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ABSTRACT

Widespread Mesoarchean Maggo orthogneiss and late Mesoarchean granitoid rocks of the Kanairiktok Intrusive Suite
occur in the Hopedale Block, southern Nain Craton, Labrador. These units host common, metre­ to kilometre­scale rafts, xeno­
liths and boudins of fine­ to medium­grained hornblende ± garnet amphibolite, massive coarse­grained peridotite varying to
harzburgite (Weekes Amphibolite) and locally, less common iron­rich sedimentary rocks and psammites. These rafts occur
marginal (northwest and southeast) to the Mesoarchean (ca. 3100 Ma) Hunt River Belt, an elongate (~75­km­long) and nar­
row (<5­km­wide), northeast­trending supracrustal belt consisting mostly of fine­grained amphibolite, minor iron formation,
and sparse felsic volcanic and semipelitic to arenitic rocks. Primary volcanic textures in all amphibolites are lacking, contact
relationships of the Hunt River Belt with the engulfing granitoids are absent and basement to the Hunt River Belt and basal
unconformities have not been identified. Thus, the relationships between the Hunt River Belt, the Weekes Amphibolite and the
Maggo Gneiss are unclear. This contribution examines lithogeochemical and Nd isotopic data for amphibolites of the Hunt
River Belt and isolated rafts of Weekes Amphibolite and ultramafic rocks, to address their origin, and to constrain their rela­
tionships with the Maggo Gneiss and Kanairiktok Intrusive Suite. The data suggest that the rocks referred to as the Weekes
Amphibolite may reflect two distinct temporal origins, one contemporaneous with the Maggo Gneiss formation (>3200 Ma)
the other with the younger Hunt River Belt (~3100 Ma).

INTRODUCTION AND

REGIONAL SETTING

The Hopedale Block of Labrador forms the southern

structural domain of the Nain Craton, which together with

the northern Saglek Block (Bridgewater and Schiøtte,

1991), form the western part of the North Atlantic Craton

(Bridgwater et al., 1973), a wedge­shaped Archean domain

bounded on three sides by Paleoproterozoic orogens (Figure

1). The Hopedale Block lacks crust older than ca. 3300 Ma

and has a tectonometamorphic history, prior to ca. 2800 Ma,

distinct from that of the Saglek Block. Most of the Hopedale

Block consists of a variably deformed granitoid basement

complex termed the Maggo Gneiss (Figure 2; Ermanovics

and Raudsepp, 1979; Finn, 1989a, b, 1991; Ermanovics,

1993; James, 1997; James et al., 1996, 2002). The Maggo

Gneiss was intruded by the Archean, mafic Hopedale dykes

sometime after the poorly defined >3100 Ma Hopedalian

tectonothermal event (Korstgård and Ermanovics, 1985;

James et al., 2002). These dykes have never been dated, and

lithogeochemistry is lacking. Two supracrustal (greenstone)

belts are recognized: the Hunt River Belt, a ca. 3105 Ma,

elongate (~75­km­long) and narrow (<5­km­wide) north­

northeast­trending amphibolite­facies supracrustal belt in

the centre of the block and; the ca. 3000 Ma, ~65­km­long

and <6­km­wide greenschist­ to amphibolite­facies grade

north­northeast­trending Florence Lake Belt in the southeast

(Figure 2). The Hopedale Block also contains numerous

smaller mafic belts preserved as narrow lens and rafts sur­

rounded by orthogneiss and granitoid intrusions. Although

sometimes referred to as the Weekes association

supracrustal rocks (e.g., Schiøtte et al., 1989; Finn, 1991),

herein these are collectively termed the Weekes

Amphibolite.

The Maggo Gneiss, Weekes Amphibolite and

supracrustal rocks of the Hunt River and Florence Lake belts

were collectively defomed and metamorphosed during the

ca. 2960–2880 Ma, greenschist­ to amphibolite­facies

Fiordian tectonometamorphic event, associated with the for­
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Figure 1. Simplified geological map of the northeastern Canadian Shield of Labrador and Québec showing the location of
the Hopedale map sheet with respect to major geological terranes. Modified from Hinchey et al. (2023). KKSZ=Kanairiktok
Shear Zone; FRIS=Flowers River Igneous Suite; NGO=New Québec Orogen; ASZ=Abloviak Shear Zone.
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mation of penetrative, northeast­striking structures. All

rocks are intruded by variably deformed tonalitic to granitic

and granite pegmatite intrusive rocks of the ca. 2890 and

2825 Ma Kanairiktok Intrusive Suite (Ermanovics and

Raudsepp, 1979; Ermanovics et al., 1982; Loveridge et al.,
1987; Ermanovics, 1993; Wasteneys et al., 1996; James et
al., 2002; Rayner, 2022). These engulf and surround the

older units and were intruded in the latter stages, and local­

ly postdate, the Fiordian event (Ermanovics et al., 1982;

Korstgård and Ermanovics, 1985; Ermanovics, 1993; James

et al., 2002).

In the western parts of the Hopedale Block (Figure 2),

the Paleo­ to Mesoarchean, upper amphibolite­ to granulite­

facies Maggo Gneiss and Weekes Amphibolite were intrud­

ed by a series of relatively small, 2­km­thick or less, sills,

sheets and plugs of late Neoarchean (ca. 2570 Ma) syenite,

monzodiorite, essexite (alkali gabbro) and minor syenogran­

ite of the Aucoin Suite (Sandeman and Rafuse, 2011;

Sandeman and McNicoll, 2015; Rayner, 2022).

