

Mines

NEW ICP-ES GEOCHEMICAL DATA FOR REGIONAL LABRADOR LAKE-SEDIMENT AND LAKE-WATER SURVEYS

J.W. McConnell and C. Finch

Open File LAB/1602

St. John's, Newfoundland October, 2012

NOTE

Open File reports and maps issued by the Geological Survey Division of the Newfoundland and Labrador Department of Natural Resources are made available for public use. They have not been formally edited or peer reviewed, and are based upon preliminary data and evaluation.

The purchaser agrees not to provide a digital reproduction or copy of this product to a third party. Derivative products should acknowledge the source of the data.

DISCLAIMER

The Geological Survey, a division of the Department of Natural Resources (the "authors and publishers"), retains the sole right to the original data and information found in any product produced. The authors and publishers assume no legal liability or responsibility for any alterations, changes or misrepresentations made by third parties with respect to these products or the original data. Furthermore, the Geological Survey assumes no liability with respect to digital reproductions or copies of original products or for derivative products made by third parties. Please consult with the Geological Survey in order to ensure originality and correctness of data and/or products.

Recommended citation:

McConnell, J.W. and Finch, C.

2012: New ICP-ES geochemical data for regional Labrador lake-sediment and lake-water surveys. Government of Newfoundland and Labrador, Department of Natural Resources, Geological Survey, Open File LAB/1602, 50 pages.

Cover photo: Hunt Lake, central Labrador circa 1985.

Mines

NEW ICP-ES GEOCHEMICAL DATA FOR REGIONAL LABRADOR LAKE-SEDIMENT AND LAKE-WATER SURVEYS

J.W. McConnell and C. Finch

Open File LAB/1602

St. John's, Newfoundland October, 2012

CONTENTS

	Page
ABSTRACT	iii
INTRODUCTION	1
LOCATION AND SURVEY DESCRIPTION	1
SAMPLE COLLECTION AND PREPARATION PROCEDURES	2
DESCRIPTION OF ICP-ES ANALYTICAL PROCEDURE INSTRUMENTATION DISSOLUTION	2 2 2
DATA QUALITY	3
STATISTICAL ANALYSIS SUMMARY STATISTICS. HISTOGRAMS AND CUMULATIVE FREQUENCY CURVES.	7 7 7
DATA PRESENTATION	7
DATA	7
ACKNOWLEDGMENTS	42
REFERENCES	42
APPENDIX 1: Descriptions and formats of field, descriptive and analytical variables	44
APPENDIX 2: Field, descriptive and analytical data for lake-sediment and water samples	50

TABLES

Table 1.	Spectral lines and detection limits for elements analyzed by ICP-ES	3
Table 2.	Control standards: recommended and average values, standard deviations, number of analy-	
	ses and percent recovery	4
Table 3.	Spearman correlation coefficients (r) of site duplicates for all sediment and water analyses	6
Table 4.	Summary statistics for all lake-sediment data.	10

•

Page

•

FIGURES

Figure 1.	Index map of Geological Survey of Canada open file reports (<i>see</i> references to Friske <i>et al.</i> , in the reference section) by NTS map sheet
Figure 2.	Scatterplots and Spearman correlation coefficients of ICP-ES site-duplicate data: Al2, Ba2,
e	Be2, Ca2, Ce2, Co2, Cr2, Cu2, Dy2, Fe2, Ga2, K2, La2, Li2, Mg2, Mn2, Mo2, Na2, Nb2 and
	Ni2
Figure 3.	Scatterplots and Spearman correlation coefficients of ICP-ES site-duplicate data: P2, Pb2,
-	Sc2, Sr2, Th2, Ti2, V2, Y2, Zn2 and Zr2
Figure 4.	Aluminum (Al2_pct) in lake sediment
Figure 5.	Barium (Ba2_ppm) in lake sediment
Figure 6.	Beryllium (Be2 ppm) in lake sediment
Figure 7.	Calcium (Ca2 pct) in lake sediment
Figure 8.	Cerium (Ce2 ppm) in lake sediment
Figure 9.	Cobalt (Co2_ppm) in lake sediment
Figure 10.	Chromium (Cr2_ppm) in lake sediment
Figure 11.	Copper (Cu2_ppm) in lake sediment
Figure 12.	Dysprosium (Dy2_ppm) in lake sediment
Figure 13.	Iron (Fe2_pct) in lake sediment. 21
Figure 14.	Gallium (Ga2_ppm) in lake sediment
Figure 15.	Potassium (K2_pct) in lake sediment
Figure 16.	Lanthanum (La2_ppm) in lake sediment. 24
Figure 17.	Lithium (Li2_ppm) in lake sediment
Figure 18.	Magnesium (Mg2_pct) in lake sediment
Figure 19.	Manganese (Mn2_ppm) in lake sediment
Figure 20.	Molybdenum (Mo2_ppm) in lake sediment
Figure 21.	Sodium (Na2_pct) in lake sediment
Figure 22.	Niobium (Nb2_ppm) in lake sediment
Figure 23.	Nickel (Ni2_ppm) in lake sediment
Figure 24.	Phosphorus (P2_ppm) in lake sediment 32
Figure 25.	Lead (Pb2_ppm) in lake sediment
Figure 26.	Scandium (Sc2_ppm) in lake sediment
Figure 27.	Strontium (Sr2_ppm) in lake sediment
Figure 28.	Thorium (Th2_ppm) in lake sediment. 36
Figure 29.	Titanium (Ti2_ppm) in lake sediment
Figure 30.	Vanadium (V2_ppm) in lake sediment
Figure 31.	Yttrium (Y2_ppm) in lake sediment
Figure 32.	Zinc (Zn2_ppm) in lake sediment
Figure 33.	Zirconium (Zr2_ppm) in lake sediment

ABSTRACT

The report provides new inductively coupled plasma-emission spectrographic (ICP-ES) data for lakesediment samples, as well as the original analytical and field data for reconnaissance-scale lake-sediment and water surveys conducted in Labrador by the Geological Survey of Canada between 1977 and 1984. Some 19 836 samples were obtained from 18 706 sites. The ICP-ES analyses were performed by the Geochemical Laboratory of the Newfoundland and Labrador Department of Natural Resources. These data are particularly suitable for displaying in a geographic information system or for performing statistical analyses.

The report contains descriptions of the ICP-ES analytical procedures, comments on data quality, statistical summaries of all data and individual symbol maps of the geographic distributions of the ICP-ES elements. The field and descriptive data, the ICP-ES analytical data as well as previously determined analytical data are provided.

