously published exploration data from the Rusty

Trickle showing (Basha et al., 2001) to assess the hydrother

mal alteration of igneous rocks at the Rusty Trickle (Figure

11A, C, E), Glover Island North and Glover Island East

showings (Figure 11B, D, F). The QFP rhyolites from Rusty

16
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Trickle show a wide range of Na2O contents (0.65 to 7.38%

Na2O), with some samples characterized by depleted Na

(<2% Na2O) and high SpitzDarling index values

(Al2O3/Na2O >5; Figure 11A). A variable alteration pattern

is seen when QFP rhyolites from Rusty Trickle are plotted

on an alteration box plot of Ishikawa index values (AI =

100*(MgO+K2O)/(MgO+K2O+CaO+Na2O); Ishikawa et
al., 1976) vs. chlorite–carbonate–pyrite index values (CCPI

= 100*(MgO+FeO)/(MgO+FeO+K2O+Na2O); Large et al.,
2001; Figure 11C). These data show that some QFP rhyo

lites plot in the least altered field for rhyolites, or have low

AI and CCPI values and plot close to the albite node, indi

cating diagenetic albitization (Large et al., 2001). In con

trast, more strongly altered QFP rhyolites plot in hydrother

mally altered field and trend toward the chlorite–pyrite and

sericite nodes (Figure 11C). This is typical of chlorite–

sericite–pyrite alteration commonly seen in the footwall of

VMS deposits (Large et al., 2001) and is recorded close to

mineralization in other VMS alteration systems in central

Newfoundland (Buschette and Piercey, 2016; Cloutier and

Piercey, 2020; Sparkes, 2020). A similar trend is seen on a

plot of AI vs. Advanced Argillic Alteration Index values

(AAAI = (100*SiO2)/(SiO2 + 10MgO + 10CaO + 10Na2O);

Williams and Davidson, 2004). This shows some QFP rhy

olites trending toward the albite node and the more strongly

altered rocks trending toward the muscovite node indicating

robust sericite alteration (Figure 11E). 

The geographical distribution of altered QFP rhyolites

and correlations with known mineralization at Rusty Trickle

is shown in Figure 12. The main mineralized trend is clear

ly seen with strong enrichments in Zn, Cu and Ag (Figure

12A–C). The mineralized zone correlates with depletion in

Na2O (Figure 12D), elevated MgO, K2O and Ba contents

(Figure 12E, F) and high Ba–Sr ratios and AI values (Figure

12G, H). Mineralized samples also have high Hg contents
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Figure 7. Primitive mantle normalized extended trace element and chondritenormalized REE plots for felsic rocks in the
Kettle Pond Formation (normalizing values from Sun and McDonough, 1989).
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(1650 to 2270 ppb) and high Hg/Na2O ratios (349 to 2067).

These signatures are typical of intense hydrothermal alter

ation halos and paleo fluid pathways associated with VMS

deposits (Buschette and Piercey, 2016; Cloutier and Piercey,

2020).

Geochemical data from the Glover Island North and

Glover Island East showings show a much lower degree of

hydrothermal alteration. Most samples plot in, or close to,

the least altered field on a SpitzDarling plot (Figure 11B).

On plots of AI vs. CCPI and AI vs. AAAI, the samples pre

dominantly fall in the least altered to diagenetic alteration

fields, and trend toward albite alteration (Figure 11D, F).

This is consistent with these rocks not undergoing signifi

cant hydrothermal alteration related to VMSmineralization.

A similar trend of increased albite alteration is seen in oro

genic gold deposits on Glover Island (Conliffe, 2021), indi

cating that this albitization may be related to hydrothermal

fluid flow during gold mineralization, instead of being a dia

genetic signature. Two felsic tuffs are depleted in Na (Figure

11B) and plot in the hydrothermally altered fields in an AI

vs. CCPI diagram (Figure 11D). These samples are a Ba

enriched (11 719 ppm Ba) felsic tuff from Glover Island

East and a strongly altered felsic tuff directly below a Zn

and Cu enriched massive sulphide at Glover Island North.