The Archean rocks of the Hopedale Block are intruded

by suites of Proterozoic mafic dykes including, from oldest

to youngest: the Mesoarchean (?) Hopedale dykes

(Korstgård and Ermanovics 1985); the north­northeast to

north–south­trending 2238 to 2216 Ma Kikkertavak Suite

(Cadman et al., 1993; Sahin and Hamilton, 2019); a single

dated north­northeast­trending dyke at 2169 ± 13 Ma (Sahin

and Hamilton, op. cit.); the northwest­trending ca. 2050 Ma

Ellen Island dykes (Sahin and Hamilton, op. cit.); a single

ca. 1800 Ma northwest­trending (“Ussiranniak Lake”) dyke

(Sahin and Hamilton, op. cit.); a suite of ca. 1640 Ma, meso­

toleucocratic, amphibole ± biotite porphyritic diorite (lam­

prophyric) sills termed the Kokkorvik sills (Cadman, 1991)

and; the northeast­trending, ca. 1273 Ma Harp Dykes

(Krogh, 1992, 1993; Cadman et al., 1993). The Kokkorvik

sills were proposed, for an unknown reason, to have been

emplaced at ca. 1640 Ma (Cadman, 1991), however, based

on a thermal ionization mass spectrometry U–Pb abraded

titanite age of 1662 ± 4 Ma, and on petrography and limited

geochemistry, they may be the same as shallowly dipping,

dioritic dykes in the Makkovik Orogen to the south

(Sparkes et al., 2010).

In the west, the boundary between the southeast

Churchill and Nain provinces and the Torngat orogen is

stitched by the anorthosite–mangerite–charnockite–granite

association (AMCG) rocks of the ca. 1460 Ma Harp Lake

intrusion (Emslie, 1980). In the northern parts of the

Hopedale Block, the Archean and Paleoproterozoic rocks

are cut by the long­lived, ca. 1363–1292 Ma Nain Plutonic

Suite (Hill, 1982; Ryan et al., 1991; Thomas and Morrison,

1991; Tettelaar, 2004) and by the ca. 1293–1271 Ma
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Figure 1. Legend.
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Figure 2. Geology of the Hopedale map area (modified from Hinchey et al., 2023) showing the location of localities discussed
in the text and the locations of the samples under investigation.
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Flowers River Intrusive Complex (Hill, 1982; Brooks, 1982,

1983; Krogh, 1993; Thomas and Morrison, 1991; Ducharme

et al., 2021). The major Archean geological components of

the Hopedale Block, possible unconformities and tectono­

thermal events are depicted in Figure 3.

THE HUNT RIVER BELT

The Hunt River Belt stretches from the Labrador Sea

coast at South Tikigakjuk Point, southwestward for approx­

imately 75 km to north of Shapio Lake (Figure 2) and is

divided into northern, central and southern segments (James

et al., 2002). The central and southern parts of the belt pre­

serve the thickest and most complete stratigraphy. The com­

positionally layered supracrustal rocks define a number of

kilometric­scale antiforms with south­southwest­trending

axial planes and moderately plunging fold axes

(Ermanovics, 1993; James et al., 2002). The supracrustal

belt is dominated by mafic metavolcanic rocks with greatly

subordinate felsic volcanic, ultramafic and contemporane­

ous metasedimentary rocks (see James et al., 2002). The

amphibolite­facies metavolcanic and metasedimentary

rocks are encompassed by the Maggo orthogneiss and all

were intruded by granitoid rocks of the Kanairiktok Plutonic

Suite. The Hunt River Belt has been studied by Taylor

(1972, 1977, 1979), Jesseau (1976), Ermanovics and

Raudsepp (1982, 1993), James (1997) and James et al.
(2002). These studies provide further observational back­

ground for the foundation of our discussion.

Sites visited herein consisted of

interlayered sequences of typically 10s

to 100 metre­scale fine­grained amphi­

bolite with ~30–50­cm­scale layered

feldspar­ and hornblende­rich layers as

well as local pyrite‒ pyrrhotite­rich

horizons (Plate 1A). The latter may

represent iron­rich exhalative deposits.

Locally, amphibolite consists of wispy

discontinuous, feldspar­rich layers

interlayered with a greater modal per­

cent of amphibole. These may repre­

sent metamorphosed bedded mafic

tuffs (Plate 1B). Ultramafic rocks are

less common than the amphibolites

and typically form relatively narrow

(<10­m­wide) lenses and layers in

amphibolite (Plate 1C). Stratigraphic

facing direction indicators are absent.

Representative thin sections, cov­

ering many of the widely separated

sample localities reveal that most of the

Hunt River Belt samples consist of fine­

grained, sugary, weakly layered and

variably foliated amphibolite, typically

consisting of 20–30 volume % plagio­

clase and 60–80% dark­green horn­

blende (Plate 1D). Garnet, clinopyrox­

ene and orthopyroxene are less com­

mon and typically form granular aggre­

gates in specific compositional layers in

the amphibolites. Accessory phases

include: actinolite, epidote and chlorite

after hornblende, biotite, apatite and

magnetite. Pyrite and pyrhotite are com­

mon and may comprise up to 8–10% of

some rusty samples.