INTRODUCTION

This report provides additional lake-sediment geochemical data to supplement previous data released by the Geological Survey of Canada (GSC), for the regional lake-sediment and water geochemical surveys conducted in Labrador, as part of the National Geochemical Reconnaissance Program. Samples collected during the GSC surveys have been further analyzed by the Geochemical Laboratory of the Newfoundland and Labrador Department of Natural Resources. Samples were analyzed for 30 elements using inductively coupled plasma-emission spectrometry (ICP-ES). The elements are: aluminum (Al), barium (Ba), beryllium (Be), calcium (Ca), cerium (Ce), cobalt (Co), chromium (Cr), copper (Cu), dysprosium (Dy), iron (Fe), gallium (Ga), potassium (K), lanthanum (La), lithium (Li), magnesium (Mg), manganese (Mn), molybdenum (Mo), sodium (Na), niobium (Nb), nickel (Ni), phosphorus (P), lead (Pb), scandium (Sc), strontium (Sr), thorium (Th), titanium (Ti), vanadium (V), yttrium (Y), zinc (Zn) and zirconium (Zr).

The report outlines the history of the GSC surveys and their products and describes the analytical procedures employed for the ICP-ES analyses, the quality control methods used and their results, statistical analyses of the data, histograms, cumulative frequency curves and coloured symbol maps of each element showing the relationship of element values to geology. For data completeness, all previous data, as well as the new ICP-ES data, are included in the discussions of data quality, the table of correlation coefficients, statistical summaries and the appended database.

All of Labrador was surveyed by lakesediment and water sampling with the exception of the northern part, where a scarcity of lakes precluded such work. Figure 1 shows the NTS map areas sampled in the surveys. Note that for areas along the Québec border, only the Labrador portions were sampled. The northern area was surveyed by reconnaissance-scale stream-sediment and water sampling. The work was carried out under the direction of the Geological Survey of Canada (GSC) during the period 1977–1984 as part of the National Geochemical Reconnaissance Program.

The results of the surveys were published as 18 open-file reports (Hornbrook and Friske, 1989; Friske *et al.*, 1992a, b, 1993a–j and 1994a–e). Approximately 18 706 sites were sampled; of these, 1130 were sampled in duplicate giving a total of 19 836 samples.

Figure 1. Locations of the surveyed areas.

LOCATION AND SURVEY DESCRIPTIONS

Sediment samples were analyzed by the GSC for 35 unique elements and loss-on-ignition. An additional nine analytical procedures were applied to eight of these elements giving a total analytical suite of 43 elemental analyses. Some analyses were only performed on part of the sample set, notably arsenic by hydride generation atomic absorption spectrometry and by colorimetry, cadmium by atomic absorption spectrometry, antimony by hydride generation atomic absorption spectrometry and tungsten by colorimetry after $K_2S_2O_7$ fusion. With the exception of cadmium and vanadium however, these elements were analyzed by other methods for the entire sample set. The 35 elements analyzed are: silver (Ag), arsenic (As), gold (Au), barium (Ba), bromine (Br), cadmium (Cd), cerium (Ce), cobalt (Co), chromium (Cr), cesium (Cs), copper (Cu), europium (Eu), fluorine (F, as the fluoride ion), iron (Fe), hafnium (Hf), mercury (Hg), lanthanum (La), lutetium (Lu), manganese (Mn), molybdenum (Mo), sodium (Na), nickel (Ni), lead (Pb), rubidium (Rb), antimony (Sb), scandium (Sc), samarium (Sm), tantalum (Ta), terbium (Tb), thorium (Th), uranium (U), vanadium (V), tungsten (W), ytterbium (Yb) and zinc (Zn).

SAMPLE COLLECTION AND PREPARATION PROCEDURES

Sediment collection was under the supervision of the Geological Survey of Canada. Sampling involved landing a float-equipped helicopter on the lake and dropping a weighted tubular sampler fitted with a nylon rope for retrieval. A butterfly valve in the bottom of the tube opened upon impact with the sediment and closed upon retrieval, trapping the contained sediment. Samples were stored in water-resistant Kraft paper bags and were partially air-dried in the field prior to shipping them to Ottawa for sample preparation. Markings on the rope permitted determination of the sample depth. Other observations made during sampling included noting the location of the site on a 1:250 000-scale topographic map, sediment colour and the presence of any source of contamination. Preparation included final air-drying, crushing and ball-milling. The –80 mesh fraction (177 micron) was obtained by sieving and used for analysis.

DESCRIPTION OF ICP-ES ANALYTICAL PROCEDURE

INSTRUMENTATION

Trace element analysis on this dataset of 30 elements was undertaken using a Fisons Instruments Maxim III fully simultaneous Inductively Coupled Plasma-Emission Spectrometer (ICP-ES) and Thermo Instruments Iris High Resolution ICP-ES. Table 1 lists all elements, spectral lines and detection limits for this method. Samples were typically analyzed unattended using a Gilson 222 auto sampler and the analytical data collected were later corrected and calculated off-line.

DISSOLUTION

One gram of lake sediment was weighed in a porcelain crucible and was ashed at 500°C for four hours, to ensure that organic material was completely burned off before digestion. After the four hours, the samples were removed from the oven, cooled and transferred to 100 ml Teflon beakers. Five ml of concentrated hydrochloric acid, 15 ml of concentrated hydrofluoric acid and

Table 1. Spectral lines and detectionlimits for elements analyzed by ICP-ES

Reporting		Method Detection
Name	Wavelength	Limit
A12	396.152	0.01%
Ba2	455.397	1 ppm
Be2	313.077	0.1 ppm
Ca2	422.673	0.01%
Ce2	418.673	1 ppm
Co2	228.617	1 ppm
Cr2	205.561	1 ppm
Cu2	324.574	1 ppm
Dy2	353.170	0.1 ppm
Fe2	271.441	0.01%
Ga2	294.364	1 ppm
K2	766.488	0.01%
La2	408.670	1 ppm
Li2	670.784	0.1 ppm
Mg2	279.077	0.01%
Mn2	403.447	1 ppm
Mo2	202.031	1 ppm
Na2	588.995	0.01%
Nb2	319.497	1 ppm
Ni2	231.605	1 ppm
P2	213.617	1 ppm
Pb2	220.355	1 ppm
Sc2	361.383	0.1 ppm
Sr2	407.771	1 ppm
Th2	283.73	1 ppm
Ti2	307.864	1 ppm
V2	310.231	1 ppm
Y2	371.027	1 ppm
Zn2	213.857	1 ppm
Zr2	343.822	1 ppm

5 ml of 1:1 perchloric acid was added to each sample. All acids were reagent grade or better. The samples were placed on a hotplate at 200°C and evaporated to dryness, after which the beakers were half-filled with 10% hydrochloric acid and returned to the hot plate at 100°C. When the residue was completely dissolved the samples were removed, cooled and transferred to 50 ml volumetric flasks. One ml of 50 g/l boric acid was added to each sample to complex any residual hydrofluoric acid. The samples were made to volume and analyzed by ICP-ES (Lichte, 1987). Standard reference materials (LKSD-1, LKSD-2, LKSD-3 and LKSD-4) were placed in each sample batch at a frequency of 1:20 samples. Both analytical and sampling duplicates were distributed at the same frequency throughout the dataset.