SHORT WAVELENGTH INFRARED

SPECTROSCOPY

METHODOLOGY

Hyperspectral data were acquired using outcrop sam

ples from the Rusty Trickle showing, collected in 2019 and

2021, using visible/infrared reflectance spectrometry

(VIRS) data collected on, and exported from, a TerraSpec®

Pro spectrometer. Two to three measurements were taken on

each sample to record intrasample variations. The

TerraSpec® Pro spectrometer was optimized every 30 min

utes using a white standard reference material to reduce

instrument drift. Spectral data was processed using the

TSGTM Pro software program (see Kerr et al., 2011 for com

plete details). The software facilitates estimation of the rel

ative proportions of the two most abundant mineral phases

within each sample (Min 1 and Min 2) by comparing the

spectra to a spectral library in the TSGTM database. The loca

tion and depth of characteristic absorption features of

SWIRactive alteration minerals were also calculated. These

include the AlOH absorption wavelength of white mica

(2190–2225 nm) and the FeOH absorption wavelength of

chlorite (2245–2265 nm), which are commonly used to track

hydrothermal alteration associated with VMSstyle mineral

ization (e.g., Buschette and Piercey, 2016; Sparkes, 2019;

Cloutier and Piercey, 2020; Hollis et al., 2021).
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RESULTS

A total of 45 spectral measurements were collected

from four unmineralized QFP rhyolites (<100 ppm Zn), nine

mineralized QFP rhyolites (>100 ppm Zn) and three mafic

tuff samples. The predominant alteration minerals identified

in QFP rhyolites are muscovite and phengite, with Mg and

Fe–Mg chlorite identified only in some of the mineralized

samples. The Fe and Fe–Mg chlorite and minor phengite

were the main alteration minerals identified in mafic tuffs.

The diagnostic AlOH absorption wavelengths of white

mica show clear variations in white mica chemistry between

unmineralized and mineralized QFP rhyolites, with a shift

toward phengitic (>2210 nm) white mica compositions in

mineralized samples (Figure 13A). Mineralized samples are

also characterized by a decrease in the depth of the AlOH

absorption wavelength feature (Figure 13A) and an increase

in illite spectral maturity (Doublier et al., 2010) or ISM

(H2O) compared to unmineralized samples (Figure 13B).

This indicates that white mica in mineralized samples are

more crystalline and formed at higher temperatures than

white mica in the unmineralized samples. The increase in

AlOH absorption wavelengths in mineralized samples also

corresponds to geochemical characteristics diagnostic of

intense hydrothermal alteration (Figure 12I). 

The FeOH absorption wavelength in chlorite at ~2250

nm shows a variation between chlorites, in unmineralized

mafic tuffs and in hydrothermally altered and mineralized
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QFP rhyolites. Mafic tuffs show FeOH absorption wave

length positions from 2254.6 to 2255.9 nm, whereas miner

alized QFP rhyolites show a slight shift to more Mgrich

chlorite with FeOH absorption wavelengths of 2249.4 to

2253 nm (Figure 13C). This shift corresponds to a decrease

in the depth of the FeOH absorption wavelength feature in

mineralized QFP rhyolites. 

The progressive shift to higher AlOH absorption wave

lengths in white mica and lower FeOH absorption wave

length in chlorite, observed in mineralized QFP rhyolites at

Rusty Trickle, is consistent with intense hydrothermal alter

ation during mineralization. Similar trends have been

observed in other VMS deposits in central Newfoundland,

including the Lemarchant Deposit (Cloutier and Piercey,

2020) and the Boundary Deposit (Buschette and Piercey,

2016). 

SUMMARY AND CONCLUSIONS

The Kettle Pond Formation on Glover Island consists of

a basal, clast to matrixsupported polymictic conglomerate

overlain by a series of interbedded mafic to felsic tuffs inter

layered with numerous thin (<2 m) massive sulphides, black

shales, and synvolcanic exhalative units. It is host to a num

ber of VMSstyle mineral occurrences, including the Rusty

Trickle, Glover Island North and Glover Island East show

ings. Detailed geological, petrographic and geochemical

investigations have identified several features that are

important in determining the prospectivity of the Kettle

Pond Formation to host significant VMSstyle mineral

deposits. These include:

• Regional airborne geophysical surveys have identified

discrete EM anomalies in the Kettle Pond Formation,

which are located at, or close to, areas of known VMS

style mineralization.

