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FIGURES

Figure 1. Generalized geological map of the northern Appalachians showing the distribution of tectonos-
tratigraphic zones in pre-Silurian rocks and the locations of Marathon Gold Corp.’s and Antler
Gold Inc.’s properties. Map adapted from Hibbard ez al. (2000) .. ...... ... .. .. ... .. ... ... ....
Figure 2. Interpreted composite cross-section representing ~40 km strike length along the Rogerson
Lake Conglomerate structural corridor between Valentine Lake and Wilding Lake. The
cross-section stitches (thick grey line) structural hanging wall rocks of the Valentine Lake
pluton above footwall rocks at Wilding Lake, which consist of the Rogerson Lake
Conglomerate and volcanic and volcaniclastic rocks nonconformably overlying Ganderian
basement. Antler Gold’s Inc.’s Alder and Elm zones (trenches are orange lines) preserve
shear vein-hosted gold mineralization in the Rogerson Lake Conglomerate, whereas the Red
Ochre Zone preserves quartz veins and disseminated mineralization in feldspar porphyry.
Geochronology sample (BNB18-WL-029) from the granodiorite—gabbro—tonalite body (565
+ 2 Ma) was collected between 296-290 m depth along Antler Gold Inc.’s vertical drill hole
WL-17-29 (Honsberger et al., 2019). Age of Valentine Lake pluton from Evans et al. (1990).
Figure adapted from Honsberger ef al. (2019). .. ... . e



ABSTRACT

Crustal-scale fault zones in central Newfoundland are emerging as significant gold-mineralized structures. In particular,
the northeast-trending Rogerson Lake Conglomerate structural corridor, in the eastern Dunnage Zone (Exploits Subzone),
contains highly prospective orogenic-style vein-hosted gold deposits. Such mineralized vein systems, exposed near Valentine
Lake (Marathon Gold Corp.) and Wilding Lake (Antler Gold Inc.), are products of progressive Paleozoic deformation and
fluid-pressure cycling along crustal-scale faults that cut the Silurian Rogerson Lake Conglomerate and underlying
Neoproterozoic basement rocks of Ganderia. Well exposed, gold-bearing quartz vein systems of the Alder Zone and Elm Zone
on Antler Gold Inc. s Wilding Lake property, reveal a kinematic history that involved a main phase of reverse sinistral shear-
ing and subsequent transient phases of horizontal extension, oblique compression, and, at least, local components of late dex-
tral strike-slip. High-grade gold mineralization is associated with siderite—ankerite—sericite alteration of the host rocks,
quartz vein formation, and supergene alteration of chalcopyrite. Gold-bearing veins sets are composed of quartz, pyrite, chal-
copyrite, tourmaline, bismuth-tellurides, and secondary goethite and malachite. A prospective mineralized belt of Silurian
feldspar porphyry and felsic volcanic rocks adjacent to the Rogerson Lake Conglomerate structural corridor is exposed in the
Red Ochre Complex and Third Spot showing, respectively, on the Wilding Lake property. A prospective future gold exploration
target in the Wilding Lake area is a rheologically favourable Neoproterozoic granodiorite—gabbro—tonalite body that non-
conformably underlies the Rogerson Lake Conglomerate and may provide a setting similar to that at Valentine Lake.
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INTRODUCTION

The Island of Newfoundland occupies the northeastern-most portion of the northern
Appalachian orogen, and is subdivided into tectonostratigraphic zones based on geological and
geochemical contrasts in pre-Silurian rocks (Figure 1; Williams, 1978). The Humber Zone under-
lies western Newfoundland and consists of basement, and cover rocks of the early Paleozoic
Laurentian margin. The Dunnage Zone spans central Newfoundland and consists of accreted peri-
Laurentian (Notre Dame Subzone) and peri-Gondwanan (Exploits Subzone) arc terranes, juxta-
posed along a major east-verging fault zone, the Red Indian Line (Williams et al., 1988). The
Notre Dame Subzone, dominated by magmatic arc rocks, intrudes the paleogeographic, low-lati-
tude microcontinent of Dashwoods (Waldron and van Staal, 2001). The Exploits Subzone com-
prises Cambrian to Ordovician continental and oceanic arc—back-arc complexes derived from
Ganderia at higher latitudes on the opposite side of the Iapetus Ocean from Dashwoods and
Laurentia (Williams et al., 1988; van Staal et al., 1998; Zagorevski et al., 2007). The Gander and
Avalon zones represent peri-Gondwanan continental fragments, accreted, respectively, to compos-
ite Laurentia during the Silurian to Early Devonian Salinic, and Devonian Acadian orogenies
(Dunning et al., 1990; van Staal and Barr, 2012; van Staal et al., 2014).

