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ABSTRACT

New whole­rock lithogeochemical results for eleven Cambrian mafic rocks from western Avalon Peninsula
(Newfoundland), including seven pillow basalt lavas, three mafic tuffs and one gabbro, are compared to available data on
Cambrian mafic rocks from a previous study in the same area. The basalts are interbedded, and, locally, in apparent tecton­
ic contact, with black shale and minor carbonate layers and lenses of the Manuels River Formation (Harcourt Group) at
Chapel Arm, southern Trinity Bay. At Placentia Junction, 15 km to the south, mafic tuff is in fault contact with dark­grey to
black shale probably belonging to the Miaolingian Chamberlain’s Brook‒Manuels River transition. Contact relationships of
the gabbro have not been observed, but it either crosscuts, or is in fault contact with, red shales of the Terreneuvian to
Cambrian Series 2, Adeyton Group. Previously documented fossil assemblages of the Manuels River Formation place the
basalts in the biostratigraphic Paradoxides davidus Zone of the Drumian Stage (absolute age of 504.5–500.5 Ma).

All of these Cambrian mafic rocks have moderate Mg#’s, Zr/Ti ratios, and Ni and Cr concentrations indicating they are
primitive magmas that experienced limited differentiation prior to emplacement. They are light rare­earth­element­enriched,
alkaline, OIB­like basalts, having high Nb concentrations and high Nb/Yb and Ti/Y ratios. They likely formed as low­degree
partial melts from a garnet lherzolite mantle source, as indicated by their high TiO2/Yb, (Sm/Yb)MN and (Tb/Yb)CN ratios. The
Cambrian basalts occur in a narrow north­trending linear (half­)graben, parallel to a north­trending, possibly Acadian thrust
fault. The OIB­like chemical affinity of the magmas, the elongated orientation of the sedimentary basin in which they occur,
and the presence of an adjacent (half­)graben­parallel fault are consistent with their eruption under extensional conditions,
possibly along pre­existing, Neoproterozoic structures.

INTRODUCTION

The Avalon terrane in eastern Newfoundland is the
largest exotic terrane in the Appalachian–Caledonian orogen
(e.g., Hibbard et al., 2006; Pollock et al., 2009) and com­
prises Neoproterozoic volcano­sedimentary sequences that
are overlain by a lower Paleozoic, mixed (carbonate‒silici­
clastic) cover succession having a distinct Cambro­
Ordovician faunal assemblage. Biogeographically, this
assemblage has been termed the “Avalonian Faunal
Province” (Landing, 1996), formerly referred to as the
“Acado­Baltic” assemblage (e.g., Murphy and Nance, 1989)
or the “Atlantic faunal realm” (e.g., Hutchinson, 1962;
Wilson, 1966). Avalonia, which takes its name from the
Avalon Peninsula in Newfoundland (Figure 1), is considered
a composite terrane, comprising a collage of differing
Neoproterozoic blocks that share a markedly similar

Cambrian to Ordovician cover sequence (e.g., Barr and
White, 1996; Nance et al., 2008). On the west side of the
Atlantic Ocean, West Avalonia includes eastern
Newfoundland and extends southwestward, outcropping in
Nova Scotia and New Brunswick, to Cape Cod
(Massachusetts) in the U.S.A. In Europe, East Avalonia
includes southeastern Ireland, Wales, England, Belgium, the
Netherlands, southern Denmark and part of northwestern
Germany (Cocks and Fortey, 2009). Avalonia is commonly
viewed as a microcontinent that separated from Gondwana
with the opening of the Rheic Ocean beginning in the
Furongian to Early Ordovician (e.g., Murphy et al., 2004,
2009; van Staal, 2007; Pollock et al., 2009, 2012; van Staal
et al., 2020). Recent studies suggest that parts of Avalonia
also experienced an earlier (Tonian) event, based on zircon
age populations presumably derived from Baltica (e.g., van
Staal et al., 2020; Thompson et al., 2022; Kuiper et al.,
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Figure 1. A) Bedrock geology map for the eastern Avalon terrane in Newfoundland (modified from Colman­Sadd et al., 1990);
DP=Dam Pond; B) Insert map showing the extent of the Avalon terrane in Newfoundland and geographic areas referred to
in the text; C) Bedrock geology map for the western Avalon Peninsula (after King, 1988); CAF?=proposed Chapel Arm Fault.
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2022), consistent with the proposed Baltic provenance for
Avalonia based on isotopic evidence (e.g., Thompson et al.,
2012; Henderson et al., 2016). Intervening (Cryogenian)
events remain cryptic. 

The lower Paleozoic stratigraphy of the Avalon terrane
in Newfoundland (herein referred to as Avalon) is under­
pinned by the work of Hutchinson (1962), built upon previ­
ous work by Howell (1925) and others, and based primarily
on trilobite studies. Because the early subdivision of these
units was based primarily on faunal content rather than
lithology, Jenness (1963) proposed changes to make the
stratigraphic framework more conducive to regional map­
ping. Broadly, these units include the lower Adeyton Group,
comprising mainly green and red shale and slate with thin
layers of limestone, and the upper Harcourt Group, com­
prising mainly dark­grey and black shale and slate. Jenness’
(1963) stratigraphic framework has since been adopted for
many regional mapping studies in Newfoundland’s Avalonia
(e.g., King, 1988; O’Brien, 1994; Fletcher, 2006; Normore,
2010), and is adopted here to provide stratigraphic context
for this study (Figure 2).

Whereas several geological investigations into
Cambrian Avalon rocks have focused on fossils (Howell,
1925; Hutchinson, 1962; Poulsen and Anderson, 1975;
Bergström and Levi­Setti, 1978; Martin and Dean, 1981,
1988), the mafic volcanic rocks that locally occur within the
Cambrian sedimentary units have received little attention.
Mafic volcanic rocks volumetrically comprise only a minor
component of the Cambrian strata in Newfoundland, but
their lithogeochemistry can provide insight into the tectonic
setting for parts of the Cambrian rift sequence separating the
Ediacaran Avalonian arc from the Early Ordovician drift of

the terrane that led to the opening of the Rheic Ocean. To
date, the only existing research into these rocks was con­
ducted as part of a Ph.D. thesis (Greenough, 1984) that cul­
minated in several publications on Cambrian mafic volcan­
ism in Newfoundland, the Maritimes, and known global cor­
relatives (Greenough and Papezik, 1985a, b, 1986). Relative
to modern techniques, analytical methods at the time were
somewhat limiting, in terms of detection limits, precision
and accuracy, with some key elements not measured (see
Methods section, below). As part of a reconnaissance­level
Avalonian study, the authors visited outcrops of known
Cambrian strata during the summer of 2022 with a two­fold
sampling strategy: 1) to sample volcanic rocks to confirm
previous interpretations of petrogenesis and geodynamic
setting (see Greenough and Papezik, 1985a); and 2) to sam­
ple carbonate units within the strata for biostratigraphic and
carbonate­productivity interpretations. Here we focus on the
former, and present the first modern, whole­rock lithogeo­
chemical data for Cambrian basalts from Avalonia in
Newfoundland.