81

Figure 3. Lithotectonic stratigraphic architecture and known and inferred ages of
geological units and tectonometamorphic and erosional events of the Hopedale
map sheet. Modified after James et al. (2002) with data from Sandeman and
McNicoll (2015), Ducharme et al. (2021) and Rayner (2022). 
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THE WEEKES AMPHIBOLITE

Common rafts and xenoliths of coarser grained, layered

amphibolite, ultramafic and sparse metasedimentary rock

bodies in Maggo Gneiss were termed the Weekes

Amphibolite (Ermanovics and Raudsepp, 1979). These were

interpreted as the oldest rocks in the region and were con­

sidered to represent dispersed remnants of the previously

more widespread Hunt River Belt (Taylor, 1977, 1979;

Ermanovics and Raudsepp, 1979; Ermanovics, 1993; James

et al., 2002). The possibility was raised, however, that some

of these supracrustal rafts and xenoliths may represent pre­

Hunt River Belt mafic assemblages formed earlier, or at the

same time as the Maggo Gneiss (see James et al., 2002).

This suggestion is, in part, based on the work of Schiøtte et
al. (1989) who obtained an age of 3258 ± 24 Ma for what

were interpreted as low­U detrital zircons from a sample of

Weekes metasedimentary rock from the Hopedale Block.

These data represent the only direct geochronological con­

straint on the age of the Weekes Amphibolite.

Most amphibolite rafts range from 3 to 6 m thick and 6

to 200 m in length, but larger bodies, hundreds of metres in

length locally occur north, west and south of Hopedale.

These bodies are typically variably veined by granitoids

(e.g., Plate 2A, B) and are associated with hornblendite,

ultramafic rocks and sparse metasedimentary rocks.

Gneissic tonalite, which may represent Maggo Gneiss and/

or gneissic Kanairiktok tonalite, is marginal to and engulfs

all Weekes unit rafts. Individual feldspar­ and hornblende­

dominant layers in the amphibolite typically vary from 2 to

100 cm thick (e.g., Plate 2C) and contain hornblende, pla­

82

Plate 1. Photographs of representative amphibolite exposed in the Hunt River Belt. A) A 30­ to 50­cm­scale­layered amphibo­
lite with a 20­cm­thick pyrrhotite + pyrite­rich layer. Central Hunt River Belt (18HS­007); B) Wispy feldspar­rich layers in a
heterogeneous Hunt River amphibolite (near 18HS­007) that may represent a basaltic tuff; C) Well­foliated amphibolite of the
Hunt River Belt with an approximately 4­m­thick ultramafic schist horizon (19HS­028); D) Plane­polarized light photomicro­
graph of granoblastic to weakly nematoblastic amphibolite (18HS­007A) consisting of hornblende, plagioclase and magnetite. 
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gioclase, garnet (Plate 2D, E), diopside (Plate 2F) and rare

biotite and orthopyroxene. Secondary, greenschist­facies

grade retrograde metamorphic assemblages include: actino­

lite/tremolite, grunerite–cummingtonite, epidote, biotite,

chlorite and carbonate.

A suite of 22 lithogeochemical samples of intact and

unveined amphibolite, occurring as large­scale, 25 to 100s

of metre­scale rafts in the Hopedale map area and spatially

separated from the Hunt River Belt, were collected to obtain

a better understanding of the origin and tectonic setting of

formation of these rocks. The samples are dominantly com­

posed of variably foliated, fine­ to medium­grained (1–8

mm) amphibolite to hornblendite (Plate 2E, F), with subor­

dinate garnet amphibolite. Massive garnet amphibolite was

noted in numerous localities across the map area and is

locally accompanied by clinopyroxene with and without

orthopyroxene. Although no unambiguous primary volcanic

textures were noted and most of the exposures of Weekes

Amphibolite consist of massive to weakly layered amphibo­

lite, at one locality (19HS­018) elongate (<40 cm), typical­

ly oblate and rounded mafic amphibolitic enclaves in a

weakly layered,  more feldspathic matrix (Plate 2G) were

noted. A number of these enclaves have more feldspathic or

garnetiferous cores suggesting primary compositional dif­

ferences between the enclaves and host. Approximate sam­

ple locations and their distribution are shown in Figure 2.

Ultramafic examples of Weekes Amphibolite are more

common than previously reported and vary from metre­

scale ultramafic boudins to hundreds of metre­scale, com­

posite ultramafic and hornblenditic rafts and xenoliths sur­

83

Plate 2. Photographs and photomicrograph of representative rocks of Weekes Amphibolite. A) Granodiorite­ and granite peg­
matite­veined hornblendite (right) and amphibolite (left) at Tooksooner Bay immediately south of Hopedale airport (Figure
2: 19HS­007). Prospector Edmund Saunders for scale; B) Granite pegmatite­veined hornblendite–amphibolite at left and
lighter grey, less­veined psammite at right. Sharpie marker for scale in yellow circle; C) Medium­grained garnetiferous
amphibolite at 19HS­007. Note plagioclase rim (P­decrease metamorphic reaction) on garnet; D) Close­up of plagioclase­
rimmed garnet in C. 
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rounded by tonalitic gneiss and locally foliated granitoids

