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ABSTRACT

This paper reviews the geological environments of gold mineralization in Newfoundland. Gold has been recovered as a
by-product from volcanogenic massive sulphide deposits. Island-arc and ophiolitic environments of massive sulphide formation
are documented and the deposits are intimately related to volcanic stratigraphy. These deposits will continue to be of major
importance.

The economic potential of epigenetic deposits that occur as individual or multiple veins, stockworks, or replacement zones,
is now being recognized. These deposits are the focus of most recent exploration efforts that include the Hope Brook, Cape
Ray, and Mings Bight areas. They occur in a variety of secondary structural environments associated with major fault zones
and lineaments. Epithermal alteration assemblages, commonly deformed by later fault movements, are widely developed in
volcanic and sedimentary rocks varying in age from Late Hadrynian to Late Silurian, and extensive carbonatization occurs
in and adjacent to ophiolitic ultramafic rocks. A spatial, possibly genetic, association between granites and gold is evident
at some prospects, but is not a universal feature. Major fault and thrust fault zones enhanced and focussed fluid, and possibly

some magmatic systems, and were the fundamental control over epigenetic mineralization.

INTRODUCTION

Volcanogenic massive sulphide deposits have traditionally
been an important source of gold in Newfoundland with an
approximate total production of 3 tonnes. The deposits were
mined primarily for their base metals, but in some mines,
gold contributed to the viability of mining and locally attained
ore grades irrespective of the base-metal content.

The largest gold producers were deposits associated with
felsic volcanic rocks at Buchans and at Rambler (Figure 2);
other similar deposits also contain gold. The recent Duck
Pond—Tally Pond discovery (Figure 2), and the identification
of gold in the Rambler tailings, should ensure continued
production from those types of deposits. Minor production
has been achieved from ophiolite-related deposits and several
of these are being investigated for their gold potential.

A substantial increase in exploration for epigenetic gold
deposits in Newfoundland has taken place since 1984. Hope
Brook Mine (Figure 6) commenced production in 1987 and
is the province’s first significant gold-only mine. Underground
exploration has been conducted at Cape Ray and at Deer Cove
(Figure 6), and major surface exploration projects are
underway at numerous localities. These epigenetic deposits
include single and multiple veins, silicified and replacement
zones, and stockwork vein systems. They are characterized
by a relatively low sulphide content when compared to
volcanogenic massive sulphides, and represent an important
resource to the province.

The new prospects occur predominantly in Paleozoic
rocks of the Appalachian Orogen, although some are hosted
by late Precambrian rocks. An extremely diversified
depositional, structural, plutonic and tectonic history of the
province provides an abundance of mineralized environments
that collectively exhibit features common to gold deposits
worldwide.

The objectives of this paper are to update an earlier
summary of gold-bearing environments in Newfoundland
(Dean et al., 1985) and to present our perspective on the
controls of gold mineralization in the province. The
descriptive emphasis of the paper is on the setting of newly
recognized epigenetic vein-type deposits. A summary of
environments of deposition of massive sulphides is also given
and this topic will be reviewed in greater detail in a later
publication.

GEOLOGY OF NEWFOUNDLAND

Newfoundland occupies a central position in the
Appalachian—Caledonian Orogen and lies at the northeastern
edge of the Appalachian Orogen in North America (Williams,
1978). Three major tectonic-stratigraphic subdivisions are
recognized (Figure 1), and the rocks record the evolution and
destruction of the Lower Paleozoic Iapetus Ocean (Bird and
Dewey, 1970; Williams, 1978, 1979; Williams and Hatcher,
1982).

This project is a contribution to the Canada—Newfoundland Mineral Development Agreement, 1984—1989
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The Humber Zone (also known as the Western Platform)
consists of a platformal (miogeoclinal) sequence of
Eocambrian to Ordovician quartzite, carbonate and shale
above a basement of Late Grenvillian (ca. 1240 Ma, Erdmer,
1986) gneisses and plutonic rocks. Mafic dykes in the
Grenvillian rocks may be related to an episode of crustal
rifting that led to development of the Iapetus Ocean (Strong
and Williams, 1972). Allochthonous sedimentary and
ophiolitic sequences are also present in the Humber Zone.

The Avalon Zone consists of a platformal sequence of
Eocambrian to Ordovician clastic sediments and carbonates
deposited on Late Hadrynian metavolcanic, metasedimentary
and plutonic rocks. The Hadrynian basement has been
correlated with Pan-African sequences (O'Brien e al., 1983),
and may have developed during rifting to form the lapetus
Ocean, or during a pre-lapetus cycle of ocean closing
(Williams, 1979).

The Central Mobile Belt includes the Dunnage and
Gander zones. It consists of lower Paleozoic, ocean margin
clastic wedge deposits, ophiolite sequences, and island-arc/
back-arc basin volcanic and sedimentary sequences. These
rocks record the evolution and destruction of the lapetus
Ocean (Williams, 1978). Middle to late Paleozoic continental
clastic and volcanic sequences are also well developed and
were deposited after accretion of oceanic sequences to the
North American Craton.

Early Ordovician deformation and metamorphism
(locally to amphibolite facies) in the western part of the
Central Mobile Belt, and locally on the Western Platform,
record westward obduction of oceanic sedimentary and
ophiolite rocks during the Taconic Orogeny (Williams and
Stevens, 1974). Silurian and later, upright to recumbent
folding, thrusting, and metamorphism (locally to amphibolite
facies) of rocks in the Central Mobile Belt occurred
dominantly during the Acadian Orogeny and record final
closure of the Iapetus Ocean (Strong et al., 1974; Colman-
Sadd, 1980, Stockmal et al., 1987). In the Avalon Zone, areas
of deformation record a Late Hadrynian orogeny; Acadian
structures are evident in the west and become weaker to the
east. Late Devonian to Carboniferous deformation resulted
from strike slip and vertical fault movements, and local brittle
thrust faults (cf. Hyde, 1979; Blackwood, 1985).

Late Precambrian plutonism occurred in basement rocks
of the Western Platform and Avalon Zone, and plutonism
occurred throughout the Paleozoic history of the orogen
(Strong, 1980; Hayes et al., 1987). Eocambrian to Cambrian
plutons having alkaline to peralkaline affinities in the Western
Platform and in the Avalon Zone may have formed during
rifting to form the Iapetus Ocean. Isolated lower Paleozoic
trondjhemitic plutons occur in the Central Mobile Belt and
in allochthonous ophiolitic rocks on the Western Platform;
these may have formed in oceanic crust or in the roots of
oceanic island arcs. Large areas of Middle Ordovician
granodiorite and tonalite occur along the western margin of
the Central Mobile Belt. Major granitic plutonism occurred
in the Middle Silurian to Early Devonian during the final

stages of closure of the lapetus Ocean. A variety of pluton
types represent different tectonic environments; for example,
calc-alkaline plutons with I-type affinities may be subduction
related, whereas peraluminous granitoids with S-type
affinities may be crustal melting during collision, and
metaluminous to peralkaline plutons in the western part of
the Central Mobile Belt may represent an anorogenic
epicontinental setting (Coyle and Strong, 1987). Upper
Devonian to Carboniferous metaluminous granites with
A-type affinites occur throughout the eastern part of the
Central Mobile Belt and in the Avalon Zone and cut many
of the earlier structures.