DATA QUALITY

To ensure the reliability of the analytical data, three means of determining data accuracy and/or precision were employed. First, during sample collection, pairs of sediment samples were obtained from every sequence of twenty lakes. Analyses of these site duplicates give an appreciation of within-lake data variation. Second, at the analytical stage, a standard of known composition was inserted within every batch of 20 samples. These consisted of four international reference standards composed of lakesediment material: LKSD-1, LKSD-2, LKSD-3 and LKSD-4. The results of these standards (Table 2) were monitored to ensure analytical accuracy and precision. Third, a sample split to produce a laboratory duplicate, was included in every batch of 20 samples. These duplicates were compared to ensure adequate precision.

Site duplicates are useful because they give an appreciation of overall data variance occurring at

both the sampling and analytical stages. As they consist of samples from the survey itself, they may reveal limitations in the data that are specific to the region and which may not show up in the reference standards. Table 3, listing Spearman correlation coefficients for all elements analyzed in the survey, provides a ready way of assessing the variance of data and comparing the reproducibility of analyses of a given element done by two different methods. Scatter plots of the thirty elements analyzed by ICP-ES along with the Spearman correlation coefficient (r) are

A12 Ba2 Be2 Ca2 Ce2 Co2 Cr2 Cu2 D	Ba2 Be2 Ca2 Ce2 Co2 Cr2 Cu2 D	Be2 Ca2 Ce2 Co2 Cr2 Cu2 D	Ca2 Ce2 Co2 Cr2 D	Ce2 Co2 Cr2 Cu2 D	Co2 Cr2 Cu2 D	Cr2 Cu2 D	Cu2		5 2	Fe2	K2	La2	Li2	Mg2
4.1 430 1.1 7.7 27 11 31 44	430 1.1 7.7 2.7 11 31 44	1.1 7.7 2.7 11 31 44	7.7 27 11 31 44	27 11 31 44	11 31 44	31 44	44 A		3.4 3.4	2.8	0.95	16		- `]
4.1 356 0.7 7.8 26 12 26	356 0.7 7.8 26 12 26	0.7 7.8 26 12 26	7.8 26 12 26	26 12 26	12 26	26		44	ŝ	2.8	0.95	17	8.1	0.5
0.2 73.52 0 0.3 4.78 0.82 5.81 2	73.52 0 0.3 4.78 0.82 5.81 2	0 0.3 4.78 0.82 5.81 2	0.3 4.78 0.82 5.81 2	4.78 0.82 5.81 2	0.82 5.81 2	5.81 2	ι	2.48	0.3	0.1	0.03	2.64	0.5	0.0
142 142 142 142 142 142 142	142 142 142 142 142 142	142 142 142 142 142	142 142 142 142	142 142 142	142 142	142		142	142	142	142	142	142	14,
99.00 82.70 66.50 101.20 98.00 105.20 85.30 9	82.70 66.50 101.20 98.00 105.20 85.30 9	66.50 101.20 98.00 105.20 85.30 9	101.20 98.00 105.20 85.30 9	98.00 105.20 85.30 9	105.20 85.30 9	85.30 9	6	9.00	89.70	100.40	100.10	107.90	115.50	94.1
A12 Ba2 Be2 Ca2 Ce2 Co2 Cr2	Ba2 Be2 Ca2 Ce2 Co2 Cr2	Be2 Ca2 Ce2 Co2 Cr2	Ca2 Ce2 Co2 Cr2	Ce2 Co2 Cr2	C02 Cr2	Cr2	-	Cu2	Dy2	Fe2	K2	La2	Li2	Mg
6.5 780 2.5 1.6 108 17 57	780 2.5 1.6 108 17 57	2.5 1.6 108 17 57	1.6 108 17 57	108 17 57	17 57	57		37	7.3	4.3	2.19	68	20	1.01
6.8 777 1.8 1.5 112 20 50	777 1.8 1.5 112 20 50	1.8 1.5 112 20 50	1.5 112 20 50	112 20 50	20 50	50		38	6.2	4.3	2.16	68	24.1	0.97
0.8 21.54 0.1 0.1 11.68 0.86 6.37	21.54 0.1 0.1 11.68 0.86 6.37	0.1 0.1 11.68 0.86 6.37	0.1 11.68 0.86 6.37	11.68 0.86 6.37	0.86 6.37	6.37		2.32	0.4	0.2	0.09	2.62	2.5	0.05
137 137 137 137 137 137 137 137	137 137 137 137 137 137 137	137 137 137 137 137 137	137 137 137 137 137	137 137 137	137 137	137		137	137	137	137	137	137	137
05.10 99.60 70.70 91.70 104.00 116.60 87.20 1	99.60 70.70 91.70 104.00 116.60 87.20 1	70.70 91.70 104.00 116.60 87.20 1	91.70 104.00 116.60 87.20 1	104.00 116.60 87.20 1	116.60 87.20 1	87.20 1	1	02.20	84.30	100.90	98.50	100.20	120.60	96.4(
A12 Ba2 Be2 Ca2 Ce2 Co2 Cr2	Ba2 Be2 Ca2 Ce2 Co2 Cr2	Be2 Ca2 Ce2 Co2 Cr2	Ca2 Ce2 Co2 Cr2	Ce2 Co2 Cr2	C02 Cr2	Cr2		Cu2	Dy2	Fe2	K2	La2	Li2	Mg2
6.6 680 1.9 1.6 90 30 87	680 1.9 1.6 90 30 87	1.9 1.6 90 30 87	1.6 90 30 87	90 30 87	30 87	87		35	4.9	4	1.84	52	25	1.2
6.9 689 1.5 1.5 92 35 74	689 1.5 1.5 92 35 74	1.5 1.5 92 35 74	1.5 92 35 74	92 35 74	35 74	74		36	4.3	4.1	1.85	51	30.4	1.13
0.9 23.25 0.1 0.1 10.36 1.58 4.85	23.25 0.1 0.1 10.36 1.58 4.85	0.1 0.1 10.36 1.58 4.85	0.1 10.36 1.58 4.85	10.36 1.58 4.85	1.58 4.85	4.85		2.35	0.3	0.1	0.07	1.86	2.9	0.05
143 143 143 143 143 143 143 143	143 143 143 143 143 143 143	143 143 143 143 143 143	143 143 143 143	143 143 143	143 143	143		143	143	143	143	143	143	143
04.70 101.30 81.10 96.80 102.00 115.60 84.70	101.30 81.10 96.80 102.00 115.60 84.70	81.10 96.80 102.00 115.60 84.70	96.80 102.00 115.60 84.70	102.00 115.60 84.70	115.60 84.70	84.70	, ,	102.10	88.60	103.00	100.60	98.50	121.70	94.40
A12 Ba2 Be2 Ca2 Ce2 Co2 Cr2	Ba2 Be2 Ca2 Ce2 Co2 Cr2	Be2 Ca2 Ce2 Co2 Cr2	Ca2 Ce2 Co2 Cr2	Ce2 Co2 Cr2	C ₀ 2 C _r 2	Cr2		Cu2	Dy2	Fe2	K2	La2	Li2	Mg
3.1 330 1 1.3 48 11 33	330 1 1.3 48 11 33	1 1.3 48 11 33	1.3 48 11 33	48 11 33	11 33	33		31	3.7	2.8	0.68	26	12	0.50
3.2 336 0.8 1.2 48 12 30	336 0.8 1.2 48 12 30	0.8 1.2 48 12 30	1.2 48 12 30	48 12 30	12 30	30		32	3.4	S	0.7	27	14.6	0.5
0.3 22 0 0.1 6 0.6 2.6	22 0 0.1 6 0.6 2.6	0 0.1 6 0.6 2.6	0.1 6 0.6 2.6	6 0.6 2.6	0.6 2.6	2.6		3.4	0.3	0.2	0	1.9	2.3	0
129 129 129 129 129 129 129 129	129 129 129 129 129 129 129	129 129 129 129 129 129	129 129 129 129	129 129 129	129 129	129		129	129	129	129	129	129	129
01.70 101.90 77.60 95.20 100.70 113.10 91.60	101.90 77.60 95.20 100.70 113.10 91.60	77.60 95.20 100.70 113.10 91.60	95.20 100.70 113.10 91.60	100.70 113.10 91.60	113.10 91.60	91.60		104.60	91.10	106.30	98.10	105.40	121.80	94.00