Structurally controlled mesothermal gold deposits in Newfoundland are associated with
crustal-scale fault zones within, and along, the Dunnage Zone. The major fault zones include,
from west to east, the Baie Verte—Brompton Line (Williams and St. Julien, 1982), Cape Ray Fault
Zone (Dubé et al., 1996; van Staal ef al., 1996), Red Indian Line, and Victoria Lake Shear Zone
(Valverde-Vaquero et al., 2006). The largest known gold deposit in Newfoundland occurs at
Valentine Lake (Marathon Gold Corp., press release, October 30, 2018) in the footwall of the
Victoria Lake Shear Zone, which forms the base of the Devonian Meelpaeg nappe and essential-
ly separates the Dunnage Zone from the Gander Zone in central Newfoundland (Valverde-
Vaquero et al., 2006). The Cape Ray Fault Zone separates the Notre Dame Subzone from the
Exploits Subzone in southwestern Newfoundland, hence, correlates with the Red Indian Line far-
ther to the northeast. Key marker lithologies and exploration targets along the Cape Ray Fault
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Figure 1. Generalized geological map of the northern Appalachians showing the distribution of
tectonostratigraphic zones in pre-Silurian rocks and the locations of Marathon Gold Corp. s and
Antler Gold Inc. s properties. Map adapted from Hibbard et al. (2006).



Zone and Victoria Lake Shear Zone are panels of Silurian synorogenic polymict conglomerate and
associated volcanic rocks unconformably overlying the faulted and imbricated basement terranes
(Dubé et al., 1996; van Staal et al., 1996). Structurally controlled gold mineralization on Antler
Gold Inc.’s Wilding Lake property is concentrated within shear vein systems that cut Silurian
polymict conglomerate (Rogerson Lake Conglomerate), and felsic volcanic and volcaniclastic
rocks, within the Exploits Subzone.

This contribution presents an overview and detailed field data from Antler Gold Inc.’s Wilding
Lake property, including two exploration trenches within the Rogerson Lake Conglomerate, the
Alder and Elm zones, mapped, in detail, during the summer of 2018, as part of Natural Resources
Canada’s Targeted Geoscience Initiative. The outcome of this field work is summarized in this
open-file report as two poster sheets (Appendix). The first (Appendix, Poster Sheet 1 of 2) presents
a geological and structural overview of the Wilding Lake property and includes a detailed discus-
sion of the smaller Alder Zone trench, whereas the second poster sheet (Appendix, Poster Sheet 2
of 2) summarizes the geological and structural features of the more extensive Elm Zone trench.

WILDING LAKE PROPERTY

EXPLORATION HISTORY

In 2015, prospecting along new logging roads in the Wilding Lake area led to the discovery
of visible gold in large quartz boulders. In 2016, additional quartz—tourmaline boulders having
visible gold were identified by follow-up prospecting and soil sampling by Altius Resources. In
September 2016, Antler Gold Inc. optioned the Wilding Lake property from Altius Resources.
Between September and November 2016, Antler Gold Inc. exposed five new gold showings host-
ed in the Rogerson Lake Conglomerate; the Alder, Taz, Elm, Cedar, and Dogberry zones, and three
additional showings near the contact with or within felsic volcanic rocks (Birch, Third Spot, and
Bridge; Antler Gold Inc., press release, August 30, 2017). In 2017, Antler Gold Inc. discovered
the Red Ochre Complex within feldspar porphyry in contact with the Rogerson Lake
Conglomerate. The first phase of channel sampling and drilling was completed by Antler Gold
Inc. in 2017, including three drillholes in the Alder Zone and 13 drillholes in the Elm Zone (Antler
Gold Inc., press release, December 13, 2017). Gold values of up to 19.2 g/t over 0.9 m and 49.92
g/t over 0.98 m were reported for the Alder and Elm zones, respectively (Antler Gold Inc., press
release, January 24, 2017).