MASSIVE SULPHIDE DEPOSITS

Gold has been produced from the base-metal mines
developed in volcanogenic massive sulphide deposits in lower
Paleozoic volcanic and volcaniclastic sequences (Figure 2;
Table 1). Most of the production has been from exhalative,
syngenetic massive sulphides although minor amounts have
also been recovered from related stockwork zones.

Two main subdivisions of auriferous massive sulphide
deposits are recognized in Newfoundland (cf. Swinden and
Thorpe, 1984; Swinden and Kean, 1984, in press): 1) deposits
associated with felsic volcanic rocks in mafic-felsic sequences
and 2) deposits associated with pillow lavas of ophiolite
sequences. A third type of massive sulphide deposit
recognized by Swinden and Kean (in press) occurs in non-
ophiolitic mafic volcanic rocks (the Fox Neck-type, which
may also include the Great Burnt Lake deposit) but is not
known to contain anomalous gold.

Deposits in Mafic—Felsic Sequences

The base- and precious-metal contents of massive
sulphide deposits in mafic—felsic arc volcanic sequences in
the Central Mobile Belt reflect regional variations in the
compositions of the underlying volcanic rocks (Swinden and
Thorpe, 1984; Swinden and Kean, 1984, in press). Three
broad categories are recognized based on the relative amount
of mafic and felsic rocks within the volcanic—volcaniclastic
sequences (Figures 2, 3, 4).

Massive sulphide deposits in mafic-dominated sequences
are copper- and/or zinc-rich (Figure 4a); those in the mixed
sequences are polymetallic (Cu, Zn, Pb) and those in felsic-
dominated sequences are zinc and lead rich. This is
interpreted to reflect the availability of the metals to the
hydrothermal cells during leaching, with Cu and Zn having
been more abundant in the mafic volcanic rocks and Pb in
felsic rocks. Similarly, the relative precious-metal contents
of the various deposits is apparently a function of the
composition of the host volcanic sequence (Figure 4b).
Deposits hosted by mafic-dominated sequences generally have
the highest gold/silver ratios and this ratio decreases with
increasing proportions of felsic volcanic rocks in the
underlying stratigraphic section. Irrespective of metal ratios,
the absolute concentration of gold in any particular deposit
is a function of the size of the hydrothermal system and the
physicochemical conditions at the site of deposition.
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Figure 2. Location of lower Paleozoic

volcanogenic massive sulphide deposits and

classification of the host sequences in Newfoundland.

Economic concentrations of gold may accumulate in any
environment where suitable source rocks are present.

The gold content of individual massive sulphide deposits
may be relatively consistent between ore deposits in a deposit
cluster as at Buchans (Thurlow and Swanson, 1981; Kirkham,
1987), or may vary between deposits as at Rambler (an
average of 5.1 g/t gold was produced from the Main Mine;
Table 1; Tuach and Kennedy, 1978). Significant variation can
also occur within a single massive sulphide deposit as at Point
Leamington (D. MaclInnis, personal communication, 1987).

Deposits in Ophiolite Sequences

These are the most common type of volcanogenic
sulphide deposits in Newfoundland (Table 1; Figure 2). They
are copper- and zinc-rich and occur at all stratigraphic levels
(Figure 5) within the ophiolitic pillow lava sequences (Duke

282

R

and Hutchison, 1974; Kean, 1983; Kean, 1984). For example,
the Betts Cove deposits occur at the base of the pillow lavas
immediately above the sheeted-dike horizon (Uphadhyay and
Strong, 1973), the York Harbour deposits occur in pillow lavas
well above the sheeted dykes, and the Timber Pond deposit
occurs at the top of the pillow lavas (Kean and Evans, this
volume). It is also possible that deposits of the East Mine
at Tilt Cove were formed at the top of the pillow lavas
(although for an alternate viewpoint, see Strong, 1984).
Several of the deposits occur in chlorite schist zones (e.g.,
Little Bay, Whalesback) related to shears preferentially
developed along syngenetic alteration zones in mafic volcanic
rocks and dykes (Kean, 1984).

Gold/silver ratios in these deposits are high (Figure 4),
probably relecting the mafic (and potentially ultramafic)
composition of the available source rocks. The gold content
of the deposits has not been well documented, and production,
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Table 1. Base- and precious-metal contents of selected volcanogenic massive sulphide deposits in Newfoundland

Deposit Production/Reserves Grade Gold
Name (Tonnes) Cu% Pb% Zn% Ag(g/t) Au(g/t) Production Comments

FELSIC DOMINATED

Strickland 260,000 5.25% 195 S
Barasway - - -
de Cerf
MAFIC/FELSIC
Victoria Mine 200,000 R 7.5% 1.5 24 12 0.14 *Assay of grab sample
from dump
Tonnage is approximate

Tulks Hill 750,000 R 1.3 2 5-6 41 0.4
Tulks East A. 4,500,000 R 0.24 0.12 15 85 tr

B. 200,000 R 0.66 1.26 8.69 58.7 0.14

C. 900,000 R <1% combined Cu + Pb + Zn
Jacks Pond 200,000 to Not reported but generally low 4 lenses

900,000 R

Boundary 500,000 R 3.5 1 4 34 S
Duck Pond 3,600,000 R 3.71 1.36 7.58 723 12
Burnt Pond ? - - - -
Pilley’s Island 1,051,436 P 1.23 - - - S
Lake Bond 1,096,699 R 0.31 - 2.12 - S
Gullbridge 3,466,000 P 1.02 - - - -
Southwest Shaft <90,000 R 1-2 - - - S
Buchans 16,196,876 P 1.33 7.56 14.51 126 1.37 P 22,000 kg
Connell Option ? 0.3 11.9 254 158 34 1 DDH
Clementine 363,000 R 0.3 2.6 49 103 S
Great Burnt Lake 750,000 R 2.9 - - -
South Pond 270,000 R 1.3 - - - 1.37
MAFIC DOMINATED
Rambler 399,000 p 1.3 - 2.16 29 5.1
Ming 1,991,592 P 3.66 - - 22 2.4 P 5,400 kg
East 1,993,079 P 1.04 - - - -
Big Rambler Pond 45,000 P 1.2 - - - - Selected sample 1.4 g/t
Mine Tailings 2,000,000 R ? ? ? ? 1.6 Very approximate
Point Leamington 18,000,000 R 0.5 - 2 - 1.0
Lockport 555,000 R 0.75 - - - S
OPHIOLITE-HOSTED(%)
Skidder 900,000 R 2 - 2 - -
Tilt Cove 8,163,000 P 1-12 - - - - P <1,500 kg
Betts Cove 118,528 P 2-10 - - - -
Terra Nova 226,750 P 2-2.5 - - - 1.6 dump sample; 16.8 g/t
Little Bay 3,083,800 P .82 - - - - P 195 kg
Whalesback 3,792,809 P .85-1.1 - - - ?
Little Deer 392,000 P&R 1.5 - 1.5 - S
Miles Cove 200,000 R 1.45 - - 12 0.34
Rendell-Jackman 10,000 R 1-5 - - - 1 ght
Colchester 1,000,000 R 1.3 - - - S
McNeily - R .54 - - - - Grabs to 4 g/t
York Harbour 300,000 P &R 1.9 - 47 - - M 5 kg
S —Sporadic (<0.4 g/t) P—Produced M—Mined R —Reserves (geological) tr—trace
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Figure 3. Schematic diagram showing stratigraphic setting
of massive sulphide deposits in mafic—felsic sequences in
central Newfoundland.