REGIONAL GEOLOGY

Neoproterozoic rocks west and east of the Chapel Arm
area differ, both lithologically and stratigraphically. Rocks
west of Chapel Arm have traditionally been assigned to the
volcano­sedimentary Musgravetown Group (Hayes, 1948;
Christie, 1950; McCartney, 1955, 1958, 1967), whereas
rocks to the east were initially assigned to the sedimentary
Hodgewater Group (Hutchinson, 1953; McCartney, 1967),
but were re­assigned to the Musgravetown Group by King
(1988), for his map compilation of the Avalon Peninsula of
Newfoundland.

The oldest rocks in the area lie west of Chapel Arm and
include Ediacaran bimodal volcanic rocks (Bull Arm
Formation) and the overlying siliciclastic rocks of the
Musgravetown Group (Hayes, 1948; Christie, 1950;
Jenness, 1963; King, 1988; Figure 1C). Banded rhyolite at
Doe Hills, west of Chapel Arm (Figure 1A), has been dated
at 605 Ma (Mills et al., 2021). At Long Harbour, mafic vol­
canic rocks included in the Bull Arm Formation are over­
lain by diamictite of the Big Head Formation (McCartney,
1967; Brückner, 1977) inferred to be correlative to the 580
Ma Trinity glaciogenic diamictite of the Musgravetown
Group on the Bonavista Peninsula (Normore, 2011; Pu et
al., 2016; Mills and Sandeman, 2021b). No age constraints
exist for rocks of the former Hodgewater Group, east of
Chapel Arm (Bay de Verde subpeninsula of the Avalon
Peninsula; Figure 1B). However, Ediacaran fossils at
Spaniard’s Bay (east side of Bay de Verde subpeninsula;
Narbonne et al., 2009; see Figure 1A) support the correla­
tion of their shale beds with the Mistaken Point Formation,
locally dated at 565 ± 3 Ma (Benus, 1988), 566.25 ± 0.35
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Figure 2. Schematic stratigraphic section for Cambrian
rocks of the Avalon Zone (modified after Landing, 2004).
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Ma (Pu et al., 2016) and 565.00 ± 0.16 Ma (Matthews et al.,
2020) near that type locality. The dark­grey shales of the
former Carbonear Formation on the Bay de Verde sub­
peninsula (Hodgewater Group; Hutchinson, 1953;
McCartney, 1967) were correlated based on lithology to
those of the St. John’s Group on Avalon Peninsula by King
(1988), and the latter has been locally dated at 562.5 ± 1.1
Ma (Canfield et al., 2020). Because the stratigraphy, over­
all, becomes younger from east to west across the Bay de
Verde subpeninsula, concordantly and with no known struc­
tural imbrication (Hutchinson, 1953), King’s (1988) Big
Head Formation there (previously assigned to the Snows
Pond Formation, Hodgewater Group, by Hutchinson
(1953)) is likely younger than, and not correlative to, the
Big Head Formation at its type locality near Long Harbour
(Figure 1A). It is, therefore, plausible that a regionally sig­
nificant fault, hitherto unrecognized, occurs in this western
part of the Avalon Peninsula.

The oldest Cambrian unit on the Avalon Peninsula is the
Terreneuvian (“lower Cambrian”; Figure 2) Random
Formation (Hiscott, 1982; Landing, 2004). This unit varies
up to 250 m in thickness and is characterized by thick­bed­
ded quartz arenite and quartz conglomerate, commonly
cross­stratified, and interpreted to reflect deposition on sub­
tidal ridges or shoals (Hiscott, 1982). Typically, it is bound­
ed by disconformities, except at Fortune Bay, where it con­
formably overlies the Chapel Island Formation, which spans
the Ediacaran–Cambrian boundary (Landing, 1994). 

The Random Formation is overlain by red, green and
grey shale and slate, with lesser, commonly pink, limestone
interbeds of the Adeyton Group (Jenness, 1963). In ascend­
ing order, the Adeyton Group includes the Bonavista, Smith
Point, Brigus and Chamberlain’s Brook formations. The first
three of these are Terreneuvian to Cambrian Series 2 (“lower
Cambrian” of Landing et al., 2021; Figure 2) whereas the
Chamberlain’s Brook Formation is Miaolingian (“middle
Cambrian”) (Hutchinson, 1962; Jenness, 1963). The authors
caution, as Jenness (1963) noted, that the thin limestone of
the Smith Point Formation (~10 m average thickness;
Jenness, 1963), should be treated as a member only, because
the underlying and overlying shales, however faunally dis­
tinct (Hutchinson, 1962), are lithologically indistinguishable.
Nevertheless, the distinctive lithology, colour and resistance
to weathering (relative to the surrounding shales), make the
Smith Point limestone a potential marker horizon within the
several hundred metres of monotonous red, green and grey
shale. The colour of the Bonavista/Brigus shale is also not
consistent along strike, and so cannot be used to discern
stratigraphic position (see also Mills, 2017). The issue with
using the Smith Point limestone as a marker horizon is the
assumption that limestones assigned to this unit formed
broadly at the same time. Detailed paleontological work

would need to be undertaken to test that disparate ‘Smith
Point­like’ outcroppings constitute a single biozone. From a
regional mapping perspective, this problem is further exacer­
bated by the presence of limestone layers in both the under­
lying Bonavista and overlying Brigus formations
(McCartney, 1967) that could easily be taken for Smith Point
limestone in the absence of fossil analysis.