reco
percent
s and
alyses
an
r of
numbe
tions.
evia
1 de
tandarc
e values, s
l average
anc
recommended
lards:
stanc
Control
2
Table

CONTROL LKSD-1	Mn2	M02	Na2	Nb2	Ni2	P2	Pb2	Sc2	Sr2	Ti2	V2	Y2	Zn2	Zr2
recommended	700	10	1.48		16	698	82	6	250	3010	50	19	331	134
average	711	6 (1.5	9 70 7	14 14	678	× 81	0.7 C C	266	2886	51	21	321	39
std. deviation	66.05	0.03	0.1	1.0/	3.17	20.91	5.0	0.3	8.61	141.45	7.12	16.0	сс. <u></u>	10.7
Z	142	142	142	142	142	142	142	142	142	142	142	142	142	142
recovery (%)	101.50	94.70	101.60	86.10	86.20	97.20	90.66	87.30	106.40	95.90	102.60	111.20	97.00	28.70
LKSD-2	Mn2	M_{02}	Na2	Nb2	Ni2	P2	Pb2	Sc2	Sr2	Ti2	$\mathbf{V2}$	Y2	Zn2	Zr2
recommended	2020	Ś	1.43	8	26	1222	44	13	220	3460	LL	44	209	254
average	2129	1	1.41	6	24	1282	43	12.3	240	3284	78	40	206	107
std. deviation	110.97	0.72	0.06	0.68	3.71	47.05	3.23	0.6	6.83	154.02	3.15	1.41	6.96	5.07
Z	137	137	137	137	137	137	137	137	137	137	137	137	137	137
recovery (%)	105.40	-29.00	98.50	108.30	91.50	104.90	97.60	94.80	109.20	94.90	101.70	90.60	98.70	42.00
LKSD-3	Mn2	M02	Na2	Nb2	Ni2	P2	Pb2	Sc2	Sr2	Ti2	V2	Y2	Zn2	Zr2
recommended	1440	-5	1.72	8	47	1091	29	13	240	3330	82	30	152	178
average	1524	1	1.69	8	45	1047	31	12.1	255	3137	82	27	145	76
std. deviation	79.47	0.47	0.06	0.7	2.61	34.66	3.99	0.5	7.4	116.74	3.3	0.97	5.1	3.52
Z	143	143	143	143	143	143	143	143	143	143	143	143	143	143
recovery (%)	105.90	-24.30	98.30	105.30	95.00	96.00	105.40	92.90	106.10	94.20	99.60	90.30	95.30	54.30
LKSD-4	Mn2	M02	Na2	Nb2	Ni2	P2	Pb2	Sc2	Sr2	Ti2	V2	Y2	Zn2	Zr2
recommended	500	۰ ک	0.54	6	31	1440	91	L	110	2270	49	23	194	105
average	550	7	0.6	4	30	1468	92	7.2	130	1922	49	22	191	38
std. deviation	62.1	0.3	0.1	0.6	2.2	53.9	4	0.3	5.9	87.3	2.6	0.9	8	2.2
Z	129	129	129	129	129	129	129	129	129	129	129	129	129	129
recovery (%)	110.00	-37.00	108.20	43.30	97.70	101.90	100.80	103.10	118.60	84.70	100.10	97.80	98.40	36.30

ned
Contin
e 2. (
Tabl

Variable	Correlation Coefficient (r)	Variable	Correlation Coefficient (r)
Sediment			
Ag3 ppm	0.52	Mn2 ppm	0.95
Al2 pct	0.95	Mn3 ppm	0.95
As19 ppm	0.77	Mo1 ppm	0.89
As1 ppm	0.84	Mo2 ppm	0.90
As21 ppm	0.44	Mo5 ppm	0.86
Au1 ppb	0.15	Nal pct	0.94
Ba1 ppm	0.92	Na2 pct	0.93
Ba2 ppm	0.92	Nb2 ppm	0.91
Be2_ppm	0.96	Ni1_ppm	0.65
Br1 ppm	0.91	Ni2 ppm	0.97
Ca2 pct	0.92	Ni3 ppm	0.97
Cd3_ppm	0.57	P2_ppm	0.96
Ce1_ppm	0.97	Pb2_ppm	0.90
Ce2_ppm	0.97	Pb3_ppm	0.77
Co1 ppm	0.90	Rb1 ppm	0.85
Co2 ppm	0.94	Sb19 ppm	0.44
Co3 ppm	0.92	Sb1 ppm	0.76
Cr1_ppm	0.83	Sc1_ppm	0.95
Cr2_ppm	0.97	Sc2_ppm	0.95
Cs1_ppm	0.68	Sm1_ppm	0.97
Cu2_ppm	0.96	Sr2_ppm	0.92
Cu3_ppm	0.96	Ta1_ppm	0.61
Dy2_ppm	0.95	Tb1_ppm	0.88
Eu1_ppm	0.56	Th1_ppm	0.97
F9_ppm	0.93	Th2_ppm	0.59
Fe1_pct	0.94	Ti2_ppm	0.94
Fe2_pct	0.94	U1_ppm	0.97
Fe3_pct	0.93	U8_ppm	0.96
Ga2_ppm	0.83	V2_ppm	0.96
Hf1_ppm	0.88	V5_ppm	0.94
Hg18_ppm	0.91	W13_ppm	0.72
K2_pct	0.94	W1_ppm	0.54
La1_ppm	0.97	Y2_ppm	0.97
La2_ppm	0.97	Yb1_ppm	0.83
Li2_ppm	0.95	Zn2_ppm	0.93
LOI_pct	0.91	Zn3_ppm	0.92
Lu1_ppm	0.90	Zr2_ppm	0.95
Mg2_pct	0.94		
Water			
Fw9_ppb	0.92	Uw10_ppb	0.62
pHw	0.95	Uw11_ppb	0.75