REGIONAL SETTING

Antler Gold Inc.’s Wilding Lake property spans the gold-mineralized Rogerson Lake
Conglomerate structural corridor, which trends northeast from Cape Ray to Marathon Gold
Corp.’s Valentine Lake gold property to Wilding Lake (Figures 1 and 2). The prospective struc-
tural corridor is characterized by a truncated footwall syncline of the Rogerson Lake
Conglomerate and associated felsic volcanic and volcaniclastic rocks that nonconformably over-
lie a granodiorite—gabbro—tonalite body (Figure 2). High-precision U-Pb zircon dating of gran-
odiorite from a drillcore reveals that this underlying granitoid is 565.0 + 2.3 Ma Ganderian base-
ment (Honsberger et al., 2019), which correlates with the Neoproterozoic Crippleback Intrusive
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Figure 2. Interpreted composite cross-section representing ~40 km strike length along the
Rogerson Lake Conglomerate structural corridor between Valentine Lake and Wilding Lake. The
cross-section stitches (thick grey line) structural hanging wall rocks of the Valentine Lake pluton
above footwall rocks at Wilding Lake, which consist of the Rogerson Lake Conglomerate and vol-
canic and volcaniclastic rocks nonconformably overlying Ganderian basement. Antler Gold's
Inc. s Alder and Elm zones (trenches are orange lines) preserve shear vein-hosted gold mineral-
ization in the Rogerson Lake Conglomerate, whereas the Red Ochre Zone preserves quartz veins
and disseminated mineralization in feldspar porphyry. Geochronology sample (BNB18-WL-029)
from the granodiorite-gabbro—tonalite body (565 + 2 Ma) was collected between 296—290 m
depth along Antler Gold Inc.’s vertical drill hole WL-17-29 (Honsberger et al., 2019). Age of
Valentine Lake pluton from Evans et al. (1990). Figure adapted from Honsberger et al. (2019).

Suite at Valentine Lake (Valentine Lake pluton, 563.0 = 2 Ma) and elsewhere in central
Newfoundland (Evans et al., 1990; Rogers et al., 2006). To the east of Antler Gold Inc.’s proper-
ty, the Wilding Lake pluton stitches the Victoria Lake Shear Zone, whereas gold-bearing
Neoproterozoic rocks of the Crippleback Intrusive Suite occur to the west of the property.
Accordingly, the regional crustal-scale fault system that controls gold mineralization between
Valentine Lake and Wilding Lake is interpreted to cut Neoproterozoic Ganderian basement of the
Exploits Subzone (Figure 2).
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Introduction

Targeted gold exploration along the Rogerson Lake Conglomerate structural corridor within the Pa-
leozoic Dunnage Zone of central Newfoundland (Williams, 1978) is revealing a pattern of gold-min-
eralized, structurally controlled quartz vein systems along northeast-trending fault zones between
Cape Ray and Mount Peyton. With respect to geology and spatial scale, gold-bearing fault zones
throughout central Newfoundland bear strong similarity to world-class, structurally controlled, oro-
genic-style Archean gold systems of the Abitibi greenstone belt (e.g., Poulsen et al., 2000; Dub¢ and

Gosselin, 2007; Bleeker, 2015; Honsberger and Bleeker, 2018).

As 1n the Abitibi, the central New-

foundland gold district is controlled by crustal-scale faults that cut middle and lower crustal sedimen-
tary-magmatic arc terranes and preserve upper-crustal panels of synorogenic sedimentary (e.g., Rog-
erson Lake Conglomerate) and volcanic rocks. Mineralized high-grade quartz vein systems, such as
those at Wilding Lake and Valentine Lake, are evidence of the resource potential of central Newfound-
land, and provide local geometric and kinematic constraints on the structural evolution of the regional
fault systems controlling gold transport, deposition, and preservation. Detailed lithological and struc-