The “lower Cambrian” Bonavista, Smith Point and
Brigus formations are overlain by the Chamberlain’s Brook
Formation (Figure 2). The base of the Miaolingian
Chamberlain’s Brook Formation is marked by a basal man­
ganiferous bed, ranging from 1 to 25 m thick, with MnO2

and Fe2O3 cements encrusting shale to limestone strata
(Hutchinson, 1962; Douglas, 1983). The manganiferous
beds overlie a thin (2–3 cm) shale‒pebble conglomerate,
which, in conjunction with a recognized faunal break
(Hutchinson, 1962), has been interpreted as an unconformi­
ty marking the Brigus/Chamberlain’s Brook contact
(Hutchinson, 1962; McCartney, 1967). The formation is
thicker at western Trinity Bay, western St. Mary’s Bay and
eastern Placentia Bay, and thins both to the east and west
(Hutchinson, 1962). Its lithology is mainly olive­grey to
green shale (or slate), with nodules and thin beds of green,
grey or pinkish limestone (Hutchinson, 1962). Hutchinson
(1962) suggests that, where the basal manganiferous bed is
missing, the contact with the underlying Brigus Formation
can be drawn at the colour change from light­green and red
shale to the darker olive­grey shale of the Chamberlain’s
Brook Formation. McCartney (1967) indicates that, in some
areas, the upper one­third of the formation is dark­grey, dif­
ficult to distinguish lithologically from overlying black
shale, and therefore combines the Chamberlain’s Brook
Formation with the Manuels River Formation to form a sin­
gle “middle Cambrian” mappable unit (e.g., McCartney,
1955, 1956, 1967). 

The Manuels River Formation (Harcourt Group; Figure
2) conformably overlies the Chamberlain’s Brook
Formation. It comprises mainly black shale with thin beds
and concretions of limestone, ranges between 20–30 m in
thickness (Hutchinson, 1962), and is the youngest stratified
unit in the study area. Pillow lava and breccia, referred to as
the Chapel Arm Member (McCartney, 1967), occur inter­
mittently within the Manuels River Formation (Figure 2)
along a roughly north‒south line between Hopeall Head to
the north and Hay Cove to the south (see sample locations
in Figure 1C). The Chapel Arm volcanic flows occur above
the Paradoxides bennetti Zone, and within the Paradoxides
davidus Zone (McCartney, 1967), corresponding to the
Drumian Stage, with an absolute age between 504.5 and
500.5 Ma (Cohen et al., 2022). Basalt flows also occur with­
in the Chamberlain’s Brook Formation (e.g., at Cape Dog;
see Figure 1C), although these are stratigraphically lower
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than the basalts of the Chapel Arm Member (Greenough and
Papezik, 1985a, b).

A north‒south trend is also defined by isolated outcrops
of the Spread Eagle Gabbro (McCartney, 1967). Their spa­
tial association with basalts of the Chapel Arm Member and
local crosscutting relationships with “lower Cambrian” stra­
ta are consistent with the gabbros being feeders to the vol­
canic rocks of the Chapel Arm Member (McCartney, 1967;
Greenough and Papezik, 1985a).

METHODS

Eleven rock samples were collected from Cambrian
units from the western Avalon Peninsula (Figure 3). Two
samples, one basalt and one gabbro, were collected from
Norman’s Cove, six basalt samples were collected from the
south side of the community of Chapel Arm, and three mafic

tuff samples were collected from near Placentia Junction,
located ~15 km to the south (Figure 3). The basalts from
Norman’s Cove and Chapel Arm are all assigned to the
Chapel Arm Member of the Manuels River Formation
(McCartney, 1967). Each rock sampled was representative
of the outcrop, free of veins and obvious alteration, and
weathered surfaces were carefully removed. Thin section
slabs and representative hand samples were collected and
approximately 1 kg of clean, homogeneous rock fragments
were then separated for whole­rock lithogeochemical analy­
sis. Samples were processed and analyzed at the Geological
Survey’s geochemical laboratory. Sample preparation and
analytical methods are outlined by Finch et al. (2018). The
raw data were released to the public without interpretation
(Mills, 2022). Sample locations are shown on Figure 3.

In addition, archival whole­rock lithogeochemical data
for 29 mafic rock samples collected from Cambrian units in
the western Avalon Peninsula area, or “St. Mary’s Bay area”
(Greenough, 1984), were compiled and plotted for compar­
ison. These samples include lava, tuff and diabase from
Cambrian units (Chamberlain’s Brook and Manuels River
formations) at Chapel Arm, Placentia Junction, St. Bride’s,
Patrick’s Cove, Dog Cove and Hay Cove (Figure 1C;
Greenough, 1984). Major­element content of these rocks
was determined by atomic absorption spectrophotometry,
and trace­element abundances were determined by X­ray
fluorescence. An incomplete suite of rare­earth­element
(REE) analysis was acquired for only six of the Greenough
(1984) samples. Abundances of certain elements now rou­
tinely used in petrogenetic interpretation, including Hf, Ta,
Tb, Ho and Lu, were not determined, likely owing to their
low abundances with respect to detection limits of available
analytical techniques. Nevertheless, the archival data of
Greenough (1984) comprise a solid database with which the
modern, but more limited dataset of the current study may
be compared and are available on the Geological Survey of
Newfoundland and Labrador’s GeoAtlas (https://geoatlas.
gov.nl.ca/).

FIELD DESCRIPTIONS

Cambrian mafic rocks were collected in three areas on
the western Avalon Peninsula: Norman’s Cove, Chapel Arm
and Placentia Junction (Figure 1C). The first two of these
are communities along the southern shore of Trinity Bay and
the basalts at these locations are considered part of the
Chapel Arm Member of the Manuels River Formation. The
mafic tuff from Placentia Junction is treated separately
based on its different lithology.

At Norman’s Cove, gabbro outcrops on the north side of
Norman’s Cove River. Its contact relationships were not
observed, and it either intrudes the red shales of the Adeyton
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Group or effectively bounds the “lower Cambrian” strata
due to its exploitation of a pre­existing fault (Plate 1A). The
gabbro is medium grained and composed of pinkish tabular
to equant feldspars that average 2 mm in length, with fine­
grained dark material interstitial to the feldspars. South of
the Norman’s Cove River, two subvertical sections of pil­
lowed basalts are intercalated with black shale and cm­ to
dm­scale dolostone interbeds of the Manuels River
Formation. The first (northern and stratigraphically lowest)
occurrence of basalt comprises large (1 x 3 m), slightly flat­
tened pillows having large (>1 cm) carbonate amygdales
(Plate 1B), whereas pillows of the second basalt (to the
south and stratigraphically above) are more equant (1 x 1
m), have smaller amygdales (<1 cm), and appear less
deformed. The latter flow was sampled for petrography and
lithogeochemistry analyses.