which mainly occurred prior to 1970, has been minor (Table
1). This may in part be a function of primitive analytical
techniques and poor recovery. All the deposits were mined
(or delineated) for copper; zinc from sphalerite, which is
locally abundant, was not generally recovered. Recent data
suggests that gold in these deposits is associated with
sphalerite (Hurley and Crocket, 1985; Kean, unpublished
data), and would have been therefore discarded during mining.
Values in excess of 1 g/t gold were obtained from assays of
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ratios in massive volcanogenic sulphide deposits in
Newfoundland. From unpublished analyses of dump samples
and data compiled by S. Swinden and B.F. Kean.

dump material at Betts Cove (Saunders, 1985), York Harbour,
Tilt Cove, and deposits throughout the Lushs Bight Group
(Kean, unpublished data; Tuach, 1987a). In addition, ore-
grade material is reported in outcrop at Tilt Cove (Kusmirski
and Norman, 1982).
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Figure 5. Schematic diagram showing stratigraphic and
structural setting of massive sulphide deposits in ophiolitic
rocks in Newfoundland. These deposits occur in several
different ophiolite sequences.

Paleotectonic Environments of Massive Sulphide
Formation

The thick mafic—felsic volcanic sequences in the Central
Mobile Belt have been generally considered to record
volcanism and mineralization in an island-arc environment
(Mitchell and Garson, 1976; Swinden and Strong, 1976).
Recent detailed geochemical studies in some sequences, for
example, the Wild Bight Group (Swinden, 1987), the Victoria
Lake Group, (Swinden and Kean, unpublished data), and the
Buchans Group (Thurlow, 1973; Swinden, unpublished data)
confirm these interpretations. In the Wild Bight Group, it has
been suggested that mineralization occurred during rifting of
an island arc prior to opening of a Middle Ordovician back-
arc basin (Swinden, 1987).

The ophiolitic sequences are considered generally to
record active rifting in back-arc environments (e.g., Dunning
and Krogh, 1985), although some such as the Betts Cove
Complex (Coish et al., 1982) and the Lushs Bight Group (B.F.
Kean and G.A. Jenner, unpublished data) contain geochemical
evidence of the proximity of a subducting slab. In fact, the
boundaries between the environments recorded by the two
types of sequences may not be sharp. For example, the
Rambler deposits (Figure 2) are associated with mafic and
felsic volcanic rocks of the Pacquet Harbour Group which
have been previously interpreted as representing an immature
island-arc environment (e.g., Hutchinson, 1973; Tuach and
Kennedy, 1978; Dean, 1978). Hibbard (1983), however,
correlated magnesian volcanic rocks in the Pacquet Harbour
Group with those in the Betts Cove complex, implying that
the ore-bearing strata were actually part of a fragmented
ophiolite (see also Gale, 1973). The latter interpretation is
supported by recent unpublished geochemical data (G.A.
Jenner, personal communication, 1987). The implication is
that the ophiolites may have been generated in a
suprasubduction zone environment. Clearly, there are
ambiguities in the present classification that need to be
resolved. In any event, the high heat flow associated with

events in the island-arc or back-arc environments probably
determine whether metal-rich hydrothermal systems develop.

The Fox Neck-type deposits apparently formed in back-
arc seftings not associated with active rifting (Swinden and
Kean, in press). The deposits are generally metal-poor and
it seems that although the hydrothermal systems were
probably circulating in good Cu-, Zn- and Au-source rocks
(i.e., oceanic crust), these metals were not transported to the
ore-forming environment. It is suggested that these
hydrothermal systems were generally small and short lived
and not always capable of carrying significant quantities of
most metals. They may have been the remnants of previously
active systemns which had drifted away from the main centers
of tectonic activity and high heat flow, or they may have been
associated with areas of low heat flow within the back arcs,
such as along transform faults.

EPIGENETIC DEPOSITS

Geological descriptions of epigenetic gold mineralization
(Figure 6) in the main areas of active exploration are presented
below. They illustrate the variety of styles and environments
of gold mineralization encountered in Newfoundland. The
deposits include individual and muitiple vein systems,
stockworks, silicified zones, and replacement zones that are
of epigentic origin. They are characterized by a relatively low
to minor sulphide content when compared to syngenetic
volcanogenic massive sulphide deposits. The mineralization
and alteration in each area is described, and placed in the
context of popular models of gold mineralization. The genetic
inferences will no doubt expand and change as further
information becomes available, particularly in central and
southern Newfoundland where interpretation is difficult
because of regional tectonic overprinting and multiple
deformation along major fault zones.

Avalon

The Hickey’s Pond Prospect (Table 2) is located on the
Burin Peninsula in an 80-km-long zone of high-alumina and
silica alteration that extends from Hickey’s Pond to the Knee
(Figure 7). The zone contains pyrophyllite, alunite, sericite,
specularite, lazulite, chloritoid, apatite, rutile, and pyrite
(Huard and O’Driscoll, 1985, 1986). The prospect is hosted
by banded and hydrothermally brecciated hematite- and
alunite-bearing rocks in a zone of advanced argillic alteration
in Hadrynian volcanic rocks of the Love Cove Group (Figure
8). The deposit is separated from the Late Hadrynian Swift
Current Granite by a fault. The alteration zone and the
surrounding rocks exhibit a penetrative tectonic fabric and
a low-greenschist-facies metamorphic assemblage.

The alteration assemblages and depositional features at
Hickey’s Pond led Huard and O’Driscoll (1986) to conclude
that the deposit formed in an epithermal—fumarolic
environment. Deposits throughout the belt vary from sinters
and chemical precipitates with geyserite eggs to deeper-level
hydrothermal stockworks and breccias. Pervasively altered
volcanic rocks are ubiquitous.
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Figure 6. Distribution of reported epigenetic gold deposits and occurrences in Newfoundland showing preliminary classification.
Structures are shown, together with the location of ultramafic rocks and areas of extensive hydrothermal alteration. Structures
with associated gold mineralization are highlighted. Simplified from Tuach (1987a).

Minor gold occurrences in similar geological settings are
found along the belt at Monkstown road (Figure 8) and at
the Knee (Figure 7). Other areas of silica-sericite-pyrite
alteration and anomalous gold content (i.e., > 0.4 g/t Au)
have also been reported from other parts of the Avalon Zone
(Figure 7; Tuach, 1987a; S. O’Brien 1987). A 7-km-long zone
of high-alumina alteration (but no reported gold values) also
occurs at and south of the Foxtrap Pyrophyllite Mine (Figure
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7). The alteration is hosted by felsic volcanic rocks of the
Late Hadrynian Harbour Main Group near the contact with
the Late Hadrynian Holyrood Granite. The ore zone consists
of massive and schistose pyrophyllite. Large areas of pervasive
silica and sericite alteration are associated with the deposit
and minor kaolinite, diaspore, specularite, pyrite, and rutile
are present. Spectacular hydrothermal breccias are developed
at and adjacent to the Foxtrap Mine. Conglomerate overlying
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Figure 7. Simplified geology and epigenetic gold occurrences in the Avalon Zone. Areas of extensive pyrophyllite-sericite-
alunite-silica alteration are shown.

the pyrophyllite zone contains both altered and unaltered The rocks in the Foxtrap area are unconformably overlain
volcanic fragments and is locally pervasively altered. The by Lower Cambrian conglomerate, therefore, a Late
field relationships indicate that the alteration zone grew Hadrynian age for development of the alteration is indicated.
through a rapidly accumulating debris-fan adjacent to a fault This alteration probably occurred in a high-level epithermal
scarp. system (cf. Berger and Eimon, 1983; Figure 9) related to
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Figure 8. Geology of the Hickey’s Pond prospect; from Huard and O’Driscoll (1986).

