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DATA: EXAMPLES FROM REGIONAL LAKE SEDIMENT
GEOCHEMICAL SURVEYS IN NEWFOUNDLAND
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ABSTRACT

The quality of geochemical data imposes limitations on how the data can be manipulated, displayed and interpreted.
Geochemical data from the regional lake sediment survey of Newfoundland are used to illustrate a number of approaches
to the evaluation of data quality, and to show the implications of such an evaluation on data presentation.

INTRODUCTION

Powerful software programs for statistical analysis and
the display and enhancement of spatial patterns present in
geochemical data are now available for microcomputers at
reasonable cost. These new programs promise to be
invaluable for the interpretation of exploration geochemical
data, with their promise being limited only by the quality and
consistency of the survey data. Indeed, because some
techniques such as shaded relief plots can reveal subtle spatial
features in geochemical data, it is important to ensure that
these are not merely artifacts in the data due to errors.
Furthermore, evaluation of data quality guides the proper
choice of display and the interpretation of the geochemical
results. For example, it provides an objective basis for
deciding whether an element distribution should be contoured
or presented as a discrete-symbol map, and, if contoured,
on the choice of contours and implications for the resultant
map’s reliability. Provided that the system for monitoring data
quality is designed appropriately, the relative contributions
of analytical and sampling errors can be evaluated, so that
if the reproducibility of an element is judged to be
unsatisfactory, it can be determined whether laboratory or
field procedures should be changed, Finally, where two multi-
element analytical methods provide data for the same element,
an objective assessment can be made of which method
provides the better data.

The examples used here are from the regional lake
sediment survey of Newfoundland. Quality is being carefully
assessed for these data as part of a project to apply image
analysis techniques to their interpretation. Most of the
analytical data referred to was from a multi-element,
instrumental neutron activation technique (INAA), which was
discussed by Davenport (1988).

TECHNIQUES FOR DATA-QUALITY
EVALUATION

The underlying assumption in geochemical surveys is that
the spatial distribution of a particular element in the chosen

sample medium reflects its distribution in the upper part of
the earth’s crust, Orientation studies are typically conducted
to establish the appropriate sample medium, sample density,
and analytical techniques. During the subsequent regional
survey, it is most important to monitor the reproducibility
or repeatability of the data to ensure that the survey
specifications developed in the orientation study are met, and
to be able to evaluate the overall reliability of the mapped
element distributions. This is particularly important in large
multi-year, multi-element surveys.

Two main aspects are generally considered in evaluating
data quality: consistency of the analytical data throughout the
survey, and the reproducibility of results in separate samples
from the same site (¢.g., the same lake). Both are important,
although it is the variability shown by independent samples
from the same site (i.e., the sum of both analytical variation
and variation due to inhomogeneity in the sample medium)
that controls the ultimate reliability of the element distribution
map. In the lake sediment geochemical survey of
Newfoundland, data quality is determined from the results
of control reference materials and laboratory splits of single
samples (analytical variance), and site duplicate samples
(combined sampling and analytical variance). The identity
of these three types of quality-control sample is concealed
from the analyst, and each provides a unique perspective on
data quality.

Analytical Variance

Techniques for, and the rationale behind, systematic
monitoring of analytical quality have been reviewed by
Thompson (1983). A total of 33 control reference materials,
in conjunction with laboratory splits, were used to monitor
analytical variance for the multi-element neutron activation
analysis project.

Control reference samples. ldeally, control reference
samples should be as close as possible in physical,
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mineralogical and chemical composition to the samples
collected in the survey. The 33 control reference materials
used are listed in Table 1, from which it can be seen that the
majority (18) are lake sediment. Of the 708 individual
determinations of control samples, over half were of internal
lake sediment control materials used for routine analytical
control in the Department of Mines and Energy laboratory
(C-21 to C-31; Table 1). The Geological Survey of Canada
(GSCQ) internal lake sediment controls, (CR-M, CR-P, CR-R)
were included to allow a tie-in to the National Geochemical
Reconnaissance (NGR) data in Labrador, The Canadian
Centre for Mineral and Energy Technology (CANMET)
materials MRG-1 and SY-2, and GSC/CANMET materials
LKSD-1 to 4, STSD-1 to 4 and TILL 1 to 4 will allow
comparison of the Newfoundland lake data with other NGR
data sets, and will ultimately enable the accuracy of the data
to be established. All these reference materials are useful in
monitoring analytical precision and batch-to-batch
consistency.