At the southern end of Chapel Arm, 4.5 km south of
Norman’s Cove, basalt is interbedded with black shale,
about 50 m above the concordant contact between steeply
dipping dark­grey shales and black shales, likely the contact
between Chamberlain’s Brook and Manuels River forma­
tions, respectively. Near the contact between the black shale
and basalt, beds steepen to subvertical, are highly cleaved
and locally disrupted or brecciated. Limestone nodules are
concentrated in some slumped and contorted beds (Plate
1C), indicating episodic syndepositional seismic disrup­
tions. The intensity of deformation and role of tectonic
imbrication are likely more important than previously rec­
ognized, as evidenced by cleavage­parallel tight to isoclinal
folding (Plate 1D), and subtle fault planes separating similar
shales having slightly different bedding orientations (Plate
1E). The contact between the black shale and basalt is sharp
and appears faulted. Neither the magnitude nor sense of dis­
placement was discerned. Farther east, along the shores of
Chapel Arm, basalt outcrops are mainly pillowed (Plate 1F),
and the black shale exhibits a variably developed, although
commonly strong, cleavage. Down­dip slickenlines are
locally visible on some bedding surfaces (Plate 1G). Lenses
of carbonate occur locally (Plate 1H, I), as do framboidal
pyrite aggregates of up to 2 cm diameter (Plate 1I).

Along Highway 100, south of the Trans­Canada
Highway, a roadcut exposure was investigated near the turn­
off to Placentia Junction (Figure 3). Dark­grey to black
shale is exposed at the northeastern end of the roadcut.
Based on colour features, the shale in this area should be
part of the Chamberlain’s Brook‒Manuels River transition.
A ~2­m­thick, brown­weathering, highly disrupted zone
occurs near the contact with mafic tuff to the southwest
(Plate 2A), obscuring the nature of the original contact. The
true thickness of these highly disrupted rocks is likely much
less than 2 m, as the main cleavage by which they are affect­
ed is oblique to the roadcut. The mafic tuff is typically struc­

tureless (massive), but a crude stratification occurs locally,
particularly within the granule­ to fine­grained, normal
graded litharenites near the top of the bed sets (Plate 2B).
Intervals containing cobble­sized medium­grey, mudstone
clasts also occur locally (Plate 2C). The massive, tabular to
lenticular beds are clast­supported, with subrounded to
angular, mainly basaltic fragments, and carbonate occurs as
an infill phase between the fragments. These pyroclastic or
volcano­sedimentary strata typically have scoured bases and
planar tops. Locally, the thick massive deposits are interbed­
ded with thinning­ and fining­upwards sets, up to 0.4 m
thick, of clast­supported, granule­ to fine­grained litharen­
ites, with rounded to angular basalt­dominant grains set in a
silty matrix. These stratified interbeds exhibit parallel to
low­angle normal graded laminae and planar to wavy tops,
small­ to medium­scale low­angle crosslamination, and
commonly have scoured basal contacts (Plate 2B).

PETROGRAPHIC DESCRIPTIONS

The gabbro from Norman’s Cove contains ~65%
feldspar, 25% amphibole, 8% opaque minerals and trace
quartz, apatite and titanite. Feldspars are randomly oriented,
euhedral to subhedral, appear turbid due to sausseritization,
and average ~1–2 mm in length. Some feldspars contain
inclusions (mainly amphibole), lending these crystals a
poorly developed spongy texture. The amphibole occurs as
felt­textured, angular polycrystalline aggregates interstitial
to the feldspars (Plate 3A) and may be pseudomorphs of pri­
mary pyroxene. The opaque minerals are quadrate to rhom­
bic in section and average ~200 µm. Rare quartz crystals are
euhedral, exhibiting hexagonal sections and do not exceed
400 µm. (Their uniaxial positive interference figure con­
firms that these crystals are indeed quartz and not
nepheline). Trace apatite crystals are euhedral and range up
to 400 µm in length. Trace titanite crystals are equant,
anhedral and <100 µm in size.

The basalt from Norman’s Cove contains ~40%
feldspar, 40% chlorite and 20% amygdales; the latter range
up to 1 cm in diameter and are filled with prehnite and/or
calcite (Plate 3B). Primary plagioclase, now albite, occurs
mainly as randomly oriented laths ranging up to 300 µm.
Most appear untwinned and skeletal crystals are locally pre­
served. Angular polycrystalline chlorite aggregates are com­
mon. Rare orthorhombic prisms up to 1 mm in length are
preserved indicating that these are pseudomorphs after a pri­
mary mafic phase, probably pyroxene.

Basalts from the southern end of Chapel Arm are high­
ly altered and primary minerals are not preserved. The
groundmass ranges from dark and mottled (possibly origi­
nally glassy; Plate 3C) to plagioclase­rich with skeletal tex­
tures locally preserved (Plate 3D). Plagioclase laths are gen­
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erally fine grained (200–400 µm in length), randomly ori­
ented, untwinned and slightly turbid. Skeletal laths occur
locally. Chlorite occurs as irregularly shaped, fine­grained
polycrystalline aggregates that range from <100 µm to >1
mm. Amygdales are generally carbonate­filled and range up
to 1 cm in diameter (Plate 3D).

Mafic tuff from Placentia Junction comprises mainly
angular basaltic fragments (Plate 3E, F) that range in size
from <1 mm to >1 cm. Some fragments are dark and have a