Table 2. Gold in epigenetic deposits in Newfoundland

Major Deposit Million Tonnes Grade g/t Au Comments
Hope Brook 1.2 4.54 Minor Cu
Main Zone/Cape Ray 0.9 575 Zn, Pb, Cu, Ag
Prospects/Major Projects Best Result g/t Au Comments

DDH: 2.27 g/t over 10 m
DDH: 1.23 g/t over 54.5 m

Apsy Zone/Jackson’s Arm
Road Zone/Jackson’s Arm
Browning/Sops Arm
Unknown Brook/Sops Arm
Deer Cove/Mings Bight
Bradley/Mings Bight
Goldenville/Mings Bight
Windowglass Hill/Cape Ray
Mine Pond

4.6 kg Au produced
DDH: 84 g/t over 1.75 m
ADIT: 16.1 g/t across 1.5 m over 30 m
TRENCH: 6.3 g/t over 4 m

4.6 kg Au produced
DDH: 4.6 g/t over 12.5 m
DDH: 8.2 g/t over 1.5 m
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Hand Camp

Midas Pond/Victoria
Valentine Lake/Victoria
Little River

Hickeys Pond

DDH: 106 g/t over 30 m
NA

NA

DDH: 3.8 g/t over 4.0 m
DDH: 0.59 g/t over 1.5 m

Grab: 2.5 0 5.4 ght



I. Tuach, P.L. Dean, H.S. Swinden, C.F. O'Driscoll, B.F. Kean and D.TW. Evans

EPITHERMAL - FUMAROLIC SYSTEM

hydrothermal
HOT SPRINGS 2xpiosH
.. oreccio siicidied cop
RV f~ silica sinter Jerrace ~{disseminated As.Sb.Au. Ag.TI)
BAS

sericite

acid ahered envelope
(xaclimte. silica, alunite. [arosue

. PERMEABLE
. HORIZON

nyarofraciured stockwork
(4. Ag. As T1. SD)

propylinc
halo

leeder vein and breccia
related 1o boiling at fault intersection

1= 3km

quartz suiphige veins
w—\_ (Au.Aq.As(Cu.Pb,Zn) sulbhiges
wilh andylaria}

quariz- sulphide veins
«———(Cu. Po.Zn (Au.Ag) sulphiges
witn chionite)

N

Figure 9. Epithermal—fumarolic model for silver—gold
mineralization; from Berger and Eimon (1983).

intrusion of the Holyrood Granite (Papezik et al., 1976;
O’Driscoll and Tuach, 1987).

These Late Hadrynian epithermal—fumarolic systems
correlate with similar, gold-bearing, Late Hadrynian
environments in the Carolina Slate Belt of the southeastern
United States (Spence et al., 1980; Schmidt, 1983). The
systems indicate extensive high-level alteration and local gold
mineralization in the waning stages of volcanism during an
early stage, or possibly prior to, development of the
Appalachian Orogen.

Little River—Kim Lake

Gold is present in a variety of rocks of the Ordovician
Baie d’Espoir Group (Figure 10). The gold is associated
generally with fine grained, disseminated stibnite and
arsenopyrite and locally with heavily mineralized stibnite-
bearing veins and veinlets. Most of the prospects have been
severely tectonized.

In the Kim Lake Prospect, historically regarded as a
stibnite prospect (e.g., Swinden, 1981), gold occurs in thin,
anastomosing quartz veins hosted by carbonatized rhyolite
and/or porphyritic felsic intrusive rocks. At the Little River
Prospect (McHale, 1985), gold is associated with a steeply
dipping, silicified and mylonitized zone (up to 2 m wide and
4 km long) containing stockworks of quartz—carbonate veins
and veinlets in silicic tuff. Gold in the Le Pouvoir horizon
is associated with disseminated sulphides in fine grained
chloritic schist. Other prospects in the area are hosted by
laminated graphitic sediments, mafic tuffs, and carbonatized
diabase and gabbro (McHale, 1985).

Carbonatization of the various rock types is the most
distinctive alteration feature. Linear zones of silicification are
also reported, and areas of sericite alteration are widespread.
A band of quartz veining with minor pyrophyllite, specularite,
and locally dumortierite and minor lazulite occurs along the
Collins Brook Fault (Figure 10). Collectively, these alteration
features indicate a variety of deep- to shallow-level
mineralizing events. The linear and apparently conformable
zones of alteration and mineralization at Little River and Le
Pouvoir were interpreted to represent exhalative or syngenetic
mineralization by McHale (1985) and McHale and McKillen
(1986).

Recent mapping to the north of the Little River Prospect
by Dickson (this volume) has identified a small outcrop of
magnesite that probably represents a slice of carbonatized
ultramafic rock. The outcrop is interpreted to mark the trace
of a major fault called Le Pouvoir Fault (Figure 10) and the
northward extension of the Day Cove Thrust lies
approximately 2 km east of the Le Pouvoir Fault. These
features suggest that the gold mineralization may be related
to imbricate faulting and thrusting in the Little River area,
an observation supported by the presence of mylonitic textures
in the Little River Prospect.

Hope Brook—Cinq Cerf

In southwest Newfoundland, the Hope Brook deposit
(Figures 11 and 12) is a 400 by 60 m lens of fine grained
silicified rock within the 5-km-long Chetwynd zone of
pyrophyllite-sericite-silica alteration (McKenzie, 1986). Fine
grained gold occurs with pyrite and minor chalcopyrite
(generally less than 5 percent) disseminated throughout the
deposit; elevated Sb and Ag values are present and minor
tellurides, bismuthinite, cassiterite, native silver and tin have
been noted. A pyrite-rich zone occurs immediately west of
the ore deposit (Figure 12), and pyrophyllite—silica alteration
occurs on the east. Significant gold intersections have also
been obtained at the Chetwynd and Chetwynd South deposits
within the Chetwynd alteration zone.

The host rocks and protolith to the altered zone are a
sequence of felsic tuffs, volcaniclastic sediments and granitic
intrusions of the La Poile Group (Chorlton, 1978, 1980;
O’Brien, 1986). Post-alteration swarms of mafic dykes occur
in the altered zone and in the host rocks to the east. The age
of the rocks has not been determined, and could range from
Early Cambrian to Silurian (B. O’Brien, 1987). The altered
zone is intruded by the Devonian Chetwynd Granite at Hope
Brook and may correlate with alteration at Peter Snout (Figure
6) northeast of the granite.