Method. The first step was to calculate a mean and
standard deviation for each element in each control sample,
and to identify outliers. Outliers were arbitrarily defined as
values falling more than 2.5 standard deviations from the
mean. This process was iterative, with the mean and standard
deviation being recalculated after the identification and
removal of outliers, until all remaining values fell within the
+ 2.5 standard deviation range.

Variations in level from batch-to-batch, can be identified
from plots of the values for each control, against the order
in which they were analyzed. This can be done for each
element from each control reference material but, with 33
different control samples and 28 elements to consider, the
number of plots becomes unmanageable. The results can be
conveniently summarized for each element by dividing the
values for each control sample by the mean value, thus
normalizing the data as shown for La in Figure 1. Values close
to the overall mean, plot close to unity, whereas values
significantly higher or lower than the mean, deviate markedly
from unity. If the data are consistent throughout all the
batches, the normalized values should cluster uniformly about
a horizontal straight line. A noticeable slope indicates drift,
e.g., for Br (Figure 2); a discontinuity, indicates a calibration
change, e.g., for Lu (Figure 3). Smooth trends, such as for
Br, where the regression of normalized value against order
of analysis is significant (r=0.34, significance <0.0001), can
be quantified by regression of the normalized values against
analytical order.

The amount of scatter of element ratios is indicative of
overall precision in the control samples. As is shown below,
precision for most elements varies with absolute level, usually
being highest near the analytical detection limit, and for many
elements the control samples span a wide concentration range.
Because the data are normalized, it is not possible to
distinguish high- from low-absolute values in Figures 1 to
3, and the scatter makes trends hard to see for some elements.

Plotting precision against mean concentration in the
control samples for each element illustrates the relationship
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Table 1. Identity, nature, and source of control reference
materials used to monitor analytical precision by
INAA for Newfoundland lake sediment

NDME internal lake sediment controls

ID N
C-21 22
Cc:22 14
C-23 30
C-24 62
C-25 50
C-26 60
Cc-27 35
C-28 16
C-29 27
C-30 7
C-31 37

GSC internal lake sediment controls

CR-M 17
CR-P 15
CR-R 17

NDME internal rock reference samples

BS-1 11
GD-1 18
GD-2 15
RY-1 17

GSC/CANMET certified reference materials

MRG-1 24
SY-2 28

GSC/CANMET reference materials to be certified

LKSD-1 18
LKSD-2 21
LKSD-3 24
LKSD-4 35
STSD-1 13
STSD-2 24
STSD-3 9
STSD-4 11
TILL-1 6
TILL-2 8
TILL-3 i
TILL-4 10

between these parameters, Precision, p, is calculated in the
usual manner in geochemistry (Thompson, 1983) at the 95
percent confidence level.
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Figure 1. Ratio of La to mean La in control reference
samples plotted against order of analysis.
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Figure 2. Figure 2. Ratio of Br to mean Br in control
reference samples plotted against order of analysis.
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Figure 3. Ratio of Lu to mean Lu in control reference
samples plotted against order of analysis.

p= (2s/X) x 100%
where s is the standard deviation of the values
and X is the mean value.

An example is shown for Sb (Figure 4), which shows that
precision in controls containing more than about 0.3 g/t is
essentially constant and better than + 25 percent, but below
0.3 g/t, it deteriorates rapidly to more than + 100 percent,
An estimate of the effective detection limit can be obtained
using the criterion that it is the concentration at which
precision reaches + 100 percent (Fletcher, 1986); in the case
of Sb, it is about 0.09 g/t. Other elements such as La (Figure
5) show precision to be almost constant at better than + 25
percent throughout the concentration range shown by the
control samples (i.e., all of the range is within the flat part
of the Sb curve corresponding to Sb values > 0.3 g/t in Figure
4). Elements such as Au give rise to plots similar to the steep
part of the Sb curve, where most of the samples have Au
values below the detection limit.
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Figure 4. Relationship between precision and concentration
for Sb in control reference samples.
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Figure 5. Relationship between precision and concentration
Sor La in control reference samples.
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Figure 6. Overall ratio of Sb to mean Sb for each analytical
batch in control reference samples plotted against order of
analysis: a) for mean Sb levels > 0.1 ppm; and b) for mean
Sb levels > 0.5 ppm.