glassy appearance (Plate 3E), whereas others appear chlorite­
rich and highly vesicular (Plate 3F). A network of dominant­
ly calcite and quartz occurs between the fragments (Plate
3E). Of the three samples collected from Placentia Junction,
one contains minor (~5%) siliciclastic fragments and these
range from angular to rounded. Carbonate also occurs in
veinlets cutting through both the fragments and quartz‒car­
bonate infill. The matrix in the litharenite topping the bed
sets comprises less than 10% by volume, and consists of
silty‒sandy rock fragments locally cemented by hematite.
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Plate 1. Field photographs from Norman’s Cove and Chapel Arm. A) Oblique view to the northwest from Norman’s Cove River,
showing gabbro intrusion (Gb), and Cambrian rocks exposed to the north (RF?=possible Random Formation; BF+SPF+
BrF=Bonavista, Smith Point and Brigus formations, or some component(s) thereof; CBF+MRF=Chamberlains Brook and pos­
sibly Manuels River formations); B) Mega­pillows of coarsely amygdaloidal basalt, southeast of Norman’s Cove River; C)
Disrupted, slumped, carbonate­nodular bed (yellow arrow) intercalated with black shale of the Manuels River Formation at
south end of Chapel Arm; D) Crest of apparently south­plunging anticline (yellow arrow) cored by Manuels River Formation
black shale, with limbs of dark­grey shale, possibly of the underlying Chamberlains Brook Formation; E) View east of subver­
tical fault zone (red dashed lines) through intercalacted black shale and carbonate layers (tan coloured); note that bedding (yel­
low dashed lines; S0) is parallel to the fault zone on the south (right­hand) side, but oblique to the fault on the north (left­hand)
side of the fault; F) Pillowed basalt on west side of Chapel Arm; G) Steeply dipping slickenlines (LSS) on subvertical bedding
surface along the west side of Chapel Arm; H) Deformed black shale and carbonate overlain by basalt; I) Competent carbon­
ate lens (top) intercalated with well­cleaved black shale; note framboidal pyrite (yellow arrows) in the shale.
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Plate 2. Field photographs from Placentia Junction. A) View to the southwest near Placentia Junction showing brown­
weathering fault zone (FZ) between highly cleaved dark­grey shale (Chamberlain’s Brook Formation, CBF; and/or
Manuels River Formation, MRF) and mafic tuff (M­tuff); B) Fining­upwards mafic tuff comprising subrounded to angular
basaltic clasts, overlain by granule­ to fine­grained litharenite (yellow arrow); C) Clast­supported mudstone clast in mafic
tuff (red arrow).
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Plate 3. Photomicrographs of Cambrian mafic rocks from Norman’s Cove, Chapel Arm and Placentia Junction. A) Gabbro
from Norman’s Cove River showing turbid (altered) feldspar (Fsp), interstitial amphibole (Amp), opaque minerals, and acces­
sory apatite (Ap) and titanite (Ttn); B) Pillow basalt from Norman’s Cove, showing randomly oriented, altered feldspar laths
in the groundmass, sub­equant pseudomorphs of chlorite (Chl), and amygdales filled with prehnite (Prh) and calcite (Cal);
C) South Chapel Arm basalt, showing an altered groundmass (possibly originally glassy), with opaque minerals forming 1­
m­long, fine linear aggregates, and chlorite (Chl) pseudomorphs; D) South Chapel Arm basalt showing randomly oriented
feldspar (Pl) laths preserved in the groundmass, chlorite (Chl) likely pseudomorphing a mafic phase, and calcite (Cal) filling
amygdales; E) Altered basaltic fragments are either glassy (vesicular fragments to the left and right of the center of field of
view) or completely altered to chlorite (Chl), note the presence of quartz (Qtz) indicating the basalts are silica­saturated,
coarse calcite (Cal) crystals form an infill network between basalt fragments; F) Highly vesicular basalt clast may originat­
ed as pumice. All photomicrographs are taken under plain­polarized light. 
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LITHOGEOCHEMICAL RESULTS

ALTERATION AND ROCK CLASSIFICATION

In light of the alteration evident from both the petro­
graphic observations and the alteration indices (Figure 4A),
the Cambrian basalts are classified as alkali basalts, accord­
ing to the Zr/Ti vs. Nb/Y discriminant (Pearce, 1996; Figure
4B), and further evaluation and interpretation of these rocks
is based on select major elements (Al, Ti, Fe and P), high
field strength elements (HFSE; Y, Th, Nb, Ta, Zr, Hf), the

REE (except Ce and Eu) and transition metals (Cr, Ni, Co,
Sc and V) as these elements are relatively immobile and typ­
ically remain unaffected during alteration and metamor­
phism.

The nature of the alteration affecting the Cambrian
basalts is well illustrated by the alteration box plot of Large
et al. (2001; Figure 4A). The CCPI (chlorite–carbonate–
pyrite index), on the ordinate axis, measures the increase in
MgO and FeO associated with chlorite development, which
commonly replaces mafic minerals and feldspars in volcanic

rocks (e.g., Large et al., 2001), resulting
in a net loss of Na2O and K2O. None of
our samples and only five of the 29
samples from Greenough (1984) fall
within Large et al.’s (2001) least­
altered­box (Figure 4A). These are the
same ones that have 2–4% K2O, with all
other samples having <1% K2O (Figure
5F). Those low­K2O samples fall along
the near­horizontal trend between epi­
dote/calcite and chlorite/pyrite alter­
ation on Large et al.’s (2001) box plot,
indicating effects of both chlorite and
carbonate alteration. This is consistent
with abundant chlorite and calcite
observed in these rocks in thin section.

BINARY SYSTEMS/

FRACTIONATION TRENDS

On modified Harker diagrams, sub­
stituting Zr for SiO2, the data generally
appear to fall into three clusters or
groupings. The Chapel Arm Member
group (red circles) includes seven of the
11 samples collected for this study and
20 of the 29 Greenough (1984) samples
(pink circles), the Chamberlain’s Brook
Formation group (light blue circles)
includes nine of Greenough’s (1984)
samples, and the Placentia Junction
group (purple circles) includes the three
mafic tuff samples from Placentia
Junction. A few samples are outliers, as
they do not consistently fall within one
of the three groups. Most of the major
elements, such as Al2O3, Na2O, FeOT,
and the minor elements P2O5 and TiO2

increase (positive slope) with increas­
ing Zr content (Figure 5), whereas CaO
and MnO decrease (negative slope). No
clear trend is evident with respect to
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Figure 4. Alteration and rock classification diagrams. A) Alteration box­plot
(after Large et al., 2001). CCPI=chlorite–carbonate–pyrite index; AI=Ishikawa
alteration index; B) Rock classification diagram based on trace­element compo­
sition (Pearce, 1996). 
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Figure 5. Binary plots of samples collected for this study, and from Greenough’s (1984) data. A) Mg# vs. Zr; B) TiO2 vs. Zr;
C) Al2O3 vs. Zr; D) MnO vs. Zr; E) FeO* vs. Zr (where total Fe is represented as ferrous iron); F) K2O vs. Zr. 
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K20, as most of the data fall very close to the abscissa, with
only five of Greenough’s (1984) samples and the gabbro
collected for this study containing >1% K2O. The loss on
ignition (LOI) represents a measure of the volatile content
and shows a negative trend for all groups. Most key trace
elements, such as Nb, Y, Th, V and Cr, show positive frac­
tionation trends, although the sparseness of data and steep­
ness of some of the slopes of trends may affect these appar­
ent trends.