Table 3. Spearman	correlation	coefficients (r) of site	duplicates	for all	sediment	and wate	er analy-
ses. N>1000 for mo	ost variables	5						

Note: Coefficients are significant at the 0.000 confidence level for all variables

shown in Figures 2 and 3. The greater the absolute value of r, the better the correlation with \pm 1.00 representing a perfect correlation.

STATISTICAL ANALYSIS

SUMMARY STATISTICS

To quantify the range and distribution characteristics of the element populations, summary statistics have been calculated for the all sediment data (Table 4). Analyses of the second sample of site-duplicate pairs are excluded. Statistics tabulated include the median, arithmetic mean, geometric mean, arithmetic standard deviation, logarithmic standard deviation and minimum and maximum. Because the distributions of most element populations are more log-normal than normal, the geometric means as well as arithmetic means are given.

HISTOGRAMS AND CUMULATIVE FREQUENCY CURVES

Histograms of the lake-sediment and water variables are included in the symbol plot maps showing the distributions of the variables. These figures show the shape of the population distributions and may be useful when interpreting the distribution maps of these variables. Cumulative frequency curves are also incorporated into these maps. The curves show the percentage of data accounted for by the progressive range of variable values.

DATA PRESENTATION

Symbol plot images of 29 of the 30 elements analyzed by ICP-ES were prepared in ArcMap[™]. Thorium had only about 2200 analyses and is not plotted. For most elements, the data were divided into six intervals using the Jenks natural breaks optimization method, which seeks to minimize the average deviation from the group mean for each group, while maximizing the deviation from the means of the other groups.

The element divisions were inspected visually, and in some instances the intervals were manually adjusted to emphasize the highest value samples. The dot layers were sorted sequentially so that the lowest value symbols (black) plotted on the bottom and the highest value symbols (red) plotted on top to ensure none of the higher value symbols were obscured.

The elements are presented as pdf files in Figures 4–33. This format permits areas of interest to be examined in detail by zooming to the most appropriate scale while still retaining high resolution.

DATA

The data are described in Appendix 1 and are available on the web and CD as Appendix 2 in .csv format.

Figure 2. Scatterplots and Spearman correlation coefficients of ICP-ES site-duplicate data: Al2, Ba2, Be2, Ca2, Ce2, Co2, cr2, Cu2, Dy2, Fe2, Ga2, K2, La2, Li2, Mg2, Mn2, Mo2, Na2, Nb2 and Ni2.

Figure 3. Scatterplots and Spearman correlation coefficients of ICP-ES site-duplicate data: P2, Pb2, Sc2, Sr2, Th2, Ti2, V2, Y2, Zn2 and Zr2.

Variable	No. Samples	Median	Mean (Arithmetic)	Mean (Geometric)	Standard Deviation (Arithmetic)	Standard Deviation (Logarithmic)	Minimum	Maximum
Sediment								
Ag3 ppm	18693	< 0.1	0.1	0.1	0.1	0.18	0.1	2.2
Al2 pct	18292	3.36	3.64	3.01	2.03	0.29	0.08	12
As19 ppm	18697	< 0.5	1.5	0.8	4.9	0.52	0.3	335
As1 ppm	14251	<1.0	2	0.8	5.9	0.35	0.2	336
As21 ppm	4373	<1.0	0.7	0.6	0.6	0.18	0.5	11
Au1 ppb	18697	<2.0	1.5	1.2	1.5	0.22	1	57
Ba1 ppm	18697	300	420	297	349	0.38	25	4800
Ba2 ppm	18292	337	412	331	269	0.3	1	3158
Be2 ppm	18292	0.9	1.1	0.8	1.6	0.35	0.1	77.1
Br1 ppm	18697	21	26.1	20.5	21.4	0.31	0.2	721
Ca2 pct	18292	0.83	1.03	0.84	0.71	0.28	0.01	35.82
Cd3_ppm	9697	< 0.2	0.2	0.1	0.6	0.25	0.1	48
Ce1 ppm	18697	86	114	84	104	0.35	1	1690
Ce2_ppm	18292	78	106	80	98	0.33	1	1442
Co1_ppm	18694	11	14	8	17	0.55	1	470
Co2_ppm	18292	11	14	10	15	0.36	1	441
Co3_ppm	18693	7	10	7	12	0.38	1	370
Cr1_ppm	18697	39	47	33	40	0.39	8	670
Cr2_ppm	18292	31	38	30	28	0.31	1	402
Cs1_ppm	18696	0.2	0.6	0.4	0.7	0.37	0.2	13
Cu2_ppm	18292	21	28	21	27	0.34	1	508
Cu3_ppm	18693	20	26	20	24	0.31	1	450
Dy2_ppm	18292	3.4	4.6	3.5	4.9	0.29	0.1	164.3
Eu1_ppm	18695	1	1.3	1	1.1	0.29	0.5	26
F9_ppm	18534	180	210	167	143	0.31	20	1640
Fe1_pct	18696	3	3.9	2.7	3.6	0.4	0.1	69.2
Fe2_pct	18292	2.84	3.52	2.52	3	0.38	0.01	41.02
Fe3_pct	18693	1.9	2.72	1.85	2.68	0.39	0.01	42
Ga2_ppm	14320	9	9.6	6.9	6.5	0.41	1	112
Hf1_ppm	18697	2	3.4	2	3.7	0.46	0.5	50
Hg18_ppb	18570	70	82	69	53	0.26	5	900
K2_pct	18292	0.53	0.76	0.48	0.66	0.45	0.01	4.89
La1_ppm	18695	41	54	40	50	0.34	1	971
La2_ppm	18292	43	57	44	51	0.32	1	905
Li2_ppm	18292	5.1	7.1	4.8	6.6	0.42	0.1	98.3
LOI_pct	18685	27.8	27.4	22.9	14.1	0.3	0.5	98.5
Lu1_ppm	18697	0.3	0.4	0.3	0.5	0.38	0.1	18
Mg2_pct	18292	0.32	0.43	0.31	0.34	0.36	0.01	5.11
Mn2_ppm	18291	379	765	362	2561	0.47	1	136408
Mn3_ppm	18693	165	518	193	2102	0.5	9	99999