Whereas batch to batch variation is fairly clear in the
case of Br and Lu (Figures 2 and 3), in other cases where
drift is subtle and the scatter is large, due to the inclusion
of data from control samples at or near the detection limit,
the identification of drift is difficult or impossible, either
visually or through regression analysis. This scatter can be
reduced by removing the control samples with mean element
values near or below the detection limit. The effect of this
is illustrated for Sb (Figure 6a). A statistically significant
overall decrease in Sb level with analytical batch is noticeable
when only controls having higher Sb values are considered
(Figure 6b), but these trends are lost in the background noise
in Figures 4 and 6a. From plots such as Figures 1, 2 and
6b, longer term drift can be better assessed, and, if
statistically significant, a correction factor can be computed
from the regression equation.
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Laboratory splits. One in every set of 18 samples
collected in the field, was divided into two subsamples after
sieving. Each one of the pair was assigned a different, non-
adjacent sample number and submitted for analysis in a way
indistinguishable from the other samples. From the results
of these laboratory duplicates, analytical precision may be
estimated. The advantage of laboratory duplicates over control
samples, is that when prepared and analyzed in this way
throughout the analytical program, they constitute a subset
truly representative in composition of the entire sample set.
However, they do not give any indication of batch to batch
variations.

The approach used to estimate precision was devised by
Thompson and Howarth (1978), which is based on the
assumption that the standard deviation of analytical error (S)
varies as a linear function of concentration (c), thus

where S, is the hypothetical standard deviation of
measurement at zero concentration and k is a constant.

Using a similar definition of analytical precision, Pc, at the
95 percent confidence level as employed for the control
samples, where P, = 2 S /c,

then P, = 2 Sofc + 2K s (2)

The values of S and k may be estimated from the
duplicates as follows ?Thumpsun and Howarth, 1978):

1) calculate the means and absolute values of the
differences of the pairs of duplicate analyses, (X, +
X2)/2 and | X,—X,| respectively;

2)  sort the pairs of results, their differences and means
in order of increasing mean value;

3)  assign the sorted results to groups of eleven, ignoring
the last group if it contains less then eleven results;

4)  for each group obtain the overall mean of the mean
concentrations and the median difference;

5) compute the regression equation for the median
difference (dependent variable) against group mean
(independent variable);

6)  from the regression, the intercept is a measure of S
and the slope a measure of k (strictly, these values
should be multiplied by 1.048, Thompson and Howarth,
1978)

Equation (2) has the form of a hyperbola, a form of plot shown
by most elements for the analytical duplicates (e.g., Sb in
Figure 7). At higher values, where the curve is approximately
horizontal, precision tends to a constant value, p = 2k from
equation (2). Using the practical definition of detection limit,
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Figure 7. Plot of precision against concentration for Sb in
laboratory duplicates of lake sediment samples.

Cd, when Pc = 1.0 (equivalent to 100 percent as discussed
for the control samples), the value of Cd can be estimated
from the curve in Figure 7, where it is 005 g/t. Alternatively,
it may be estimated from the relationship:

Cq = 28,/(1-2k)
k=0.005, Cd = 005 g/t and S, = 00225 g/t.
where S, and k are derived from the regression equation
as in step 6 above.