The alteration zone and the Hope Brook deposit have
been deformed within the Cing Cerf shear zone (Figure 11).
Highly strained conglomerates and tuff are well exposed in
Cinq Cerf Brook immediately west of the altered zone.
Intrusion of the Chetwynd Granite postdated significant
deformation on the Cing Cerf shear zone.

The metallic mineral assemblages, and the spatial
distribution of the alteration assemblages led McKenzie (1986)
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Figure 10. Simplified geology and mineral occurrences in
the Kim Lake—Little River area; after Dickson (this volume).
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Figure 11.  Generalized geology in the Cing Cerf area showing the location of the Hope Brook Mine and other gold occurrences,
major structures, and areas of pervasive hydrothermal alteration, after Chorlton (1978, 1980), McKenzie (1986), and O’Brien

(1987).

to propose an epithermal origin for the deposit (also see
Swinden, 1984). However, this interpretation is complicated
by tectonic overprinting, indicated by flattening textures in
the ore zone. A contact metamorphic halo and the presence
of fluorite suggests the possibility of hydrothermal fluids
emanating from the Chetwynd Granite. Other models, such
as localization of the deposit in a shear zone with fluid and
gold derived from metamorphic devolatilization are also
possible (cf. Colvine et al., 1984).

Several other prospects are reported from the Cing Cerf
area (Tuach, 1987a), however, information is limited. The Bay
D’Est Fault is a brittle fault within a zone of ductile
deformation (Figure 11) that locally contains large areas of
sericitized and pyritized rock. The Cross Gulch Gold Prospect
is a silicified zone in one such area of sericite alteration hosted
by the Bay Du Nord Group (D. Maclnnis, personal

communication, 1986). Post-tectonic, undeformed,
hydrothermally brecciated quartz veins occur in some
alteration zones (B. O’Brien, personal communication, 1986).
Anomalous gold is also reported in quartz veins hosted by
relatively undeformed rocks at the Woodmans Droke
Prospect, and in relatively undeformed hydrothermal
alteration zones at the Philips Brook occurrence (Tuach,
1987a).

Cape Ray

The Main Zone and the Windowglass Hill deposits occur
within a belt of mylonitized rocks that define the Cape Ray
Fault Zone (Wilton, 1984; Wilton and Strong, 1986; Figure
13). The Main Zone consists of three separate lenses of
mineralized quartz veins (Figure 13) that are hosted by
deformed, bedded and laminated, graphitic and chloritic
sediments. The graphitic sediments occur within a
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penetratively deformed sequence of bedded to laminated mafic
tuff and silicic pyroclastic rocks (Tuach, 1986). The
Windowglass Hill deposit consists of sheeted quartz veins and
stockwork quartz veins and veinlets hosted by albitized
graphic granite. Hydrothermal breccia textures are locally
well devleoped. In both deposits, gold occurs with silver as
electrum and is associated with galena, sphalerite,
chalcopyrite and pyrite in the quartz veins (Wilton and Strong,
1986).

The Main Zone veins are boudinaged and locally
brecciated. Wilton (1984) interpreted the veins as occurring
in chloritic and sericitic schist in a pre- to syntectonic ‘Main
Shear’ separating the Devonian Windsor Point Group from
the Ordovician or older Port Aux Basques Gneiss Complex.
However, Tuach (1986) suggested that the mineralized lodes
occur in a late brittle splay from the Cape Ray Fault in an
undated sequence of volcanic and volcaniclastic rocks, and
that brecciation and additional deformation occurred during
late movement on the fault. Contrary to the description of

CZ1 cw 108 - oo+ Wilton and Strong (1986, page 292), the Windowglass Hill

cwio0 L] cHETWYND GRANITE deposit has not been subject to intense deformation; intrusion

LX) maric oikes and accompanying mineralization postdated the main

e e QUARTZFELDSPAR PORPHYRY movements on the fault zone. Therefore, it is likely that both
e L0 wiahacumina suszone deposits, with a comparable mineral and isotopic signature

PYRITE SUBZONE

(Wilton and Strong, 1986), postdate the main deformation.
From C.B. McKenzie, (1986) [ HiGH-sILICA ORE ZONE

The H and I Brook prospects adjacent to the Cape Ray
mylonite are brecciated, probably by late movements.

Figure 12. Geological section across the Hope Brook
deposit; from McKenzie (1986).
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Figure 13. (4) Generalized geology of the Cape Ray Fault Zone showing location of gold deposits and occurrences; (B) schematic
section showing settings of mineralization; after Wilton (1984) and Tuach (1986).

292



J. Tuach, P.L. Dean, H.S. Swinden, C.F. O'Driscoll, B.F. Kean and D.T ¥. Evans

Gold prospects, occurrences
Cu prospect 1
Pb prospects

Minor mineral occurrence

® = m &0

Mineralized floot
~—— Geological contact
—A— Major thrust

~nnne Fault

COURT

UPPER PALEOZOIC (Baslin-flli sequences and intrusions)
CARBONIFEROUS

8 8a, Anguille Group (Tournaisian): greywacke, shale, minor
sandstone and conglomerate; 8b, Deer Lake Group
(Visean): conglomerate, sandstone, siitstone:

DEVONIAN (approximately 398 Ma)

7 Gull Lake intrusive suite: 7a, granites; 7b, intermediate and
mafic intrusive rocks

6 Devils Room granite
SILURIAN

5 Sops Arm Group

LOWER PALEOZOIC ALLOCHTHOMN
CAMBRIAN -MIDDLE ORDOVICIAN

4 Southern White Bay Allochthon: partially ophiolitic
(mélange containing ultramatic blocks is cross-hatched)
4a, Coney Head Complex

LOWER PALEOZOIC AUTOCHTHON (Platform)

3 Coney Arm Group: carbonate, shale, quartzite

PRECAMBRIAN (Grenvillian basement)
MIDDLE PROTEROZOIC AND EARLIER

2 Massive to foliated, feldspar-megacrystic, granitoid
plutons; 2a, Aspy pluton; 2b, Main River granite

1 Leucocratic gneiss, amphibolite, and gabbro

Figure 14. Simplified geology and mineral occurrences in Western White Bay from Tuach (1987b). The Lower Volcanic formation
and the Simms Ridge Formation of the Sops Arm Group are patterned.

Wilton (1984) and Wilton and Strong (1986) reported
results of geochemical, isotopic and phase equilibra studies,
and concluded that the gold deposits and prospects in the Cape
Ray area were formed from magmatic-hydrothermal fluids
exsolved as a vapour phase from the Windowglass Hill
Granite. Temperatures of ore formation were estimated at
300°C. A schematic representation of the mineralization is
presented in Figure 13.

Western W hite Bay

Gold mineralization of potential economic significance
has been identified in western White Bay near Jackson’s Arm
and to the south of Sops Arm at Unknown Brook (Figure 14).
Numerous other mineral occurrences are p.esent, and a

spatial relationship between mineralization and the Doucers
Valley fault complex is evident (Tuach, 1987b).