Table 4. Summary statistics for all lake-sediment and water data

-

Variable	No. Samples	Median	Mean	Mean	Standard Deviation	Standard Deviation	Minimum	Maximum
			(Arithmetic)	(Geometric)	(Arithmetic)	(Logarithmic)		
Mol nom	19606	1	4	C	7	0.4	1	216
Mo2 ppm	18202	1	4	2	7	0.4	1	210
Mo2_ppm	18602	2	4	2	7	0.4	1	203
No1 pot	18605	0.57	4	0.54	0.84	0.38	0.02	2 44 8 75
Na2 pet	18202	0.57	0.9	0.54	0.67	0.48	0.02	0.75 A 32
Nh2_per	18292	0.55	5	0.51	0.07	0.43	0.01	4. <i>32</i>
Nil ppm	18606	+ 5	17	4 10	4 22	0.33	1	620
Ni2 ppm	18202	15	20	10	22	0.4	1	522
Ni2_ppm	18602	13	20	13	20	0.31	1	550
P2 nnm	18202	1012	1257	1027	842	0.34	1	12520
Pb2 nnm	18292	1015	1237	1037	042 9	0.27	1	302
Pb3_ppm	18603	/	9 2	2	8 5	0.34	1	392
Ph1 ppm	18606	17	27	1/	27	0.51	1	260
Sh1_ppm	18607	<01	0.12	0.08	0.26	0.33	0.05	16.1
Sc1_ppm	18606	<0.1 6.7	7.8	6.3	0.20	0.32	0.03	10.1
Sc2_ppm	18202	6.6	7.8	6.2	4.0	0.29	0.1	47.3 804
Sm1 nnm	18292	6.0	7.2	6.2	68	0.25	0.1	204
Sr ² ppm	18202	116	153	110	109	0.31	1	865
Tal_ppm	18605	0.2	0.4	03	0.3	0.26	0 2	3.8
Th1_ppm	18696	0.2	0.4	0.5	0.9	0.20	0.2	32
Th1_ppm	186070	5	6	0.0 A	0.9	0.37	0.2	68
Th2_ppm	2070	9	10	+ 8	7	0.35	1	46
Ti2_ppm	18202	1666	10//	1518	1286	0.38	1	13738
II2_ppm	18607	1.8	3.8	1010	11.3	0.48	0 1	1030
U8 ppm	18703	1.0	3.8	2	10.7	0.46	0.1	926
V2 ppm	18792	56	59	50	32	0.40	1	369
V5_ppm	9697	40	48	40	29	0.20	2	370
W1 nnm	18696	1	1	10	1	0.08	1	19
Y2 nnm	18292	20	27	21	31	0.29	1	969
Yh1 ppm	18697	1	27	14	2.9	0.38	0 5	100
Zn2 ppm	18292	85	98	83	87	0.24	1	7062
Zn3_ppm	18693	73	89	73	124	0.27	2	13500
Zr2 ppm	18292	30	39	27	34	0.39	1	606
depth m	18681	5	8.3	4.8	10.95	0.45	0	192
	10001	e	0.0		10.00		0	- / -
Water								
pHw	18706	6.3	6.3	1	0.52		3.5	8.4
Fw9_ppb	18706	28	35	27	36	0.29	10	980
Uw10_ppb	14393	< 0.02	0.02	0.01	0.04	0.24	0.01	2.55
Uw11_ppb	14825	< 0.02	0.035	0.011	0.09	0.56	0.005	3.2

Table 4. Continued

Figure 4. Aluminum (A12_pct) in lake sediment.

Figure 5. Barium (Ba2_ppm) in lake sediment.

Figure 6. Beryllium (Be2_ppm) in lake sediment.

Figure 7. Calcium (Ca2_pct) in lake sediment.

Figure 8. Cerium (Ce2_ppm) in lake sediment.

Figure 9. Cobalt (Co2_ppm) in lake sediment.

Figure 10. Chromium (Cr2_ppm) in lake sediment.

Figure 11. Copper (Cu2_ppm) in lake sediment.

Figure 12. *Dysprosium (Dy2_ppm) in lake sediment.*

Figure 13. Iron (Fe2_pct) in lake sediment.

Figure 14. Gallium (Ga2_ppm) in lake sediment.

Figure 15. *Potassium (K2_pct) in lake sediment.*

Figure 16. Lanthanum (La2_ppm) in lake sediment.

Figure 17. Lithium (Li2_ppm) in lake sediment.

Figure 18. Magnesium (Mg2_pct) in lake sediment.

Figure 19. Manganese (Mn2_ppm) in lake sediment.

Figure 20. Molybdenum (Mo2_ppm) in lake sediment.

Figure 21. Sodium (Na2_pct) in lake sediment.

Figure 22. Niobium (Nb2_ppm) in lake sediment.

Figure 23. Nickel (Ni2_ppm) in lake sediment.

Figure 24. Phosphorus (P2_ppm) in lake sediment.

Figure 25. Lead (Pb2_ppm) in lake sediment.

Figure 26. Scandium (Sc2_ppm) in lake sediment.

Figure 27. Strontium (Sr2_ppm) in lake sediment.

Figure 28. Thorium (Th2_ppm) in lake sediment.

Figure 29. Titanium (Ti2_ppm) in lake sediment.

Figure 30. Vanadium (V2_ppm) in lake sediment.

Figure 31. Yttrium (Y2_ppm) in lake sediment.

Figure 32. Zinc (Zn2_ppm) in lake sediment.

Figure 33. Zirconium (Zr2_ppm) in lake sediment.

ACKNOWLEDGMENTS

We would like to thank Neil Stapleton for preparing most of the figures and Martin Batterson for his very helpful review of the manuscript.

REFERENCES

Finch, C.J.

1998: Inductively coupled plasma-emission spectrometry (ICP-ES) at the Geochemical Laboratory. *In* Current Research. Newfoundland Department of Mines and Energy, Geological Survey, Report 98-1, pages 179-193.

Friske, P.W.B., McCurdy, M.W., Gross, H., Day, S.J., Balma, R.G., Lynch, J.J. and Durham, C.C. 1993h: Regional lake sediment and water geochemical reconnaissance data, southwestern Labrador. Geological Survey of Canada, Open File 2689.

1994a: Regional lake sediment and water geochemical reconnaissance data, southeastern Labrador (NTS 3E and 13H). Geological Survey of Canada, Open File 2473.

1994b: Regional lake sediment and water geochemical reconnaissance data, southeastern Labrador (NTS 3D, 13A, and parts of 2M and 12P). Geological Survey of Canada, Open File 2790.