Of the 28 elements determined by INAA, the analytical
duplicates of 22 of them (As, Ba, Ce, Co, Cr, Cs, Eu, Fe,
Hf, La, Mo, Na, Ni, Rb, Sb, Ta, Th, Th, U, W, Yb and Zn)
show a relationship between precision and accuracy similar
to that shown in Figure 7, although in some cases all values
were above the detection limit. Their conformity to this type
of plot indicates that precision for these elements follows the
form of equation (2), and that analytical errors for these
elements are normally distributed (not log-normally). The
elements Br, Sc¢ and Sm show an increase in error with
increasing concentration (e.g., Sc in Figure 8). For these
elements, the initial assumption of equation (1) does not hold
because the relationship of the standard deviation of analytical
errors is not a linear function of concentration (it is lowest
in the mid-range, increasing to both higher and lower
concentrations).

In the case of Au and Se, precision is very poor, as their
levels of abundance in most of the samples are below their
detection limits. The approach of Thompson and Howarth
(1978) as used for Sb cannot be applied. For Au, the nugget
effect could also be contributing to the poor precision,
because analytical errors may not be normally distributed
(Thompson, 1983), unless the size of sample taken for
analysis is very large.

The precision estimates from the control reference
samples can be compared with estimates obtained from the
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Figure 8. Plot of precision against concentration for Sc in
laboratory duplicates of lake sediment samples and in control
reference samples.

laboratory splits using equation (2) to generalize, in a similar
way, the relationship between precision and concentration for
both controls and lab splits. The result is plotted in Figure
9 for Sb. Note the difference in concentration range covered
by the control reference samples and the laboratory duplicates,
the latter being representative of the actual lake sediment
samples. The slightly poorer precision displayed by the
control reference samples is probably due to the effects of
batch to batch variation, on top of the within batch variation,
which is reflected by the laboratory splits.
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Figure 9. Plots of precision against concentration for Sh
in laboratory duplicates (asterisks) of lake sediment samples
and in control reference samples (pluses).

The estimates of detection limits determined from the
analytical duplicates will be somewhat optimistic, as samples
below the detection limit quoted by the laboratory are rounded
to half that limit. Thompson and Howarth (1978) state that
values should not be rounded, but this is usually impractical
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as most labs will not report negative analytical values that
have only abstract meaning.

Combined Sampling and Analytical Errors

Throughout the survey, one lake in 18 was sampled in
duplicate by taking two sediment cores at sites 5 to 20 m apart.
The approach of Thompson and Howarth (1978), used above
for the laboratory duplicates, can be applied as well to the
data from site duplicate pairs, and in this case it provides
information on the combination of analytical and sampling
variations (at the 5- to 20-m scale). For most elements, the
resulting plots are similar to Figure 7, implying that equation
(1) is still valid, and that a new level of within-lake-variation
can be calculated that is equivalent to analytical precision.
Figure 10 shows, for Sb, the within-site variation (combined
sampling and analytical errors), and the analytical variation
both expressed as precision from site duplicates and
laboratory duplicates respectively, against concentration. Both
curves show the same form, but in detail it is clear that for
any given concentration the within-site variance is always
greater than the analytical variance. This indicates that for
Sb, analytical errors are the main control on reproducibility,
but that sample inhomogeneity within the lake makes a
measurable contribution, contributing about +10 percent to
the combined sampling and analytical variance of +20
percent at Sb values > 2 g/t. To improve the overall
reproducibility of Sb, especially at lower concentrations, a
more sensitive and precise analytical method is required.
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Figure 10. Plots of precision against concentration for Sb
in laboratory duplicates (asterisks) and in site duplicates
(pluses) of lake sediment samples.

The situation for Co (Figure 11) is somewhat different.
Here, although analytical variation is significant at low
concentrations, at higher levels (> 10 g/t), sample
inhomogeneity contributes about 30 percent of the rather poor
overall precision of + 50 percent in the site duplicates. For
As (Figure 12), the precision plot for the site duplicates shows
a different form, implying the assumption of equation (2) is
not valid in this case (although it is for the laboratory
duplicates). For the site duplicates, the errors no longer vary
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Figure 11. Plots of precision against concentration for Co
in laboratory duplicaies (asterisks) and in site duplicates
(pluses) of lake sediment samples.
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Figure 12. Plots of precision against concentration for As
in laboratory duplicates (asterisks) and in site duplicates
(pluses) of lake sediment samples.

linearly with concentration, as is illustrated in Figure 13,
where the median difference in each group is plotted against
concentration (on a log scale). The median difference, a
measure of analytical errors, is relatively constant below about
10 g/t As, but increases rapidly at higher values. This type
of curve yields a negative intercept when a regression line
is fitted, and this results in the form of the curve for site
duplicates in Figure 12.