Samples from all three of the groupings have moderate
Mg#’s (30–66), as well as Cr (24–410) and Ni (49–261)
concentrations (Figure 6; Table 1).

EXTENDED RARE­EARTH­ELEMENT

PLOTS (XREEs)

The XREE patterns for all of the Cambrian basalts are
steep, with significantly enriched light REEs (LREEs)
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Figure 5 (continued). Binary plots of samples collected for this study, and from Greenough’s (1984) data. G) P2O5 vs. Zr; H)
LOI vs. Zr; I) Nb vs. Zr; J) Y vs. Zr; K) Th vs. Zr; L) V vs. Zr.
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(Figure 7). The Greenough (1984) data are represented by a
field, rather than individual analyses, because appropriate
data are available for only six samples (two from the
Manuels River Formation and four from the Chamberlain’s
Brook Formation) and Hf, Tb, Ho and Lu were not deter­
mined, resulting in gaps across which we have extrapolated
the apparent XREE pattern. The new dataset is, overall, con­
sistent with the historical data (Figure 7). Basalts from
Placentia Junction are more LREE­enriched and have steep­
er XREE curves than those from the Manuels River
Formation [average (La/Yb)CN for Placentia Junction = 39,
whereas average (La/Yb)CN for Manuels River Formation =

12; CN denotes chondrite normalized, using normalizing
values from Sun and McDonough, 1989; see Table 1]. The
Placentia Junction samples also have La > Nb, whereas
basalts of the Chapel Arm Member have La < Nb. All three
Placentia Junction samples have negative Zr and Hf anom­
alies, whereas only one of the Chapel Arm samples has
prominent negative Zr and Hf anomalies. The XREE pattern
of the gabbro is similar to those for the Chapel Arm basalts
in terms of its slope, shape, and its La/Nb ratio, and exhibits
a very slight negative anomaly for Hf and Zr (Figure 7).

INTERPRETATION

The pillow basalts at Chapel Arm indicate a submarine
volcanic setting. Slumped and contorted limestone beds
interbedded with black shale indicate episodic syndeposi­
tional seismic disruptions. Cleavage­parallel, tight to isocli­
nal folding, and locally observed fault imbrication demon­
strate that tectonic deformation is more important than pre­
viously recognized, both at Chapel Arm and Placentia
Junction. At Placentia Junction, pyroclastic deposits display
massive to bedded and lenticular geometries separated by
dm­thick, normal graded litharenite interbeds having
scoured basal contacts, normal graded laminae with parallel
to low­angle crosslamination, and planar to wavy tops.
Although primary dispersal of these thick, dominantly struc­
tureless deposits was probably related to sheet­wash or
hyper­concentrated volcanogenic flows, the normal grading,
parallel to low­angle crosslamination and planar to wavy
tops of the interbedded litharenite indicate subsequent
reworking. The aforementioned sedimentary structures,
scarcity of matrix, geometry of bed sets, as well as grain size
and shape, all suggest that these pyroclastic rocks were
reworked, likely as marine channels and low­angle shoals,
with dispersal induced by unidirectional bedload traction.

Chlorite and calcite are abundant secondary phases in
the Chapel Arm basalts. Chlorite appears as possible
pseudomorphs after primary pyroxene and in amygdales,
whereas calcite appears both in amygdales and as an infill
phase filling voids likely originally present in the pyroclas­
tic rocks. Alteration of the Cambrian basalts is evident from
both the alteration indices and the petrographic observa­
tions. Greenough and Papezik (1985b) investigated the
alteration of Avalonian Cambrian basalts using mass­bal­
anced calculations of least­altered vs. altered basalts, and
concluded that two phases of alteration affected the rocks.
The earliest phase resulted in chlorite formation, accompa­
nied by the removal of K, Rb, Sr, Ba and Cu, and addition
of Mn, Ga, V, Ni and Cr. Carbonate metasomatism followed,
as shown by an increase in Ca, Sr and Na with increasing
LOI, consistent with albitization of feldspar. Both chlorite
and carbonate alteration may have occurred early following
basalt eruption, as both phases are commonly associated
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Figure 6. Binary plots of samples collected for this study,
and from Greenough’s (1984) data, with approximate fields
for primary mantle­derived melts (Roeder and Emslie,
1970; Ringwood, 1975), global, normal mid­ocean ridge
basalts (grey dots; Lehnert et al., 2000), and fields for
Ediacaran alkali basalts (Mills and Sandeman, 2021a)
shown for comparison. A) Ni vs. Mg#; B) Cr vs. Mg#. 
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with low­temperature hydrothermal alteration fluids mixed
with seawater (e.g., Menzies and Seyfried, 1979; Andjić et
al., 2022).

The moderate Mg#’s, Zr/Ti ratios, and Ni and Cr con­
centrations (Table 1 and Figure 6) indicate that, although
these Cambrian basalts do not represent primary mantle
melts, they have apparently undergone very modest differ­
entiation prior to eruption at surface, and are quite primitive
(e.g., Roeder and Emslie, 1970). In general, the basalts from
the Chamberlain’s Brook Formation have slightly higher
Mg#, and Cr, Ni and V contents, and are therefore more
primitive than those of the Manuels River Formation (Table
1). The Cambrian basalts are also more primitive than most
of the alkali Ediacaran basalts from the Bonavista Peninsula
(Figure 6; see Mills and Sandeman, 2021a).