The Jackson’s Arm alteration system and associated gold
mineralization overprint foliated, megacrystic granodiorite of
Late Grenvillian age (Bruneau, 1984; Tuach and French,
1986; Saunders and Tuach, this volume). Mineralization and
alteration has been recently reported in Eocambrian to
Cambrian sedimentary rocks that unconformably overlie the
Grenvillian granitoid rocks (McKenzie, 1987). In the granitoid
rocks, K-feldspathization of original plagioclase occurred over

large areas (up to 2 km ) and is pervasively developed in the
core of the alteration system. K-feldspar is also developed
marginal to veins in the periphery of the alteration system.
In the pervasively altered rocks, fracture stockworks and areas
of hydrothermal breccia contain fine grained albite,
Fe-carbonate, minor quartz, pyrite and arsenopyrite and
locally contain gold associated with the sulphides. Shear zones
and veins containing albite and sulphides are exposed in the
periphery of the system. '

Gold and base-metal-bearing quartz veins occur at a
number of localities in Silurian silicic volcaniclastic and
sedimentary rocks to the south of Sops Arm (Figure ). West-
directed thrust and folds occurred during the Late Silurian
prior to intrusion of the Gull Lake intrusive suite.

The most significant deposit outlined to date is at
Unknown Brook where quartz—carbonate—alkali feldspar—
pyrite veins occur in a conglomerate bed above and parallel
to a thrust plane. The thrust plane is defined by rodded quartz
nodules in a sericite alteration zone (Figure 15). The
Browning Mine overlies a thrust plane defined by a chiorite
schist horizon; anomalous gold is present in both boudinaged
and broken veins oriented parallel to foliation, and in
crosscutting veins. Several showings occur as gash-veins in
massive felsic tuffs (Park and West Corner Brook), and others
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Figure 15. Schematic section of the geology in the vicinity
of the Unknown Brook deposit, Sops Arm area (Brad Mercer,
personal communication, 1987). The altered zone in Unknown
Brook is interpreted to represent a thrust plane. The
mineralized zone represents tensional fractures in a more
competent horizon.

are located within the Doucers Valley fault complex as
deformed and boudinaged veins (Wizard, Road) in areas of
Carboniferous brittle movement. Siderite -cubes are
characteristic of the Simms Ridge Formation and increase
in abundance toward the known mineralization at the
Browning Mine and at Simms Ridge. These siderite cubes
probably represent an outer (propylitic) alteration facies
related to the hydrothermal systems. Therefore, the Simms
Ridge Formation outlines the areal extent of the hydrothermal
systems in the Silurian of White Bay.

The environment and age of gold deposition in western
White Bay is equivocal. Tuach (1986) suggested that the
Silurian alteration and associated mineral deposits were
dominantly epithermal. However, the presence of ductile
thrust zones in less competent rocks, and tensional
mineralized veins in the more competent rocks, suggests a
depth of vein formation in excess of 3 km and the possibility
that detachment thrust models are applicable. The discovery
of gold mineralization in Paleozoic rocks at Jackson’s Arm
negates the suggestion that the mineralizing system was
Eocambrian (Tuach and French, 1986).

Baie Verte Peninsula

Vein-type mineralization in the Baie Verte Peninsula
(Figure 16) is predominantly associated with Ordovician,
ophiolitic, ultramafic and mafic rocks that occur as slivers
within fault and thrust zones. The most prominent fault zones
are in the Baie Verte Lineament and in the Tilt Cove—Betts
Cove ophiolite belt (Hibbard, 1984). Minor gold-mineralized
quartz veins have also been reported in the Rambler area in
the vicinity of massive sulphide deposits (cf. Hibbard, 1984).

The recently discovered Deer Cove Prospect near Mings
Bight is the best defined lode-gold prospect (Gower et al.,
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in press). It is a quartz and quartz-breccia vein in relatively
unstrained pillow lavas and breccias overlying a moderately
north-dipping thrust zone (the Deer Cove Thrust) that
developed in sheared talc-carbonate rocks (Figure 17). The
main zone has a northerly trend and has been traced for a
distance of 500 m. It varies from 1 to 3 m wide and dips
at aproximately 45 degrees to the west. Numerous other
auriferous quartz veins are developed within mafic lavas,
diabase, and gabbros throughout this area.

The Goldenville Mine produced approximately 4.6 kg
Au in 1906; the surrounding area has been intermittently
explored for gold since that time. The gold is located in
quartz—pyrite veins and veinlets adjacent to and within a
ferruginous iron formation that has been traced over a distance
of 4 km. The Goldenville Mine appears to occur at the
intersection of a north-trending structure and the iron
formation.

Minor gold occurrences in quartz veins and shear zones
have been reported throughout the ophiolitic Betts Cove
Complex (Figure 16). The showings occur in talc-carbonate,
gabbro, diabase, mafic pillow volcanics, mafic sediments and
ferriginous chert horizons.

Several new prospects have recently been reported from
the Baie Verte Lineament in the vicinity of Baie Verte
(International Wildcat, 1987, International Impala, 1987).
They occur as quartz veins and shear zones in a variety of
deformed ophiolitic rocks. A showing at Marble Cove is
hosted by clastic metasediments of the Fleur de Lys
Supergroup (Unit 2 on Figure 16).

The spatial relationship of gold mineralization to fault
zones with carbonatized ophiolitic ultramafic rocks suggests
a direct comparison with the Mother Lode Belt in California
(Landefeld and Silberman, 1987; Weir and Kerrick, 1987) and
with similar deposits in British Columbia (Nesbitt et al.,
1986). Talc—carbonate—chrome-mica alteration of
serpentinized ultramafic rocks is common, resulting in a
bright green rock locally known as virginite (mariposite in
California). The listwaenite alteration model (Buisson and
LeBlanc, 1986; Figure 18) that invokes carbonitization of
serpentinized ultramafic rocks and development of gold veins
in and above thrusts and reverse and normal faults, has been
a useful guide to exploration in the Baie Verte Peninsula (D.
Maclnnis, personal communication, 1987). Locally, the thrust
zones associated with the ophiolites are defined by mélange.

Central Newfoundland—Victoria Lake

Most of the known prospects are hosted by rocks of the
Tulks Hill volcanics of the Ordovician Victoria Lake Group
(Figure 19; Kean and Jayasinghe, 1981). Epigenetic
mineralization is associated with faults or shear zones,
however, alteration assemblages characteristic of epithermal
environments are locally well developed (Evans and Kean,
1987).



J. Tuach, P.L. Dean, H.S. Swinden, C.E O’Driscoll, B.F. Kean and D.TW. Evans

Gold occurrences —
Baie Verte Peninsula

® e [Epjgenetic deposit (major, minor)

O  Auriferous massive sulfides -

<
b
2 BRADLEY
2 . 1.~\ | GOLDENVILLE
R DEER COVE
RS 40‘\% 7q
,-"‘\ 00\\ 2
2 X ot ﬂ
R \>‘ 0\0""0“
\.'_, ~ (10
MlNG
// 8

O RAMBLER

3 ~ OO RO8TY T T COVE
¢ i
<

‘? @ o BETTS COVE
LaAe
‘§ NIPPERS HARBOUR
\\
s
goy

~

)

oree”

SILURO-DEVONIAN

8 Felsic and mafic volcanic rocks
7  Granite, porphyries
MIDDLE ORDOVICIAN TO SILURIAN

6 Matic volcaniclastic rocks, flows, felsic volcanic
rocks

HADRYNIAN TO MIDDLE ORDOVICIAN

5  Granodiorite, granite

4 Mafic volcanic rocks, felsic volcanic rocks
3 Ophiolite complexes — uitramafic rocks

2 Psammitic to pelitic schist

HADRYNIAN AND EARLIER

1 Gneiss and schist

Figure 16. Geology and location of gold occurrences on the Baie Verte Peninsula; after Hibbard (1984), Tuach (1987a),
International Impala (1987), International Wildcat (1987). Ophiolitic rocks are lined, ultramafic rocks are lined and stippled.
Unit 2 is the Fleur de Lys Supergroup, Unit 4 is the Pacquet Harbour Group.