An alternative approach is to log-transform all the data
before analyzing the analytical and sample-site variance. The
main disadvantage of doing this is the unfamiliarity for most
people in dealing with log-transformed data, but this is
outweighed by the fact that most trace-element data in
geochemical surveys are closer to a log-normal distribution
then a normal distribution.
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Figure 13.  Plot of the median differences (g/t) between pairs
of site duplicates against their average concentration (on a
log-scale) for As.
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Figure 14. Plot of the median differences between site-
duplicate pairs against their average concentration for log-
transformed data for As.

Figure 14 shows a plot of the median difference of pairs
of site duplicates plotted against their mean concentration for
log-transformed As data. The median difference gives a
measure of the combined sampling and analytical variance.
Although the data show some scatter, above about 1.0 g/t,
the median difference, is essentially constant at about 0.1 log
units; below 1.0 g/t median difference values increase sharply,
indicating that this value is the effective detection limit. This
detection limit compares well with those estimated for As
from the laboratory duplicates and control reference materials,
Clearly, there is no simple, linear relationship between the
median difference and concentration for the duplicate pairs
in the log-transformed data, so it would be inappropriate to
regress the median difference against mean concentration as
was done for the untransformed As data, hence an estimate
of standard deviation as a function of concentration cannot
be obtained from equation (1). Instead, the standard deviation

of the duplicates over the range of concentrations was
determined as follows, using an approach modified from
Garrett (1973);

—

) calculate the means (X; + X;)/2 and the squares of
the differences (X—X,)? of the log-transformed data;

2)  sort the pairs of results, their squared differences and
means in order of increasing mean value;

3)  assign the sorted results to groups of 30, ignoring the
last group if it contains less than 30;

4)  for each group calculate the mean of the means, and
the standard deviation of the variation between paired
values from the relationship

= 12N JEX,-X2 . . ... €))
where I:f is the number of pairs (in this case 30).

The group size of 30 is chosen to obtain a fairly reliable
estimate of the standard deviation (following Garrett, 1973),
s0 a fairly large, total number of duplicate pairs is required
to cover a reasonable concentration range. The result for As
in site duplicate pairs is shown in Figure 15, Combined
sampling errors are lowest in the 2 to 8 g/t As range (better
than 0.10), increasing to 0.15 at higher As levels, and
increasing rapidly to more than 0,30 below 1 g/t. Using a
two-standard deviation margin of error, a standard deviation
of (.15 translates to a error factor of antilog (2 x 0.15) = 2.
Applied to an As value of 100 g/t, this would give a margin
of error from 50 to 200 g/t. Error margins larger than this
indicate data that are semi-quantitive at best, so a standard
deviation of 0.15 for the combined sampling and analytical
error for log-transformed data is a limit comparable to the
+ 100 percent precision limit, commonly used to define
analytical detection limit.
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Figure 15,  Plot of the standard deviation from site-duplicate
pairs against their average concentration for log-transformed
data for As.
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The results from analytical duplicates can be treated in
the same way, and the results for As are plotted in Figure
16. As expected, the standard deviation is smaller than for
the site duplicates, averaging about 0.05 above 3 g/t. Below
1 g/t, the standard deviation of analytical error increases
rapidly to more than 0,30, indicating again, a 1 g/t detection
limit for As.
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Figure 16, Plot of the standard deviation from laboratory-
duplicate pairs against their average concentration for log-
transformed data for As.