(e.g., Plate 3A). Rafts and boudins of coarse­grained, ser­

pentinized ultramafic rocks comprising parts of the Weekes

Amphibolite unit occur sporadically throughout the block

but are apparently more common in areas lying to the east

side of the Hunt River Belt and nearer the Labrador Sea

coast. These typically consist of massive, medium­ to

coarse­grained (2–10 mm), variably serpentinized and

altered peridotite (Plate 3B), although smaller boudins con­

sist of ultramafic schist. Most of the samples comprise

coarse, remnant xenoblastic orthopyroxene surrounded by a

serpentinized matrix containing small remnant xenoblastic

olivine with rare magnetite and spinel (Plate 3C, D).

FIELD SAMPLING AND

ANALYTICAL METHODS

In 2018, under the umbrella of the National Geoscience

and Mapping (GEM­II) project, the Geological Survey of

Canada (GSC) completed a 100­m line­spacing airborne

aeromagnetic survey over the Hopedale map sheet (NTS

13N; Coyle, 2019). Follow­up in the summers of 2018 and

2019 focused on characterizing the regional rock­types and

explaining the distinct magnetic anomalies and patterns of

the region via local traversing and helicopter­supported

sampling and mapping. During approximately 6 weeks,

>100 field stations and 59 samples of the Weekes

Amphibolite and ultramafic rocks and, amphibolite of the

Hunt River Belt were documented. These were selected

using the 1:250 000­scale map of Ermanovics (1993), the

new geophysical data (Coyle, op. cit.) and the more detailed

maps of James et al. (2002).

LITHOGEOCHEMICAL METHODS

Clean, representative 1­ to 1.5­kg samples were crushed

to ~1­cm rock chips and a 50–100 g split was then pulver­

ized in a mild steel pulveriser. All samples were analyzed at

84

FE

G

1 mm 1 mm

gtgt

hblhbl

plpl
hbhb

cpxcpx opxopx

mtmt
plpl

Plate 2 (continued). E) Medium­ to coarse­grained garnet amphibolite (19HS­007) under plane­polarized light; F) Medium­
to coarse­grained orthopyroxene–clinopyroxene­bearing amphibolite (19HS017A) under plane­polarized light; G) Elongate
(<40 cm), typically oblate and rounded mafic amphibolitic enclaves in a weakly layered, more feldspathic matrix (sample
19HS­018). Pen magnet for scale in yellow circle.
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the Geochemical laboratory of the Geological Survey of

Newfoundland and Labrador (GSNL) following the meth­

ods of Finch et al. (2018). Major elements were analyzed by

ICP­OES after borate fusion. FeO was determined through

titration (Fe2O3
T is the total iron as ferric oxide) and Fe2O3

was calculated from the other two iron analyses. Loss on

ignition (LOI) was determined through gravimetry. Trace

elements were determined using both ICP­MS following

borate fusion, and ICP­OES following four­acid digestion.

Silver was determined through ICP­OES following nitric

acid digestion. An ion selective electrode (ISE) was used to

analyze fluoride. A suite of 27 elements, in particular Au, Sb

and Se, were analyzed by Instrumental Neutron Activation

Analysis (INAA) at Bureau Veritas Laboratories

(https://www.bvlabs.com). Major elements are reported in

wt. % and trace elements are reported in ppm except for Au,

which is given in ppb. Negative detection limit values rep­

resent analyses below the detection limit and ­99 represents

samples that were not analyzed for that element. All litho­

geochemical data are in Hinchey et al. (2021) but salient

lithogeochemical aspects of the Hunt River Belt and Weekes

Amphibolite, as well as for the Weekes ultramafic rocks are

in Table 1.

Nd ISOTOPE GEOCHEMICAL METHODS

Sm–Nd Analyses Conducted at Memorial

University of Newfoundland

Whole­rock powders were weighed into Savilex©

Teflon capsules and then spiked with a mixed 150Nd/149Sm

spike before being dissolved using an 8 ml (4:1) mixture of

85

Plate 3. Photographs and photomicrographs of representative rocks of Weekes ultramafic units. A) Oblique aerial photograph
looking south at a large (>125­m­long) raft/boudin of coarse­grained peridotite in north–south­trending tonalitic gneiss
(locality 19HS­019); B) Outcrop photograph of the bleached, broadly layered, coarse­grained serpentinized orthopyroxene­
rich peridotite at locality 19HS­019; C) Photomicrograph in plane­polarized light of coarse­grained, xenoblastic orthopy­
roxene in a serpentinized groundmass composed of small, relict, xenoblastic olivine and rare magnetite and spinel; D) Same
as C but under crossed polars.

A B

C D

layering?layering?

0.5 mm
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29 M HF – 15 M HNO3. After five days of acid digestion

on a hotplate, the solution was then evaporated to dryness

and taken back up in 6M HCl for 4–5 days. The sample

was dried down then re­dissolved in 2.5 M HCL. Samples

were then loaded into a column containing cation

exchange resin AG­50W­X8, H+ form, 200–400 mesh

where a Sr fraction, if required, can be isolated followed

by collection of bulk rare­earth elements (REEs). This bulk

solution was then dried and taken up in 0.18 M HCl and

loaded on a second column containing Eichrom© Ln resin

(50–100 mesh) to isolate Sm and Nd separately from the

other REEs. All reagents were purified to ensure a low

contamination level. 