The Midas Pond Prospect (Figure 20) occurs to the east
of the Tulks Valley Fault in sheared felsic and intermediate
pyroclastic rocks of the Tulks Hill volcanics (Evans and Kean,
1987). It consists of a subvertical zone (maximum width of
12 m) of crosscutting quartz—carbonate—tourmaline—pyrite
veins. Veins vary from foliation-parallel to crosscutting, with
anomalous gold content present in both varieties. A 70 by
800 m area of pyrophyllite—kaolinite—sericite—silica
alteration is present in the structural hanging wall of the
mineralized zone. Banded, carbonate-rich mafic rocks with
up to 5 percent pyrite occur in the vein zone and in the
structural footwall; significant gold values occur in these
pyrite-rich mafic rocks. The mineralization and alteration have
been variably deformed in a 300 m wide shear zone (Figure
20).

Banded, massive, silicified, felsic volcanic rocks at
Bobbys Pond contain an alteration assemblage of pyrophyllite,
sericite, native sulphur and orpiment (Kean and Evans, this
volume). Semimassive pyrite with pyrophyllite—sericite—
silica alteration is developed in similar rocks at North Pond,
2.5 km to the northeast. The silicified zones appear to form
boudins in less competent sericitized rocks in a shear zone.
Minor anomalous gold is locally present within the enclosing
sericite schist.

Evans and Kean (1987) noted the similarity in the
alteration at Midas Pond to that of epithermal gold systems,
but were uncertain as to the age and genetic significance of
the enclosing shear zone, i.e., did the alteration provide a
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Figure 17. Schematic section of the geology at the Deer Cove prospect; from Gower et al. (in press).

favorable site for shearing or did the shear zone provide a
conduit for epithermal fluids. Similar alteration and genetic
ambiguities occur at Bobbys Pond.

An extensive zone of silicified, banded, and possibly
mylonitized, chert or volcanic rocks occurs at West Tulks to
the west of the Tulks Valley Fault (Figure 19). Gold occurs
both in chert-like siliceous rocks and in galena—chalcopyrite-
bearing quartz veins. Similar rocks occur along strike at Stag
Pond. The Road or Camp Showing, located in the southern
end of Tulks Valley, consists of narrow auriferous
galena—sphalerite—pyrite-bearing quartz veins in sheared,
sericitized and carbonatized felsic volcanic rocks. Both of
these showings may have formed in shear zones related to
the Tulks Valley lineament.

Visible gold, galena, sphalerite and specular hematite
occur in 1 to 2 cm wide quartz—carbonate veins at the Second
Exploits showing (Kean, 1984). The veins cut Ordovician (?)
granite of the Lloyds River intrusive suite and are situated
in a splay of the Cape Ray Fault (Kean, 1984). Devonian
sedimentary rocks nonconformably overlie the granites.
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At Valentine Lake (Figure 19), sheeted and stockwork
quartz—tourmaline veins occur over an area of 20 km? in the
Valentine Lake quartz monzonite. Numerous occurrences of
free gold associated with minor pyrite and andradite are
reported in the veins (Kean and Evans, this volume). The
mineralization is adjacent to the Silurian(?) Rogerson Lake
Conglomerate that contains boulders of the quartz monzonite.
The outcrop pattern of the conglomerate is linear and
probably defines a major fault in central Newfoundland
(Kean, 1984). Veining is also reported in the conglomerate
overlying the quartz monzonite, which suggests that the
granite merely acted as a brittle host to later genetically
unrelated mineralizing fluids.

On an island in Long Lake, auriferous, pyritic quartz
veins occur in granite and aplite, which intruded into a narrow
(3 m) shear zone in relatively undeformed pillow lavas. Tight,
isoclinally folded and boudinaged quartz veins occur in the
shear zone, although the aplite and granite are not
penetratively deformed. The gold mineralization at this
showing may be related to intrusion of the granitic host.
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6), gold mineralization was discovered in
1928 in association with pyrite,
chalcopyrite, sphalerite, and minor
galena. It is hosted by altered mafic and
felsic volcanics and volcaniclastic rocks
and minor ferruginous chert beds of the
Roberts Arm Group (Swinden and Sacks,
1986). Erratic high-grade gold values
have been reported but a significant
tonnage of ore has not been defined by

metasomatism

o, = drilling. Mineralization has been
Sppb Au correlated with volcanogenic sulphide
o accassory opoque deposits at Gullbridge, Pilleys Island and

Bl i Buchans (Figure 2). However, alternative

I genetic models involving later epigenetic
fluids are possible.

Many occurrences throughout
Newfoundland are associated with

Figure 18. The listwaenite model of gold mineralization, from Buisson and

Leblanc (1986).

In summary, many of the prospects and occurrences are
adjacent to major faults or in shear zones. The structural
controls of mineralization are further emphasized by the
coincidence of mineralization with linears defined by regional
analyses of topographic structures and magnetic gradiometer
anomalies (Kean and Evans, this volume). In particular,
mineralization with associated epithermal-style alteration in
the Tulks Hill volcanics may occur in northeast-trending
linears; these linears may have developed over earlier
synvolcanic structures. However, considerable remobilization
of gold probably occurred during progressive deformation.
Alternatively, epithermal systems may have developed in the
late Paleozoic at high crustal levels and were deformed in later
shearing.

Other occurrences and prospects in diverse lithologies
are associated with structures of various orientations.
Formation of these deposits (cf. West Tulks, Valentine Lake)
may be related to the development of shear zones at greater
depths. The Long Lake Prospect suggests that plutonism may
have been an important local control.

Other Areas

Several important showings and occurrences have not
been described above. The Moretons Harbour prospects
(Figure 6) consist of auriferous quartz veins with Sb, As and
minor base metals hosted by Ordovician volcanics with local
sericite alteration. The veins are considered as stratabound
(Strong and Payne, 1973). Fluid inclusion studies (Kay and
Strong, 1983) and lead isotope analyses (Swinden,
unpublished data) indicate that the veins formed during
growth of the volcanic pile, and may form part of a
volcanogenic stockwork system. Similar environments may
be present throughout central Newfoundland, particularly in
the deeper levels of massive sulphide systems.

ophiolitic rocks and associated
deformation zones (Figure 6). In the
GRUB line (Figure 6), the Jonathon’s
Pond and Weir’s Pond prospects north of
Gander (O’Neill, 1987), and the recently discovered prospects
at Great Bend (Figure 6), contain arsenopyrite as the
dominant gangue sulphide. Numerous occurrences are
reported from the ophiolite klippe in western Newfoundland
(Figure 6). Carbonate alteration is widespread in ultramafic
rocks to the east of Deer Lake and on Glover Island, and
showings are reported on Glover Island. Further work is
required to categorize these environments.