High Nb contents, as well as Nb/Yb and Ti/Y ratios,
indicate the Cambrian basalts are alkali, OIB­like, or ‘with­

in­plate’ basalts (Figure 8A–F; Table 1; e.g., Pearce, 1996).
They are strongly LREE­enriched and the shapes and slopes
of their multi­element patterns are similar to those of OIB,
the Orphan Seamount and alkaline lamprophyres (Figure 7:
Sun and McDonough, 1989; Pe­Piper et al., 2013; Delor and
Rock, 1991). Their TiO2/Yb and Zr/Nb ratios are consistent
with an OIB­like source, deeper than both normal and
enriched mid­ocean ridge basalt sources (NMORB and
EMORB, respectively; Figure 8C, F). Their high (Sm/Yb)MN

and (Tb/Yb)CN ratios (MN = mantle­normalized; CN =
chondrite­normalized; Table 1) also indicate a deep source,
within the garnet stability field (Niu et al., 2011; Rooney,
2010; Figure 8E). The source for such basalts must reside in
the asthenosphere, below the lithospheric mantle (Niu et al.,
2011). Their Th contents and Th/Nb ratios are consistent
with very little crustal or lithospheric contamination (Figure
8D; Pearce, 2008). The deep source, negligible contamina­
tion and modest fractionation indicate that the Cambrian
basalts did not reside long in a lithospheric magma chamber
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Table 1. Salient geochemical features of Cambrian basalts from the Avalon terrane (this study and Greenough, 1984) com­
pared to Ediacaran alkali basalts (DP, BrHr) from the Bonavista Peninsula (Mills and Sandeman, 2021a)

Cambrian Basalts Ediacaran Basalts
This study Greenough, 1984 Mills and Sandeman, 2021a

MRF (n=20; n=2 CBF (n=9; n=4
Group/Series PJ (n=3) MRF (n=7) for Y, REE) for Y, REE) DP (n=9) BrHr (n=14)

Mg# 54 50 53 59 57 37
SiO2 42 42 47 46 47.6 48.8
TiO2 2.84 2.27 1.89 2.54 1.72 2.91
P2O5 1.16 0.5 0.52 0.68 0.58 1.09
Y 20 18 24 29 23 49
Ti 17026 13609 11331 15228 10298 17446
TiO2/Y 851 756 472 525 448 356
Zr 303 174 190 274 184 381
Th 3.53 1.9 2.1 1.3 6.0 3.6
Nb 56 29 39 54 45 41
Cr 158 213 225 242 155 18
Ni 136 136 160 187 63 19
V 105 160 210 237 204 159
(La/Yb)CN 39 12 10 22 13.77 6.61
(La/Sm)CN 2.7 2 1.3 1.4 4.05 2.15
(Gd/Yb)CN 8.1 3.8 5.8 8.3 2.12 2.18
(Th/La)CN 0.51 0.75 0.43 0.89 1.12 0.70
(La/Nb)CN 1.03 0.76 0.42 0.4 1.01 1.12
(Th/Nb)CN 0.53 0.56 0.19 0.33 1.12 0.76
(Sm/Yb)CN 14.44 5.78 8.26 7.41 3.40 3.09
(Tb/Yb)CN 5.02 2.64 N/A N/A 1.67 1.78
(Sm/Yb)CN 9.52 8.1 8.25 7.4 3.40 3.09
sumREE 288 124 78 140 210 276

Note: PJ=Placentia Junction; MRF=Manuels River Formation; CBF=Chamberlain’s Brook Formation; DP=Dam Pond
basalts; BrHr=British Harbour basalts; CN=chondrite­normallized (normalization factors as per Sun and McDonough, 1989)
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prior to eruption, and likely had a relatively direct route to
the surface; a pre­existing structure may have provided such
a conduit. Tb/Yb ratios of the Chapel Arm Member basalts
indicate that they are the product of low­degree partial melt­
ing (possibly ~4%; Figure 9A) of a peridotite from the gar­
net–spinel transition zone (Figure 9B; MacDonald et al.,
2001). The mafic tuff from Placentia Junction shows a sim­
ilar, OIB­like chemical affinity to that of the Chapel Arm
basalts, but the former have steeper XREE patterns, higher
La/Yb, Gd/Yb, Ce/Y, Tb/Yb ratios and ΣREE. They likely
originated from low­degree melts of an enriched, more gar­
netiferous, and possibly more deeply rooted source relative
to the Chapel Arm basalts (Table 1; Figures 8 and 9).

PLUME VS. EXTENSIONAL ENVIRONMENT

Alkali, or ‘within­plate’, magmatism has been linked to
such settings as extensional zones, regions of lithospheric
weakness (e.g., suture zones), and mantle plumes (e.g.,
Matton and Jébrak, 2009). Mantle plumes and extensional
settings have been invoked as mechanisms for lithospheric
rifting and/or continental breakup (e.g., Bédard, 1985;
Matton and Jébrak, 2009; Miranda et al., 2009; Pe­Piper et

al., 2013; Álvaro et al., 2022). A deep mantle plume, how­
ever, would be accompanied by distinct surface expressions
such as early domal uplift and radial dyke swarms or rift
structures associated with alkaline magmatism, and the vol­
ume of magma would be large (e.g., Hawaiian Islands). In
contrast, extensional processes cause lithospheric necking
(e.g., Mohn et al., 2012), which would facilitate the passive
rise of asthenosphere, resulting in adiabatic decompression
melting (Bédard, 1985; Matton and Jébrak, 2009). An exten­
sional model therefore predicts subsidence, rather than dom­
ing, and low­volume magmatism, particularly focused along
pre­existing structures (Bédard, 1985; Matton and Jébrak,
2009).

The Cambrian basalts investigated here are interpreted
in the context of crustal or lithospheric extension. The chang­
ing depositional setting of stratigraphic succession from the
offshore­dominant Chamberlain’s Brook green shales to the
kerogenous offshore to basinal Manuels River black shales
reflects a significant marine transgression (e.g., Landing et
al., 2022), which is more consistent with subsidence than
doming. Whereas no regional normal (extensional) faults,
synsedimentary or tectonic, are present on extant maps of
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Figure 7. XREE plots showing A) data from this study
superimposed on Greenough’s (1984) data; B) Ediacaran
alkali basalts from Bonavista (from Mills and Sandeman,
2021a); DP=Dam Pond basalts; BrHr=British Harbour
basalts; C) Selected magma end members, including: OIB
(Ocean Island Basalt), EMORB (enriched mid­ocean ridge
basalt) and NMORB (normal mid­ocean ridge basalt) from
Sun and McDonough (1989); CABA=Continental arc basalt
(CA 172, from Guiseppe et al., 2018); AlkLamp=Alkaline
Lamprophyre (Delor and Rock, 1991); Orphan Seamount
(Pe­Piper et al., 2013). All elemental concentrations are
normalized to primitive mantle (Sun and McDonough,
1989). 
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Figure 8. Discrimination diagrams based on trace elements and trace­element ratios. A) Ternary plot of La–Nb–Y (after Cabanis and
Lécolle, 1989); B) Nb/Y vs. Zr/P2O5 (after Floyd and Winchester, 1975); C) TiO2/Yb vs. Nb/Yb (after Pearce, 2008); D) Th/Yb vs. Nb/Yb
(after Pearce, 2008); E) (Tb/Yb)CN vs. (La/Sm)CN with fields for Main Ethopian Rift and Turkana Quaternary volcanic rocks and line for
garnet­ vs. spinel­dominated melting (from Rooney, 2010 and references therein); F) Zr/Nb vs. MgO with average OIB and EMORB (from
Sun and McDonough, 1989) shown as lines. CN denotes chondrite­normalized. (values from Sun and McDonough, 1989). 
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Avalon, regional­scale faults of unknown type and sense are
abundant both onshore (King, 1988) and offshore (Miller and
Singh, 1995), and include four main trends: northwest­,
north­, northeast­ and east‒west trending.