tural trench mapping of two structurally controlled, gold-bearing

quartz vein systems (Alder Zone and

Elm Zone) on Antler Gold Inc.’s Wilding Lake property indicates that the major vein systems are
oblique sinistral reverse shear zones comprised of a main vein (V) and an accompanying set of shal-
lowly dipping extension veins (V, ) that cut siderite—ankerite—sericite altered Rogerson Lake Con-
glomerate. At least three additional generations of gold mineralized extensional quartz veins (V,, V
V,) containing chalcopyrite, pyrite, tourmaline, and goethite (after pyrite and chalcopyrite), cut the
main vein systems of the Alder and Elm zones. The structural evolution of the vein systems at Wilding
Lake 1s described by a progressive history evolving from early sinistral transpression to transient
phases of horizontal extension, followed by subsequent localized phases of oblique compression and

dextral strike—slip.

Central Newfoundland Gold District

Mings Bight/
Pigne Cove/
Stog’er Tight

Abitibi belt

O Gold deposit CRF Cape Ray

Newfoundland
© Underdeveloped gold deposit

: s . RIL  Red Indian Line
© Gold mineralization Major Fault Zone DBL Dog Bay Line %
&

BBL Baie Verte Line

v Gold mine, historic and active VLSZ Victoria Lake Shear Zone
CRF Cape Ray Fault Zone

Honsberger and Bleeker, 2018
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Comparison of the geology and gold-bearing fault systems for the Archean Abitibi greenstone belt

(left) and Paleozoic Dunnage Zone, central Newfoundland Appalachians (right), at the same scale.
Major fault zones shown in red. Rogerson Lake Conglomerate dominates the Silurian sedimentary
sequence (yellow) in central Newfoundland in the vicinity of Valentine Lake and Wilding Lake

Wilding Lake Property

Antler Gold Inc.’s Wilding Lake property in central Newfoundland encompasses the synformal Roger-
son Lake Conglomerate structural corridor between Wilding Lake and Rogerson Lake. The gold-bear-
ing corridor is characterized by Neoproterozoic basement granitoids of the Crippleback Intrusive Suite.
These granitoids underlie Silurian synorogenic polymict conglomerate intercalated with sandstone and
bimodal volcanic and shallow-level intrusive rocks that correlate with the Botwood basin to the north-
east. Cambrian to Ordovician mafic volcanic and volcaniclastic rocks of the Victoria Lake Supergroup
occur farther to the northwest. Structurally controlled gold mineralization in Rogerson Lake Conglom-
erate 1s well exposed in the Alder Zone and Elm Zone. The Wilding Lake property also shows mineral-

ized quartz veins in felsic volcanic rocks (Third Spot Showing),

disseminated mineralization in feld-

spar porphyry (Red Ochre Complex), and mineralization along the sheared contacts of Rogerson Lake

Conglomerate with felsic volcanic rocks and an underlying Neoproterozoic gabbro—tonalite—granodio-

rite body that 1s marked by a regional magnetic anomaly. Mineralized extensional quartz veins are
composed of chalcopyrite, pyrite, tourmaline, Bi-tellurides, malachite, and goethite after pyrite.

Zz
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Generalized geological map of the Rogerson Lake Conglom
erate strucural corridor, central Newfoundland. Map adapt-
ed from Valverde-Vaquero et al. (2005). Ages from Dunning
et al. (/990); Evans et al. (1990),; McNicoll et al. (2008),
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Prospective Basement Rocks

Basement rocks underlying Antler Gold Inc.’s Wilding Lake gold property consist of 565.0 &+ 2.3 Ma
deformed and altered gabbro-tonalite-granodiorite (Honsberger ez al., 2019) of the Ganderian Cripple-
back Intrusive Suite, which includes the gold-mineralized Valentine Lake pluton to the southwest. The
along strike structural position, combined with the brittle nature of these granitoids, make the gab
bro-tonalite-granodiorite body a prospective future drilling target for exploration.
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The Alder Zone trench exposes a 5 by 35 m
quartz vein system that cuts the Rogerson L-
ake Conglomerate, which is strongly altered
along the main vein and weakly altered far-
ther away. Foliation varies from nearly
east-west striking (S ) away from the main
vein to northeast-southwest striking (S,)
along the vein. S, 1s folded into east-south-
east plunging, nearly reclined, folds. Four
generations of quartz vein sets are ob-
served. The oldest extensional veins (V)
dip moderately to the southeast and are
slightly older than the main vein (V ),
which consists of a network of fault-fill
veins that dip moderately to the southeast.
Combined with shallowly south—southeast
plunging slickenlines, V. and V _ are con-
sistent with oblique sinistral reverse shear.
A tourmaline-bearing vein set, dipping
steeply to the northeast (V,), cuts the main
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veln, consistent with transient subhorizon-
tal extension. V, veins are cut by chalcopy-
rite-bearing veins that dip steeply to the
northwest (V,), compatible with oblique
compression. Steeply south-southwest dip-
ping veimns (V,) consistent with dextral
strike-slip cut V, and V.. Joints of variable
attitudes cut all vein sets.
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STRUCTURALLY CONTROLLED GOLD SYSTEM, ANTLER GOLD INC.’S WILDING LAKE PROPERTY, CENTRAL NEWFOUNDLAND