1994c: Regional lake sediment and water geochemical reconnaissance data, southern Labrador (NTS 13B). Geological Survey of Canada, Open File 2791.

1994d: Regional lake sediment and water geochemical reconnaissance data, southern Labrador (NTS 13C). Geological Survey of Canada, Open File 2792.

1994e: Regional lake sediment and water geochemical reconnaissance data, southern Labrador (NTS 13D). Geological Survey of Canada, Open File 2793.

- Friske, P.W.B., McCurdy, M.W., Lynch, J.J., Gross, H., Day, S.J., Adcock, S.W. and Durham, C.C. 1992b: Regional lake sediment and water geochemical data, central Labrador. Geological Survey of Canada, Open File 2471.
- Friske, P.W.B., McCurdy, M.W., Lynch, J.J., Gross, H., Day, S.J. and Durham, C.C. 1992a: Regional lake sediment and water geochemical data, eastern Labrador. Geological Survey of Canada, Open File 2472.

1993a: Regional lake sediment and water geochemical data, central Labrador. Geological Survey of Canada, Open File 2474.

1993b: Regional lake sediment and water geochemical data, western Labrador. Geological Survey of Canada, Open File 2475.

1993c: Regional lake sediment and water geochemical data, central Labrador. Geological Survey of Canada, Open File 2645.

1993d: Regional lake sediment and water geochemical data, eastern Labrador. Geological Survey of Canada, Open File 2646.

1993e: Regional lake sediment and water geochemical data, central Labrador. Geological Survey of Canada, Open File 2647.

1993f: Regional lake sediment and water geochemical data, eastern Labrador. Geological Survey of Canada, Open File 2648.

1993g: Regional lake sediment and water geochemical data, west-central Labrador. Geological Survey of Canada, Open File 2649.

1993i: Regional lake sediment and water geochemical data, northern Labrador. Geological Survey of Canada, Open File 2690.

1993j: Regional lake sediment and water geochemical data, northern Labrador. Geological Survey of Canada, Open File 2691.

Hornbrook, E.H.W. and Friske, P.W.B.

1989: Regional lake sediment and water geochemical data, western Labrador (Labrador portions of NTS 23I, 23J and 23O). Geological Survey of Canada, Open File 2037.

Licthe F.E., Golightly D.W., and Lamothe P.J.

1987: Inductively Coupled Plasma-Atomic Emission Spectrometry. In Methods for Geochemical Analysis. U.S. Geological Survey Bulletin 1770, pages B1-B10.

APPENDIX 1

Descriptions and Formats of Field, Descriptive and Analytical Variables

A. Variable Descriptions

FIELD AND DESCRIPTIVE VARIABLES

Variable	Position	Description/Analytical Method	Key to Numeric Variables
NTS	1	1:250,000 NTS map	
number	2	Sample number	
NTS_number	3	Concatenation of "number" and "NTS"; uniquely identifies sample	
utmzone	4	UTM zone number	
utmeast	5	UTM easting in metres	
utmnorth	6	UTM northing in metres	
Long_NAD27	7	Longitude in decimal degrees	
Lat_NAD27	8	Latitude in decimal degrees	
sampyear	9	Year of sample collection	
depth_m	10	Water depth in metres	
lakesize	11		
contam	12	Possible site contamination	0 absent
colour	13	Sediment colour	
relief	14	Topographic relief	
suspension	15	Quantity of suspended matter in water	
sitedup	16	Site duplicate	0 routine sample 1 first of site pair 2 second of site pair
inaawt g	17	Sample weight for INAA in grams	
openfile1	18	Original GSC open file Number	
openfile2	19	NGR open file number with INAA data	

ANALYTICAL VARIABLES

Variable	Position	Element	Analytical Method
Ag3 ppm	20	Silver	4M HNO ₃ 1M HCl; AAS
Al2_pct	21	Aluminum	HClO₄-HF-HCl; ICP
As19_ppm	22	Arsenic	Hydride AAS
As1_ppm	23	Arsenic	INAA; Becquerel
As21_ppm	24	Arsenic	6M HCl, colorimetry
Au1_ppb	25	Gold	INAA; Becquerel
Ba1_ppm	26	Barium	INAA; Becquerel
Ba2_ppm	27	Barium	HClO₄-HF-HCl; ICP
Be2_ppm	28	Beryllium	HClO ₄ -HF-HCl; ICP
Br1_ppm	29	Bromine	INAA; Becquerel

Ca2_pct	30	Calcium	HClO ₄ -HF-HCl; ICP
Cd3_ppm	31	Cadmium	4M HNO ₃ 1M HCl; AAS
Ce1_ppm	32	Cerium	INAA; Becquerel
Ce2_ppm	33	Cerium	HClO ₄ -HF-HCl; ICP
Co1 ppm	34	Cobalt	INAA; Becquerel
Co2_ppm	35	Cobalt	HClO ₄ -HF-HCl; ICP
Co3 ppm	36	Cobalt	4M HNO ₃ 1M HCl; AAS
Cr1_ppm	37	Chromium	INAA; Becquerel
Cr2_ppm	38	Chromium	HClO ₄ -HF-HCl; ICP
Cs1_ppm	39	Cesium	INAA; Becquerel
Cu2_ppm	40	Copper	HClO ₄ -HF-HCl; ICP
Cu3_ppm	41	Copper	4M HNO ₃ 1M HCl; AAS
Dy2_ppm	42	Dysprosium	HClO ₄ -HF-HCl; ICP
Eu1_ppm	43	Europium	INAA; Becquerel
F9 ppm	44	Fluoride	Na_2CO_3 -KNO ₃ fusion; ISE
Fel pct	45	Iron	INAA; Becquerel
Fe2 pct	46	Iron	HClO ₄ -HF-HCl; ICP
Fe3 pct	47	Iron	4M HNO ₃ 1M HCl; AAS
Ga2 ppm	48	Gallium	HClO ₄ -HF-HCl; ICP
Hf1 ppm	49	Hafnium	INAA; Becquerel
Hg18_ppb	50	Mercury	HNO ₃ -HCl plus Al solution; AAS
K2_pct	51	Potassium	HClO ₄ -HF-HCl; ICP
La1_ppm	52	Lanthanum	INAA; Becquerel
La2_ppm	53	Lanthanum	HClO ₄ -HF-HCl; ICP
Li2_ppm	54	Lithium	HClO ₄ -HF-HCl; ICP
LOI_pct	55	Loss-on-ignition	gravimetric
Lu1_ppm	56	Lutetium	INAA; Becquerel
Mg2_pct	57	Magnesium	HClO ₄ -HF-HCl; ICP
Mn2_ppm	58	Manganese	HClO ₄ -HF-HCl; ICP
Mn3_ppm	59	Manganese	4M HNO ₃ 1M HCl; AAS
Mo1_ppm	60	Molybdenum	INAA; Becquerel
Mo2_ppm	61	Molybdenum	HClO ₄ -HF-HCl; ICP
Mo5_ppm	62	Molybdenum	Aqua Regia; AAS
Nal_pct	63	Sodium	INAA; Becquerel
Na2_pct	64	Sodium	HClO ₄ -HF-HCl; ICP
Nb2_ppm	65	Niobium	HClO ₄ -HF-HCl; ICP
Ni1_ppm	66	Nickel	INAA; Becquerel
Ni2_ppm	67	Nickel	HClO ₄ -HF-HCl; ICP
Ni3_ppm	68	Nickel	4M HNO ₃ 1M HCl; AAS
P2_ppm	69	Phosphorus	HClO ₄ -HF-HCl; ICP
Pb2_ppm	70	Lead	HClO ₄ -HF-HCl; ICP
Pb3_ppm	71	Lead	4M HNO ₃ 1M HCl; AAS
Rb1_ppm	72	Rubidium	INAA; Becquerel
Sb19_ppm	73	Antimony	Hydride AAS
Sb1_ppm	74	Antimony	INAA; Becquerel