The Cambrian basalts of the Avalon occur in a narrow,
north­trending linear (half­)graben, paralleled by the trend
defined by disparate occurrences of the Spread Eagle gabbro
and a north­trending linear reverse fault zone (Figure 1).
The age and nature of these faults are not clear, however, the
offshore magnetic and gravity data were previously inter­
preted to reflect the oldest, or Precambrian, fabric of the area
(Miller and Singh, 1995). The confluence of the elongate
north­trending orientation of the (half­)graben, the parallel
lineament defined by the distribution of Spread Eagle gab­
bro occrences, and the presence of a nearby north­trending
thrust fault are consistent with the presence of a significant,
(crustal­scale?) pre­existing fault structure.

The current map compilation (King, 1988) correlates
the Big Head Formation (lower Musgravetown Group) with
siliciclastic units above proposed correlatives of the St.
John’s and Signal Hill groups on the Bay de Verde sub­
peninsula (Figure 1B, C). However, the Big Head Formation
at its type locality southwest of the current study area con­
tains glacial diamictite (Mills and Sandeman, 2021b) that is
inferred to correlate with the 580­Ma Trinity facies on
Bonavista Peninsula to the north (Normore, 2011; Pu et al.,
2016). If this correlation is correct, then this ca. 580 Ma unit
cannot sit stratigraphically above a correlative of the ca. 562
Ma St. John’s Group (Canfield et al., 2020) on the east side
of this fault (see also discussion in Regional Geology).

There is no evidence for thrust faults on extant maps of
Avalon that can account for the older Big Head Formation
sitting structurally above rocks correlative to the younger St.
John’s and Signal Hill groups. The simplest explanation for
this apparent stratigraphic discrepancy is that the lithologi­
cal correlation of the Big Head Formation on southwestern
Avalon with Hutchinson’s (1953) Whiteway Formation (for­
mer Hodgewater Group) is incorrect. Lithological correla­
tion between distinctive glacial deposits on Avalon has been
corroborated locally by U–Pb (zircon) geochronology
(Gaskiers Formation, Conception Group on Avalon
Peninsula and Trinity facies of Musgravetown Group on
Bonavista Peninsula; Pu et al., 2016). The lithologically dis­
tinct diamictite is a more robust candidate for lithological
correlation than the unremarkable green­grey siltstones of
McCartney’s (1967) Big Head Formation and Hutchinson’s
(1953) Whiteway Formation. We propose that the units on
the southwest side of a Precambrian ‘Chapel Arm Fault’
(Isthmus and St. Mary’s subpeninsula) are older than litho­
logically similar units on the northeast side (Bay de Verde
subpeninsula; see Figure 1B, C), and the cryptic north­
trending fault zone separating the two areas is of greater
regional importance than previously recognized. 

CONCLUSIONS

Cambrian basalts of the Chapel Arm Member are
interbedded with black shales of the Manuels River
Formation (Harcourt Group), deposited within the biostrati­
graphic Paradoxides davidus Zone (Hutchinson, 1962;
McCartney, 1967) of the Drumian Stage, with an approxi­
mate absolute age of between 504.5 to 500.5 Ma (Cohen et

214

Figure 9. A) Tb/Yb vs. La/Yb plot of Cambrian basaltic rocks from this study, with field of ocean­island basalts (OIB) for com­
parison. Lines represent melting of fertile lherzolite mantle, with amount of modal garnet indicated (after MacDonald et al.,
2001). Average OIB, PM (primitive mantle) are from Sun and McDonough (1989); B) Ce/Y vs. Zr/Nb plot of Cambrian
basaltic rocks. The lines represent non­modal fractional melting curves for four mantle compositions: GD=depleted garnet
lherzolite; GP=primitive garnet lherzolite; SD=depleted spinel lherzolite; SP=primitive spinel lherzolite. Numbers on lines
refer to percentages of melt (after MacDonald et al., 2001 and references therein).
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al., 2022). Slumped and contorted limestone beds, interbed­
ded with the black shale, reflect episodic syndepositional
seismic disruptions. Cleavage­parallel, tight to isoclinal
folding, and local fault imbrication indicate that tectonic
deformation is more important than previously recognized.
Pyroclastic dispersal at Placentia Junction was probably due
to sheet­wash or hyper­concentrated volcanogenic flows,
with subsequent reworking by marine benthic currents,
marine channels and low­angle shoals as indicated by local
scours, normal grading, scarcity of matrix material and
inclusion of mudstone clasts.

The similarity in shape and slope of the XREE pattern
for the gabbro at Norman’s Cove and the Chapel Arm
basalts is consistent with the former being a feeder pipe to
the latter.

Geochemical results suggest that all of the Cambrian
mafic rocks are relatively primitive, as indicated by their
moderate Mg#’s, Zr/Ti ratios, and Ni and Cr concentrations.
These rocks are LREE­enriched and have multi­element
patterns similar to those of OIB, the Orphan Seamount and
alkaline lamprophyres. They originated as low­degree par­
tial melts from a garnet lherzolite, OIB­like source. Their
deep source, negligible contamination and modest fraction­
ation indicate that the Cambrian basalts ascended quickly
with limited lithospheric involvement. These rocks are inter­
preted to have formed in a magma­poor, rift­related exten­
sional setting, likely along an, as yet, unidentified pre­exist­
ing north­trending Neoproterozoic fault zone. This cryptic
fault zone may separate previously (and erroneously) corre­
lated, lithologically similar units which are, in fact, spatio­
temporally and stratigraphically distinct.
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