PRACTICAL APPLICATIONS

Very commonly, the results from geochemical surveys
are reviewed cursorily, the obvious anomalies identified, often
in an ad hoc manner, and these alone form the basis for
further exploration. In the early years of geochemical surveys,
anomaly detection was the main purpose of the survey and
often their design, particularly their analytical methods,
limited them to this goal. Today, quantitative multi-element
geochemical analysis is the norm, and when sampling design
is appropriate, to merely focus on obvious anomalies is to
ignore a great deal of subtle information that is relevant to
mineral exploration. Models have been developed for a large
number of different mineral deposit types that predict
variations in the geochemical background around deposits in
elements other than the ore metals. In many cases, these
associated patterns, which may be due to enrichments,
depletions or a characteristic spatial redistribution (e.g.,
zoning), are substantially larger than the primary dispersion
patterns of the ore-elements themselves. The integration of
these models with the interpretation of geochemical survey
data can greatly aid in mineral exploration programs. In many
cases, the patterns characteristic of mineralizing processes
sought in the geochemical data are within the mid-
concentration range of the data, or even at their lower end.
Also, spatial patterns commonly reflect geological structure,
which are manifest as local contrasts in level of the data, not
patterns of extreme enrichment (or depletion), and therefore
not anomalies in the classical sense.
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The steps of data-quality evaluation outlined above are
more than exercises. Significant batch to batch variation can
give rise to spurious spatial patterns when the data are plotted
together, and therefore, data-levelling using the results of
control reference materials is essential. To bring out patterns
in the high-, intermediate- and low-element concentration
ranges, requires subdividing the data in a manner consistent
with their quality: too few subdivisions may mask real but
subtle features; too many will produce a cluttered plot where
these features may also be hidden. The site duplicate data
provide information on appropriate contour intervals, and,
together with the laboratory duplicates, on realistic detection
limits.

Data-quality evaluation can also provide the basis for
determining which analytical method provides the better data
for an element determined by two methods—an increasingly
common situation with multi-element analytical methods.
Finally, for elements for which the combined sampling and
analytical errors are deemed too large to allow expected subtle
features to be discerned in the data, the relative contributions
of analytical and sampling errors may be compared, and the
necessary remedial measures identified. These measures
would include seeking a more sensitive and precise analytical
technique (a fairly low-cost prospect if sample material has
been archived) or, if the sampling strategy is inadequate,
initiating a new survey.

Data Correction and Data Selection

Data levelling. If the results of control reference materials
indicate a smooth trend in concentration level with order of
analysis (Figure 7), levelling of the data should be considered,
because where results from an earlier batch plot next to results
from a much later batch, a discernible boundary discontinuity
is likely. If the trend is smooth and linear, the regression
equation can be used to calculate consistent values. When
the GSC/CANMET control reference materials are
standardized, it should be possible to adjust the data to
correspond to the recommended values.

For elements that show an abrupt break or breaks in level,
it may also be possible to level the data in some cases, but
for Lu (Figure 3), the data are rather noisy and the change
is so large that many of the later analyses fall below the
detection limit, so the data are therefore of little use.

Comparison of different analytical technigues. Low-cost,
multi-element analytical methods are becoming common-
place, and there is usually some overlap in the element suites
offered. Assuming that two methods provide comparable data
(e.g., both provide total-element values, not a partial
extraction), an objective way to determine which method
provides the better data is useful. Plotting the variation of
precision with concentration for the laboratory duplicates
provides a rapid visual method. Figure 17 shows that the Co
data by atomic absorption are more precise over the whole
concentration range than the results by INAA.
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Figure 17. Plot of precision against concentration in
laboratory-duplicate pairs for Co by AAS (pluses) and INAA
(asterisks).

Data Presentation

Although sometimes regarded as cosmetic, proper
presentation of geochemical survey results is as important as
proper sampling and analysis. There are two main
considerations: the relationship of the frequency distribution
of the data and its components to spatial, geological features,
and the limitations imposed by the quality of the data itself.
Both of these considerations must serve the overall objectives
of the survey. For discussions of the analysis of frequency
distributions in exploration geochemistry, the reader is
referred to Sinclair (1976, 1983) and Stanley (1987). The
constraints imposed by data quality can be determined from
an analysis of the analytical and site duplicate data, which
can determine whether the data may be usefully contoured,
and if so, provide a realistic detection limit and minimum
interval for the contours,