The Sm and Nd concentrations were determined using a

multi­collector Finnigan Mat 262 mass spectrometer (TIMS)

set to dynamic mode for isotopic composition determination.

Instrumental mass fractionations of Sm and Nd were correct­

ed using a Raleigh law relative to 146Nd/144Nd = 0.7219,
152Sm/147Sm = 1.783. The reported 143Nd/144Nd ratios were

corrected for the deviation from repeated duplicates of the

standards JNdi­1 (143Nd/144Nd = 0.512115; Tanaka et al.,
2000). Replicates of the standards yielded a 6­month mean

value of 143Nd/144Nd = 0.512095 ± 09 (1SD, n=27) for JNdi­

1. The Nd isotopic results for selected samples are in Table 2.

Sm–Nd Analyses Conducted at

Carleton University, Ottawa

Samples were prepared in the clean lab of the Isotope

Geochronology and Geochemistry Research Centre

(IGGRC) at Carleton University. Rock powders were doped

with a 148Nd–149Sm mixed spike before being dissolved in a

mixture of concentrated HF and HNO3. Sample solution

were dried down, and the residues were sequentially dis­

solved in 7M HNO3 and in 6M HCl and were final dried

down to dryness. The sample residues were dissolved in 1.5

ml of 2.5 M HCl and were loaded onto 14­ml Bio­Rad

borosilicate glass chromatography columns containing 3.0

ml of Bio­Rad AG50W­X8 cation exchange resin. Columns

were washed with 16 ml of 2.5 M HCl before Sr was eluted

in 7 ml 2.5 M HCl. The columns were then washed with 3.5

ml of 6 M HCl before REE were eluted using 9 ml of 6M

HCl. The REE fractions were dissolved in 0.26M HCl and

were loaded onto 2 ml prepacked Ln resin columns

(Eichrom Technologies, LLC, USA). Nd was eluted using

0.26M HCl, followed by Sm elution using 0.5M HCl.

In addition, the Sr fractions were re­cleaned to remove

excessive Rb and other impurities using columns containing

about 100 microlitres of Sr­Spec resin (Eichrom

86

Table 1. Salient lithogeochemical features of the Hunt River Belt, Weekes Amphibolite and Weekes ultramafic units

Hunt River Belt Weekes Amphibolite Weekes ultramafics

Variable ID max min mean max min mean max min mean

Mg# 68.72 15.15 48.22 71.73 30.20 51.39 96.45 54.87 81.46

MgO wt% 12.18 0.97 6.96 9.75 5.08 7.26 44.53 7.39 28.05

TiO2 wt% 1.50 0.41 0.83 1.65 0.28 0.93 0.49 0.02 0.20

Al2O3 wt% 15.59 8.08 13.18 16.34 6.42 14.22 10.67 0.35 3.85

FeOT wt% 13.58 9.68 11.61 25.66 6.85 12.42 13.51 2.80 9.26

P2O5 wt% 0.12 0.03 0.06 0.11 0.03 0.06 0.03 0.00 0.01

AI 49.26 26.34 38.09 49.00 32.41 38.99 99.88 52.19 84.87

CPPI 94.96 76.03 87.17 98.16 80.19 86.44 99.96 89.24 97.63

Cr ppm 734 34 292 416 45 222 7221 174 2554

Co ppm 73 12 57 66 35 54 199 64 110

Cu ppm 1425 66 265 800 8 148 827 3 111

Ni ppm 254 30 132 159 45 104 3666 69 1421

(La/Yb)CN 3.57 0.11 1.43 6.14 0.16 1.47 9.68 0.57 3.28

(La/Sm)CN 2.02 0.15 1.01 4.14 0.13 1.16 8.72 0.74 2.70

(Gd/Yb)CN 0.25 0.15 0.21 0.31 0.16 0.21 0.83 0.12 0.43

(Th/La)CN 12.84 0.39 2.47 3.50 0.28 0.98 1.70 0.37 1.31

(Th/Nb)CN 5.83 1.06 2.37 6.22 0.64 2.01 2.49 0.85 1.70

(Th/La)CN 12.84 0.39 2.47 3.50 0.28 0.98 1.70 0.30 1.17

Eu/Eu* 2.75 1.85 2.31 2.74 1.82 2.26 3.67 1.12 2.49

Zr/Y 7.68 2.18 4.05 3.89 1.95 2.86 14.00 1.56 4.86

Nb/Y 0.39 0.08 0.19 0.19 0.05 0.09 1.00 0.15 0.49

Nb/Yb 3.70 0.70 1.72 1.67 0.47 0.77 10.00 1.29 5.09
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Technologies, LLC, USA). The Sr fractions

were loaded on the columns and were washed in

1.6 ml of 7M HNO3. Sr was eluted in 1.6 ml of

ultra­pure water. The Sr, Sm and Nd isotope

ratios were measured using IGGRC’s Thermo­

Finnigan Neptune MC­ICP­MS. The Sr and Nd

isotopic ratios were normalized against
86Sr/88Sr=0.1194 and 146Nd/144Nd= 0.7219,

respectively.