Sc1_ppm	75	Scandium	INAA; Becquerel
Sc2_ppm	76	Scandium	HClO ₄ -HF-HCl; ICP
Sm1_ppm	77	Samarium	INAA; Becquerel
Sr2_ppm	78	Strontium	HClO ₄ -HF-HCl; ICP
Ta1_ppm	79	Tantalum	INAA; Becquerel
Tb1_ppm	80	Terbium	INAA; Becquerel
Th1_ppm	81	Thorium	INAA; Becquerel
Th2_ppm	82	Thorium	HClO ₄ -HF-HCl; ICP
Ti2_ppm	83	Titanium	HClO ₄ -HF-HCl; ICP
U1_ppm	84	Uranium	INAA; Becquerel
U8_ppm	85	Uranium	Direct Neutron Activation
V2_ppm	86	Vanadium	HClO ₄ -HF-HCl; ICP
V5_ppm	87	Vanadium	HNO ₃ -HCl plus Al solution; AAS
W13_ppm	88	Tungsten	$K_2S_2O_7$ fusion, colorimetry
W1_ppm	89	Tungsten	INAA; Becquerel
Y2_ppm	90	Yttrium	HClO ₄ -HF-HCl; ICP
Yb1_ppm	91	Ytterbium	INAA; Becquerel
Zn2_ppm	92	Zinc	HClO ₄ -HF-HCl; ICP
Zn3_ppm	93	Zinc	4M HNO ₃ 1M HCl; AAS
Zr2_ppm	94	Zirconium	HClO ₄ -HF-HCl; ICP
Fw9_ppb	95	Fluoride in water	Ion Selective Electrode
pHw	96	pH of water	glass-calomel electrode; pH meter
Uw10_ppb	97	Uranium in water	Scintrex UA-3
Uw11_ppb	98	Uranium in water	Fission Track

B. Data Formats of Descriptive, Field and Analytical Variables

	Variable		Number of
Variable	Туре	Width	Decimals
NTS	String	3	
number	Number	6	0
NTS_number	String	9	
utmzone	Number	2	0
utmeast	Number	8	0
utmnorth	Number	8	0
Long_NAD27	Number	10	6
Lat_NAD27	Number	9	6
sampyear	Number	4	0
depth_m	Number	3	0
lakesize	String	8	
contam	Number	1	0
colour	String	5	
relief	String	3	

suspension	String	5	
sitedup	Number	1	0
inaawt_g	Number	5	2
openfile1	String	8	
openfile2	String	8	
Ag3_ppm	Number	4	1
Al2_pct	Number	6	2
As19_ppm	Number	4	1
As1_ppm	Number	5	1
As21_ppm	Number	4	1
Au1_ppb	Number	3	0
Ba1_ppm	Number	4	0
Ba2_ppm	Number	6	0
Be2_ppm	Number	5	1
Br1_ppm	Number	5	1
Ca2_pct	Number	6	2
Cd3_ppm	Number	4	1
Ce1_ppm	Number	3	0
Ce2_ppm	Number	6	0
Co1_ppm	Number	3	0
Co2_ppm	Number	6	0
Co3_ppm	Number	3	0
Cr1_ppm	Number	4	0
Cr2_ppm	Number	6	0
Cs1_ppm	Number	4	1
Cu2_ppm	Number	6	0
Cu3_ppm	Number	3	0
Dy2_ppm	Number	5	1
Eu1_ppm	Number	6	1
F9_ppm	Number	3	0
Fe1_pct	Number	5	1
Fe2_pct	Number	5	2
Fe3_pct	Number	5	2
Ga2_ppm	Number	6	0
Hf1_ppm	Number	6	1
Hg18_ppb	Number	3	0
K2_pct	Number	5	2
La1_ppm	Number	3	0
La2_ppm	Number	6	0
Li2_ppm	Number	7	1
LOI_pct	Number	4	1
Lu1_ppm	Number	4	1
Mg2_pct	Number	5	2
Mn2_ppm	Number	6	0
Mn3_ppm	Number	5	0

Mo1_ppm	Number	3	0
Mo2_ppm	Number	6	0
Mo5_ppm	Number	2	0
Nal_pct	Number	5	2
Na2 pct	Number	6	2
Nb2 ppm	Number	6	0
Ni1 ppm	Number	3	0
Ni2 ppm	Number	6	0
Ni3 ppm	Number	3	0
P2 ppm	Number	6	0
Pb2 ppm	Number	6	0
Pb3 ppm	Number	2	0
Rb1 ppm	Number	3	0
Sb19 ppm	Number	4	1
Sb1 ppm	Number	6	2
Sc1 ppm	Number	4	1
Sc2 ppm	Number	5	1
Sm1 ppm	Number	4	1
Sr2 ppm	Number	6	0
Tal ppm	Number	6	1
Tb1 ppm	Number	4	1
Th1 ppm	Number	4	1
Th2 ppm	Number	6	0
Ti2 ppm	Number	6	0
U1 ppm	Number	4	1
U8 ppm	Number	4	1
V2 ppm	Number	6	0
V5 ppm	Number	3	0
W13_ppm	Number	2	0
W1 ppm	Number	2	0
Y2 ppm	Number	6	0
Yb1 ppm	Number	6	1
Zn2 ppm	Number	6	0
Zn3_ppm	Number	5	0
Zr2 ppm	Number	6	0
Fw9_ppb	Number	3	0
pHw	Number	3	1
Uw10_ppb	Number	5	2
Uw11 ppb	Number	5	3

APPENDIX 2

Field and Stream-sediment and Water Data

Available as separate file online and on the CD