In addition to mineralization described above, gold has
been discovered in numerous other geological environments.
For example, auriferous quartz veins are reported at Wing
Pond in the Gander Group (O’Neill, this volume), in quartz
veins in the Ordovician Davidsville Group (D. Maclnnis,
personal communication) in the Silurian Indian Islands Group
(McGillivray, 1985), and in carbonatized mafic dykes at
Canada Bay (Knight (1987),

EPIGENETIC DEPOSITS AND MAJOR
STRUCTURES

Most of the epigenetic deposits and occurrences
described above are localized in secondary structural
environments that are spatially (Figure 6) related to major
north-northeast and northeast faults and lineaments of the
Appalachian Orogen. These lineaments are defined by some
combination of major shear zones and fault complexes
separating areas of contrasting geology, carbonatized and
serpentinized remnants of ophiolitic ultramafic rocks,
unconformities and associated linear conglomerate sequences,
geophysical contrasts, and/or topographic depressions.

Some of the lineaments may have originated as block
faults during the Eocambrian rifting that formed the Iapetus
Ocean followed by multiple reactivation of these lineaments
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Figure 19. Simplified geology, structure and location of epigenetic gold occurrences in the Buchans—Victoria Lake area,

central Newfoundland; from Kean and Evans (this volume).

and deformation (including thrusting and backthrusting) of
overlying rocks during subsequent Paleozoic orogenic events
(i.e., Baie Verte Lineament, Doucers Valley Fault Complex;
Tuach, 1987b); other lineaments have been interpreted as
accretionary terrane boundaries (Hermitage Bay—Dover
Fault; Williams and Hatcher, 1982); others record major
Ordovician—Silurian thrust planes (Pipestone Pond Fault,
GRUB line; Colman-Sadd and Swinden, 1982; Stockmal et
al., 1987) or Acadian and Carboniferous transcurrent
movements (Cape Ray Fault, Cabot Fault; Hyde, 1979).

A genetic association between gold mineralization and
major structures is implied. Movement on fault zones in the
lineaments may have enhanced and focussed fluid systems
and possibly magmatism, although a spatial and genetic
association between plutonism and gold has not been
generally well established. The genetic association between
major faults and gold-bearing hydrothermal systems is
emphasized by the presence of extensive lake sediment
geochemical halos of a variety of gold-associated elements
(As, Sb, W) around the major faults, i.e., Figure 21.

LATENT GOLD ENVIRONMENTS AND
MODELS

Other geological environments with potential for gold
mineralization are present in Newfoundland, although no gold
has yet been reported.
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Rocks of the Fleur de Lys Supergroup (Unit 2 on Figure
16) on the Baie Verte Peninsula have been correlated with
the Dalradian of Ireland (Kennedy et al. 1972). These
Dalradian rocks host the Gortin deposit in the Sperrin
Mountains of Northern Ireland which contains 1.0 million
tonnes grading 100 g/t Au. It occurs in quartz veins in a fault
cutting polydeformed Dalradian metasediments (Clifford,
1986; Morris, 1987). Other important prospects are also
located in crosscutting fault zones in Dalradian metasediments
in Mayo and Donegal (Morris, 1987). Clearly, a similar
potential exists in late faults throughout the Fleur de Lys
Supergroup and in correlative rocks in Newfoundland.

Sulphide-bearing iron formations, termed Fox Neck
(Nickeys Nose)-type deposits (Kean, 1983, 1984) are
interbedded with argillite at the top of the ophiolitic pillow
lava unit of the Lushs Bight Group (Figure 5). The rocks are
also considered to form the stratigraphic base of the overlying
island-arc sequences. The deposits are typically thin and
discontinuous, but the stratigraphic units can be traced over
a considerable distance. The iron formation is dominantly
pyritic, but jasper and magnetite layers are common. A similar
unit is present at the top of the pillow lavas in the Betts Cove
ophiolite, and the Goldenville iron formation (Figure 16; Table
2) may be in a similar setting. Those iron formations
described above from an ophiolite setting, and iron formations
in the overlying island arc sequences, have potential for
associated gold mineralization.
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Figure 20. Geology of the Midas Pond area; from Evans and Kean (1987).
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Thrusting and plutonism occur locally in the lower
Paleozoic platformal clastic and carbonate sequences in the
Western Platform and in the Avalon Zone. An analogy to the
geological environment of the Carlin area in Nevada can be
made.

Caldera environments are represented by Middle to Late
Paleozoic volcanic and clastic sequences in central
Newfoundland (Coyle and Strong, 1987), and may have
associated epithermal deposits. The aluminous alteration and
associated mineralization in the Avalon Zone may also be
related to Late Hadrynian caldera development.

300

Lower to middle Paleozoic turbidite sequences in central
Newfoundland may contain turbidite-hosted deposits and are
similar in age and lithology to the Meguma Group of Nova
Scotia. Therefore, the occurrences in the Davidsville Group
may have a turbidite association.

DISCUSSION AND CONCLUSIONS

The continued importance and potential of gold-bearing
massive sulphide deposits is emphasized by the recent
discovery in the Duck Pond—Tally Pond area, and by the gold
potential of the tailings pond at Rambler (Newfoundland
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Department of Mines, 1987). Gold-bearing polymetallic
deposits in mafic-felsic sequences and ophiolite-hosted
massive sulphides provide an extremely attractive exploration
target in Newfoundland. Variations in the relative metal
contents of massive sulphide deposits mainly reflect the
lithologies of the substrate from which the hydrothermal cells
derived their metals.

Collectively, the new discoveries of epigentic gold
mineralization in Newfoundland exhibit features common to
gold deposits worldwide, and analogies to many of the major
deposits can be made. The associations of gold, major faults
and lineaments, sericite—carbonate—silica—clay-altered
rocks, and carbonatized and serpentinized ultramafic rocks
are proving to be effective exploration tools. However, the
absence of one or all of these features does not preclude
mineralization. Models involving epithermal alteration
(Berger and Eimon, 1983) and listwaenite alteration (Buisson
and LeBlanc, 1986) are locally applicable, and models
involving metamorphic devolitatization (Colvine ef al., 1984)
may also be relevant. Undoubtably other models will be
developed and utilized as more information becomes
available. A schematic section across Newfoundland that
attempts to summarize the settings of known deposits and
potential mineralized environments is presented in Figure 22.

The age of the gold systems has not been established in
most cases. The epithermal systems in the Avalon Zone are
probably Late Hadrynian. Systems that display deformed
alteration assemblages characteristic of epithermal
environments such as Hope Brook and Midas Pond may have
developed during waning stages of volcanism (Cambrian to
Silurian) prior to later deformation and have been extensively
reworked by later fault movements (cf. Evans and Kean,
1987). Alternatively, they may have developed during late
Paleozoic transcurrent fauiting. The prospects associated with
ultramafic rocks such as those in the Baie Verte Peninsula
and the GRUB line developed during or after middle
Ordovician and later faulting and deformation. Other systems
directly associated with granitic rocks (i.e., Cape Ray) may
be Devonian. It is possible that systems associated with
Carboniferous and Mesozoic faulting may also be present.
Characterization of the age of these gold systems could
contribute significantly to our understanding of Appalachian
tectonics.

It is evident that the gold rush in Newfoundland is just
beginning, and that this summary may rapidly become
obsolete. We hope it will prove useful in the near term as
a guide to further prospecting.
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