Structural Synthesis

Antler Gold Inc.’s Wilding Lake gold property occupies a portion of the gold-bearing Rogerson Lake
Conglomerate structural corridor between Rogerson Lake and Wilding Lake in central Newfound-
land. The property exposes structurally controlled mineralization in Rogerson Lake Conglomerate
and felsic volcanic rocks. High-grade gold mineralization of the Alder and Elm zones 1s controlled by
regional northeast-trending oblique sinistral reverse shear zones. Three generations of chalcopyrite
and/or tourmaline-bearing quartz veins (V,, V., and V,) overprint the main sinistral fault-fill (V) and
extensional (V| ) vein systems, and reflect a structural evolution from early sinistral transpression to
transient horizontal extension, renewed oblique compression, and subsequent local dextral
strike—slip. The unexplored Neoproterozoic gabbro—tonalite—granodiorite body underlying the Rog-
erson Lake Conglomerate is prospective for gold mineralization, as are along-strike extensions wit-
hin the Silurian Rogerson Lake Conglomerate gold corridor.

Time Deformation Fabric element and tectonic structure Mechanism of formation
phase
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Rogerson Lake Conglomerate glomerate and Ganderian
basement
D, S, NE-SW striking progressive foliation Reverse sinistral shearing
V.. Initial shallowly-dipping extension veins
V., Main shear vein
D, , NW-SE striking vertical veins Transient horizontal extension
D, 3 NE-SW striking extension veins and Oblique compression
fractures/joints cutting main vein
D, Vv, E-W striking vertical extension veins Local dextral strike-slip
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ELM ZONE, ANTLER GOLD INC.’S WILDING LAKE PROPERTY, CENTRAL NEWFOUNDLAND
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'Geological Survey of Canada; “Geological Survey of Newfoundland and Labrador; Antler Gold Inc.; *Jack Satterly Geochronology Laboratory, University of Toronto

Overview

The Elm Zone trench consists of a ~230-m long, structurally controlled quartz vein shear system that
cuts an early axial-planar cleavage in the Rogerson Lake Conglomerate. At a distance away from the main
vein, early foliation strikes in an easterly direction and dips steeply to the south (S,), but rotates to
northeast-striking (S,) along, and subparallel, to the main vein. The main laminated fault-fill quartz
vein (V) 1s up to 2.5-m-wide, dips moderately to the southeast, and contains slickenlines that plunge
moderately to the south-southwest. Stacked, extensional veins (V, ) emanate from the main vein and
dip moderately to shallowly to the south, or east-northeast if rotated, consistent with oblique sinistral
reverse shear. The main vein system is cut by a chalcopyrite-rich vein set (V) that dips steeply to the
north, and also by a moderately to steeply northwest-dipping set of tourmaline-rich veins (V,). Conju-
gate sets of extension fractures/joints that contain vuggy quartz cut V and V.. The northwest-dipping
joint set is subparallel to both V| and a siderite/ankerite—sericite-altered mafic dyke adjacent to Elm. A
late set of steeply south-dipping extension veins consistent with dextral strike—slip (V,) cuts the older
vein and fracture sets. Minerals associated with gold include chalcopyrite, pyrite, tourmaline, bis-
muth-tellurides, rutile, geothite after pyrite and chalcopyrite, and malachite. The system 1s locally
folded into late open to tight reclined folds that plunge shallowly to the southeast.
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