The average values of bracketing standard

reference materials for a period of six months

covering this analysis session are NBS987 87Sr/
86Sr = 0.710239 ± 0.000019 (2SD, n=43) and

JNdi­1 143Nd/144Nd = 0.512093 ± 0.000015

(2SD, n=52). The total procedure blanks are

<250 pg and <50 pg for Sr and Nd, respectively.

LITHOGEOCHEMICAL RESULTS

ALTERATION, METAMORPHISM

AND ELEMENT MOBILITY

The Weekes Amphibolite and Hunt River

Belt rocks were metamorphosed to amphibolite­

varying to granulite­facies mineral assem­

blages. Both units commonly exhibit rusty

patches and planar zones containing elevated

pyrrhotite and pyrite. Many samples of the

Weekes Amphibolite and Hunt River Belt

amphibolite lie above the “fresh basalt” field

and have an elevated CCPI alteration index,

suggesting Mg–Fe carbonate alteration (Large

et al., 2001; see Figure 4). The Weekes ultra­

mafic rocks also lie above the “fresh basalt”

field and project toward the chlorite+pyrite apex

as they are enriched in FeOT and, in particular

MgO. Because of their antiquity, high metamor­

phic grade and field evidence for alteration, the

immobile trace elements (high­field strength

(HFSE) and rare­earth (REE) elements), essen­

tially immobile under most fluid – rock interac­

tions (e.g., Pearce and Cann 1973; Wood et al.,
1980; Middelburg et al., 1988), are emphasized

for petrological and geotectonic interpretations.

CLASSIFICATION, AND MAJOR­ AND

TRACE­ELEMENT VARIATIONS

Although all samples of the Hunt River

Belt and the Weekes Amphibolite were termed

amphibolite in the field, they exhibit a wide

range of SiO2 (45.3 to 68.3 wt. %), low but vari­

able total alkalies, and are subalkaline basalt
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ranging to dacite (Figure 5A). The Weekes ultramafic rocks

similarly exhibit a wide range of SiO2 (35.3 to 56.8 wt. %)

and low, variable total alkalies and are picrobasalt ranging to

andesite (Figure 5A). The Weekes ultramafic rocks are

komatiite with one sample having elevated alkalis and plot­

ting above the komatiite–meimechite field, likely reflecting

alteration (Figure 5B). The the Hunt River Belt and Weekes

Amphibolite are picrobasalt ranging to basalt (Figure 5B).

Immobile trace­element plots illustrate that both the Hunt

River Belt and the Weekes Amphibolite samples are subal­

kaline tholeiitic basalts (Figure 5C, D).

The collective major­ and compatible trace­element

chemistry of the rocks are outlined in major element vs. Mg#

(molecular (MgO/MgO+FeOT)*100) diagrams (Figure 6).

Collectively, they demonstrate that the rocks of the Hunt

River Belt and Weekes Amphibolite exhibit broadly similar

fractionation trends in terms of all elements vs. fractionation

index (Mg#). The SiO2, Al2O3 and CaO vary little with
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increasing fractionation, whereas FeOT increases modestly.

In contrast, TiO2, P2O5, Na2O and K2O increase with increas­

ing fractionation (Figure 6). The mantle compatible elements

Cr, Ni and Co all decrease with increasing fractionation

whereas Sc and V increase with fractionation (Figure 7).

REE AND MULTI­ELEMENT PLOTS

Hunt River Belt amphibolites exhibit flat to weakly

LREE­enriched and LREE­depleted rare­earth­element pat­

terns ((La/Sm)CN = 0.15–2.02: Figure 8A) typically with ele­

mental abundances between 6 and 50 times chondrite. These

are broadly similar overall to those for the Weekes

Amphibolite (Figure 8B) that have (La/Sm)CN = 0.13–4.14

ranging from 5 to 35 times chondrite. Both units have over­

lapping, weakly positive Eu anomalies, with the Hunt River

Belt samples having Eu/Eu* = 1.85–2.75 compared to

1.82–2.74 for the samples of Weekes Amphibolite. Weekes

ultramafic rocks have low concentrations of the rare­earth

elements, many of which are below detection, and therefore
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exhibit jagged, broadly flat REE profiles generally <10x

chondrite (Figure 8C).

The Hunt River Belt amphibolites have generally flat,

ranging from weakly LILE and LREE­enriched to weakly

LILE and LREE­depleted multi­element patterns common­

ly having minor Nb, P and Ti troughs (Figure 9A). The ele­

ments typically range in abundance from 2 to 20x primitive

mantle. The LILE and LREE­depleted and enriched samples

occur proximal to one another in the same outcrop areas

(e.g., samples 19HS40B vs. 19HS40C). The Weekes

Amphibolite samples are similar to the Hunt River Belt

amphibolites and have generally flat, ranging to weakly

LILE and LREE­enriched and depleted multi­element pat­

terns commonly with minor Nb, P and Ti troughs (Figure

9B). The elements typically range in abundance from 1 to

91

1

10

100

1

10

100

1

10

100

La
Ce

Pr
Nd

Pm
Sm

Eu
Gd

Tb
Dy

Ho
Er

Tm
Yb

Lu

Hunt River Belt

Weekes Amphibolite

Weekes Ultramafic

19HS-038B
(ƐNdt = -1.1)

