

# Seismic and Magnetotelluric Fieldwork in the Howley Basin

Tijana Livada, Charles Hurich, Colin Farquharson

### September 2013 Seismic Program – Eastern Howley Basin



Cabot Fault System

### **Survey Stats**

#### **Recording Data**

- MUN Aries Lite recording system
- 180 live channels
- 10 m group spacing
- 5 m notional CMP spacing
- 45 Fold
- Maximum offset 1820 m
- Profile length 7 km

### **Source Data**

- shot spacing 20 m
- 4 sweeps/shot point
- sweep length 15 s
- listen time 5 s
- 420 shot points including shoot throughs at both ends

### **Personnel/training**

- C. Hurich and 5 graduate students

 Acquisition of seismic data along the T'Railway not approved for exploration license so the acquisition was limited to road on crown land east of Howley

- Acquire data across the eastern bounding fault of the basin
- Test the level of source energy required for data acquisition
  2013 data acquired using the MUNSIST seismic source
- Data processing is ongoing
- Based on field records
  - Clear evidence of reflections in the first 1-1.5 km of the data
  - Likely unconformity at ~ 500-600 m

# MUNSIST

Swept impact seismic source designed for environmentally friendly, high resolution imaging



MUN designed custom control software linked with a commercial hydraulic rock breaker

Successfully deployed for surveys in western Newfoundland (5 Mile Road and Flat Bay) and 2 surveys at Voisey's Bay



# **Data Acquisition**



Brandon Reid - MUN MSc student – acquisition computer



Aries RAM and battery - each RAM handles 8 channels A/D



**Geophone placement** 

# **MUN Occupation of the Howley Tourist Lodge**





### www.nasaimages.org



The Internet





Measure E and H. Their ratio contains information about the electrical conductivity of the subsurface.

- **Source:** the flow of charged particles in the ionosphere, such as lighting and solar energy, causing natural variation in the magnetic field under the Earth's surface, that induce electric currents.
- **Results:** imagines the earth's electrical resistivity structure from depths of a few 100 meters to several 100's kilometers.



### August/September 2013 MT Program – Howley Basin



Eastern Bounding Fault

### August/September 2013 MT Program –Howley Basin



AMT Sites (39 in total) BBMT + AMT Sites (10 in total) Remote Site

### **Survey Stats**

#### **Recording Data**

- Four Phoenix MT Units
- 12 AMT Coils, 6 BBMT Coils
- Two types of electrodes: pots and rods
- AMT spacing: 500 m
- AMT recording time: 2-4 h
- BBMT spacing: 2 km
- BBMT recording time: overnight
- Profile length ~18km

### **Personnel/training**

- Jessica Spratt and 3 graduate students









# **Data Acquisition and Field Work**



Jessica Sprat connecting and turning on the MTU



Placing a coil underground



Equipment layout

- TM mode
- Electric field polarized across electric strike.
- When  $H_x$ ,  $E_y$  and  $E_z$  are comprise.
- Affected mainly by galvanic effects.

# • TE mode

- Electric field polarized along (parallel) electric strike.
- When  $E_x$ ,  $H_y$  and  $H_z$  are comprise
- Affected by galvanic and inductive effects.



An image of MT data from MTEditor after data has been cleaned from the noise

### **Phase Pseudosection**



Pseudosections of the phases with increasing period of TE and TM modes. Data is 1D where the difference between phases is less than 10°

# **1D Example**



Pre-editing

Post-editing

# **1D Example**



An image of MT data from WinGLink of Station HW136, with fitted resistivity model

# **Resistivity Profile from 1D TE and TM modes**