• Mafic tuff units have variable geochemical characteris

tics, ranging from islandarc tholeiite to MORB signa

tures. This intimate association of islandarc and rift

related mafic volcanism is consistent with development

of a juvenile oceanic island volcanic arc with episodic

intraarc rifting; an environment favourable for the

development of VMS deposits (Franklin et al., 2005;

Piercey, 2009; Hollis et al., 2014).

• Aphanitic felsic tuffs and QFP rhyolites have tholeiitic

affinities and geochemical characteristics typical of FIV

rhyolites (e.g., low Zr, Nb and La/Ybcn). Geochemically

similar tholeiitic Type FIV rhyolites are commonly

associated with mineralization in postArchean mafic

dominated (primitive) VMS environments (Hart et al.,
2004; Piercey, 2009, 2011). They are interpreted to have
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Figure 11. Mobileelement plots for geochemical samples from the Kettle Pond Formation (data from this study and Basha  et al., 2001). A)
Al2O3/Na2O vs. Na2O plot of samples from the Rusty Trickle area, with designations for least altered samples (modified from Spitz and Darling
1978); B) Al2O3/Na2O vs. Na2O plot of samples from the Glover Island North and Glover Island East areas; C) CCPI vs. AI alteration box
plot (adapted from Large et al., 2001) with data from samples from the Rusty Trickle area; D) CCPI vs. AI alteration boxplot (adapted from
Large et al., 2001) with data from samples from the Glover Island North and Glover Island East areas; E) AAAI vs. AI alteration boxplot
(adapted from Williams and Davidson, 2004 and Hollis et al., 2021) with data from samples from the Rusty Trickle area; F) AAAI vs. AI alter
ation boxplot (adapted from Williams and Davidson, 2004 and Hollis et al., 2021) with data from samples from the Glover Island North and
Glover Island East areas.
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formed via crustal melting of basaltic material at shal

low levels (<10 km), and these melts may have been an

important heat source for driving hydrothermal circula

tion (Piercey, 2009).

• Sulphidebearing black shales associated with VMS

style mineralization in the Kettle Pond Formation are

characterized by high basemetal and Ba contents and

strong positive Eu and negative Ce anomalies, compared

to mudstones distal from mineralization. The geochemi

cal signature of these mudstones is similar to ventproxi

mal mudstones at other VMS deposits (e.g., Lemarchant

Deposit; Lode et al., 2015) and suggests that they pre

cipitated from reduced hightemperature (>250°C) fluids

vented into an oxygenated water column.

• Stringerstyle Zn–Cu–Ag mineralization at Rusty

Trickle is spatially associated with an alteration zone

characterized by depletion in Na2O, enrichment in K2O,

MgO, Ba and Hg, and elevated Ba/Sr, Hg/Na2O, AI and

CCPI values. The SWIR data show that compositions of

white mica in the alteration zone shift more toward

phengitic compositions (AlOH absorption wave

lengths >2210 nm) and chlorites have a Mgrich com

position with FeOH absorption wavelengths shorter

than 2252 nm. Similar alteration patterns have been

observed around other VMS deposits in central

Newfoundland, and are attributed to intense alteration

during the circulation of hydrothermal fluids (Buschette

and Piercey, 2016; Cloutier and Piercey, 2020). 

The metal content (Zn>Cu, high Ag) and geological set

ting (felsic rockhosted mineralization in a thick package of

dominantly mafic volcanic rocks) of VMSstyle mineraliza

tion at Rusty Trickle is typical of bimodal mafic VMS

deposit group (Galley et al., 2007; Piercey et al., 2015).

Although no economic VMStype mineralization has been

recognized on Glover Island, this study has shown that the

Kettle Pond Formation has geochemical characteristics

favourable for the formation of VMSstyle mineralization.

The recognition of stringerstyle Zn–Cu–Ag mineralization

in a zone of intense VMSstyle hydrothermal alteration at

Rusty Trickle, highlights the potential of this area, which

may warrant further exploration. 

23

Figure 13. SWIR data from outcrop samples in the Rusty
Trickle area. Mineral species thresholds from Cloutier and
Piercey (2020). A) AlOH wavelength absorption (nm) vs.
depth of AlOH feature in white mica; B) AlOH wavelength
absorption (nm) vs. illite spectral maturity in white mica. C)
FeOH wavelength absorption (nm) vs. depth of FeOH fea
ture in chlorite.
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