A

B

C

1

10

100

R
o

ck
/P

ri
m

i�
e

 m
a

n
tl

e
.1

A

B

C

1

10

100

R
o

ck
/P

ri
m

i�
e

 m
a

n
tl

e

.1

R
o

ck
/P

ri
m

i�
e

 m
a

n
tl

e

.1

1

10

100

Th
Nb

La
Ce

Pr
P

Nd
Zr

Hf
Sm

Eu
Gd

Ti
Tb

Dy
Ho

Y
Yb

Lu

Hunt River Belt

Weekes Amphibolite

Weekes Ultramafic

19HS-038B
(ƐNdt = -1.1)

Figure 8. Chondrite normalized rare­earth element dia­
grams (Sun and McDonough, 1989) for rocks of: A) Hunt
River Belt; B) Weekes Amphibolite mafic and; C) Weekes
Amphibolite ultramafic rocks. 

Figure 9. Multi­element plots normalized to primitive man­
tle (Sun and McDonough, 1989) for rocks of: A) Hunt River
Belt; B) Weekes Amphibolite mafic and; C) Weekes
Amphibolite ultramafic rocks. 



CURRENT RESEARCH, REPORT 23­1

10x primitive mantle. The Weekes ultramafic rocks have

low concentrations of incompatible trace elements, many of

which are below detection, and exhibit jagged, broadly flat

multi­element profiles that typically range in abundance

from <1 to 6x primitive mantle (Figure 9C).

Nd ISOTOPES

All ƐNdt values for the amphibolites are recalculated to

t=3100 Ma (DePaolo, 1981; Table 2; Figure 10). The 2 sam­

ples of Maggo Gneiss  were recalculated to time=3250 Ma

and the 2 samples of the Kanairiktok Intrusive Suite were

recalculated to time=2850 Ma. All specimens of the Hunt

River Belt yield present­day 144Nd/143Nd ratios ranging from

0.511865 to 0.513156, corresponding to ƐNdt=3100 Ma values

of +1.4 to +2.4 (mean = +1.9; n = 3, Table 2; Figure 10). The

Weekes Amphibolite samples in comparison exhibit pres­

ent­day 144Nd/143Nd ratios ranging from 0.511576 to

0.513008, corresponding to ƐNdt=3100 Ma values of ­1.1 to

+3.1 (mean = +1.7; n = 7, Table 2; Figure 10). These data

generally overlap, within error, the value for contemporane­

ous depleted mantle (DM), their mean value is identical to

that for DM (DMt=3100 Ma = +1.6; DePaolo, 1981) and the

standard deviation comparable to the calculated analytical,

2σ standard deviation of 0.5–0.8 Ɛ units. 

DISCUSSION

Previous investigators (Ermanovics and Raudsepp,

1979; Ermanovics et al., 1982; Finn, 1989a, b, 1991;

Ermanovics, 1993) interpreted the Hunt River Belt as the

oldest intact unit in  the region, and all other supracrustal

rafts of amphibolite, metasedimentary and ultramafic units

engulfed by gneissic and intrusive rocks (Maggo Gneiss,

Kaniriktok Intrusive Suite) were termed Weekes

Amphibolite (units A’Wab and A’Wan, Ermanovics, 1993).

They interpreted these rafts to represent, at least in part, the

dismembered remnants of the Hunt River Belt.

Concurrently, and based on imprecise, whole­rock Rb–Sr

isochron data, Finn (1989a, b, 1991) and Ermanovics

(1993), indicated that the components of the Maggo Gneiss

ranged in age from ca. 3300 to 3100 Ma, in part contempo­

raneous with the Hunt River Belt.

James et al. (2002) provided the first documented zir­

con age for the tonalitic component of the Maggo Gneiss,

yielding a poorly constrained TIMS U–Pb zircon age of ca.
3250 Ma. Recent sensitive high­resolution ion microprobe

(SHRIMP) U–Pb geochronology (Rayner, 2022) has con­

firmed the antiquity of the Maggo Gneiss and 3 new ages

from a number of widely separated localities of tonalitic

gneiss yield a range from 3260–3250 Ma, further illustrating

the age of the precursor igneous intrusions of the gneiss.

These ages correlate well with the single, poorly constrained

age of 3258 ± 24 Ma age for Weekes metasedimentary, low­

U detrital zircons from a sample from the Hopedale Block

(Schiøtte et al., 1989) and suggest that some of the

supracrustal rafts, screens and boudins (Weekes

Amphibolite) form part of the Maggo Gneiss sensu stricto.

This suggestion supports that of Loveridge et al. (1987) and

James et al. (2002), the latter outlined a time evolutionary

sequence for the Hopedale Block different from previous

interpretations (viz. Ermanovics, 1993; Wasteneys et al.,
1996), and proposed that some of the Weekes Amphibolite

represents a supracrustal component older than, or compara­

ble in age to, the Maggo Gneiss. Clearly, the possibility

exists that the amphibolitic remnants preserved in the

Maggo Gneiss and Kanairiktok Intrusive Suite likely repre­

sent both early, Maggo Gneiss age­equivalent amphibolite

as well as engulfed remnants of the Hunt River Belt, and

perhaps even the Florence Lake Belt.
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IMPLICATIONS OF THE NEW DATA

The new lithogeochemical and Nd isotopic data, along

with compiled historical data, show that Hunt River Belt and

Weekes Amphibolite are broadly very similar. Both repre­

sent suites of sub­alkaline tholeiitic basalts to picritic

basalts. Major­ and compatible trace­element variation

trends versus Mg#, for both types of amphibolites reflect the

dominant crystallization of magnesian olivine + orthopyrox­

ene with minor clinopyroxene. Olivine and orthopyroxene

both have relatively high mineral/melt distribution coeffi­

cients for Cr, Ni and Co, but lower distribution coefficients

for Sc and V (Rollinson, 1993; McDade et al., 2003). It is

unlikely significant amounts of clinopyroxene were

removed from the melts as CaO remains relatively constant

over ~30 Mg# units and Sc and V increase with fractiona­

tion (Figures 6 and 7). It is similarly unlikely spinel was part

of the crystallization sequence for the amphibolites as TiO2

and V increase with fractionation and these elements are

strongly fractionated into spinel. Moreover, concentrations

of Cr and Ni are low, an indication that if spinel had been on

the liquidus, it must have been early in the petrogenesis of

these rocks.

Although broadly very similar in terms of their major­

and compatible trace­element abundances, the incompati­

ble trace elements and trace­element ratios outline some

clear distinctions (Figure 11). The Hunt River Belt amphi­

bolites have higher Nb/Yb, Zr/Y and Nb/Y ratios than the

Weekes Amphibolite samples (Figure 11A, B). Although

having similar trends toward the Th apex, and perhaps

implying “arc” magmatic series, the two types of amphibo­

lite define trends toward different Th­poor mantle sources

(Figure 11C). Figure 11D–F similarly distinguish the two

types of amphibolite. The Hunt River Belt rocks plot

between the NMORB and EMORB fields on many tecton­

ic discrimination diagrams, whereas the Weekes

Amphibolite samples plot largely in the NMORB field.

Collectively, their trace elements indicate that the Hunt

River Belt amphibolites were derived from a slightly more

enriched mantle source, although both units appear to range

from LREE­depleted to slightly enriched varieties with

variable minor HFSE troughs suggesting some recycling of

the lithosphere. The Nd isotopic values overlap extensively

with depleted mantle at 3100 Ma, indicating that most

amphibolites, either from the Hunt River Belt or from the

Weekes Amphibolite, were derived from mantle sources of

similar antiquity, and if lithospheric contamination

occurred, then the contaminant was of comparable age as

the amphibolite’s parental basaltic magmas.

Only one specimen of the Weekes Amphibolite (19HS­

038B) yielded an ƐNdt=3100 Ma <1 (­1.1), is LREE­enriched

and also has the most prominent negative Nb anomaly.

Collectively, these features suggest that this sample exhibits

the best evidence for containing a slightly older lithospher­

ic/subduction component in its genesis. One sample is not

conclusive, but this suggests that at least some of the

Weekes Amphibolite samples may represent older, Maggo

Gneiss – affiliated amphibolite. This, along with their some­

what differing compositions, suggest that both older Maggo

Gneiss – affiliated amphibolite, and younger dispersed rem­

nants of the Hunt River and Florence Lake belts components

are represented in the Weekes Amphibolite. Documentation

of the field and geochronological relationships between the

enclosing granitoid rocks and the amphibolites is critical for

further understanding of the early history of the Hopedale

Block.

The Weekes ultramafic rocks occur as metamorphosed

rafts in granitic rocks and preserve no primary textures, in

particular spinifex, so they are better referred to as picrites

or harzburgites (see Kerr and Arnt, 2001). The Weekes ultra­

mafic rocks have relatively low abundances of all elements

except MgO, SiO2, FeOT, Cr, Ni and Co. They are

picrobasalt ranging to komatiite or harzburgite. Their

incompatible trace­element abundances are low, commonly

close to the detection limit of the analytical methods and fur­

ther study of their origin requires alternative low­level trace­

element analyses. 

CONCLUSIONS

1. Major­ and compatible trace­element abundances of the

Weekes Amphibolite and Hunt River Belt amphibolites

are broadly similar and both comprise subalkaline,

tholeiitic basaltic rocks.

2. The incompatible trace elements and trace­element

ratios, however, indicate that Hunt River Belt amphibo­

lites have higher Nb/Yb, Zr/Y and Nb/Y than the

Weekes Amphibolite samples.

3. Hunt River Belt amphibolites were largely derived from

a slightly more enriched mantle source.

4. Although the Nd isotopic characteristics of the two

suites are very similar and overlap the value for corre­

sponding depleted mantle, one sample of Weekes

Amphibolite yielded an ƐNdt=3100 Ma = ­1.1, with corre­

sponding LREE­enrichment and HFSE troughs; there­

by suggesting some recycling of crust older than the

Maggo Gneiss, or older, unrecognized parts of the

Maggo Gneiss.
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5. The lithogeochemical and Nd isotopic data for the

Weekes Amphibolite and Hunt River Belt amphibolite

support two distinct mafic magmatic events in the

Hopedale Block at >3200 Ma and at ca. 3100 Ma,

respectively.
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