Contour maps or symbol maps. Contour maps are the
most widely used format for presenting data that vary
continuously over the earth’s surface. They have been
commonly used in displaying geochemical data, although
symbol plots are preferred by some (e.g., the Geochemical
Atlas of Fennoscandia, Bolviken et al., 1986). Garrett (1969,
1973) addressed the problem of testing the relationship of the
combined sampling and analytical variance (within-site
variance from site duplicates) to the total variance of the data.
The between-site variance should be substantially greater than
the within-site variance, if the data are likely to show clear
spatial patterns, and be suitable for contouring. Values of the
variance ratio for the INAA data for Newfoundland lake
sediments are listed in Table 2, The F-ratios may be compared
to the initial value of Fisher’s F (for 519 pairs of site duplicates
critical F is 1.25 at the 99 percent confidence level). All
elements have an F-ratio substantially greater than 1.25, except
for Au and Se, and thus may be usefully contoured. For Au
and Se, symbol plot maps may be more appropriate, although
this is not to imply these data will show no real spatial patterns

Table 2. Comparison of total variance to combined sampling
and analytical variance from site duplicates for
element data by INAA for Newfoundland lake
sediment samples; all data were log-transformed

Element Variance F-Ratio
Total Data  Site Duplicate F = 8§ /82
S'z Sz (1] SA
5] SA
As 0.6839 0.04721 14.5
Au 0.0433 0.03160 1.4
Ba 0.1482 0.04004 3.7
Br 0.1190 0.01241 9.6
Ce 0.1600 0.01218 13.1
Co 0.3341 0.04455 7.5
Cr 0.1369 0.03157 4.3
Cs 0.1681 0.01928 8.7
Eu 0.1211 0.06033 2.0
Fe 0.2294 0.01468 15.6
Hf 0.2777 0.07906 3.5
La 0.1197 0.00500 23.9
Mo 0.1376 0.01219 11.3
Na 0.1858 0.01149 16.2
Ni 0.1197 0.03080 3.9
Rb 0.2333 0.04221 5.3
Sh 0.1980 0.03900 8
Sc 0.0795 0.00520 15.2
Se 0.0266 0.02000 1.3
Sm 0.1459 0.00887 16.5
Ta 0.1303 0.03172 4.1
Tb 0.1063 0.00866 12.3
Th 0.1332 0.00420 31.5
U 0.3770 0.01918 24.6
W 0.0900 0.01969 4.6
Yh 0.1892 0.040095 4.6
Zn 0.1142 0.02493 4.6

atall. Indeed, Au in lake sediment in Newfoundland is a very
useful exploration guide (Davenport, 1989; Davenport and
McConnell, 1988). Such spatial patterns in noisy data are due
to autocorrelation between neighbouring samples, (see Stanley
and Smee, 1988, 1989).

Establishing a realistic detection limit. For most trace
elements, the analytical techniques used in exploration
geochemistry cannot adequately determine the lowest
abundance levels encountered in the materials sampled. The
uncertainty of measurement typically increases at very low
levels to the point where the reliability of the data can no
longer be assessed. This lower limit is the practical detection
limit, and is usually taken as the concentration level at which
the margin of error about this level is equal to the level itself.
This is usually determined from the analytical duplicates as
already described, although in many cases this value increases
when sampling errors are considered, and a more realistic
limit for contouring may be determined from the site
duplicates.
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Contour levels and map reliability. A common approach
to selecting contour intervals is to choose an interval equal
to twice the standard deviation of the measurement errors
(Sharp, 1987). In the case of geochemical surveys, this would
be twice the combined sampling and analytical errors, so that
if a site were resampled using the same method employed
in the original survey, the result should lie within one contour
level of the original value, 19 times out of 20.

Repeatability of survey data was discussed by Garrett
(1983), who developed the concept of a reliability factor, (RF)
given by the expression

RF = antilog (k +/$2_):

where k is a constant dependent on the number of duplicates
(it is approximately 2 if the number of duplicates exceeds
30, and the 95 percent confidence level is used). The variance
term S82_ is calculated from the entire subset of site
duplicates, reflecting the range of concentration found in the
whole sample set. As discussed above, for most elements,
the combined sampling and analytical variance changes with
concentration, implying that contour intervals should be wider
at lower values, and may be decreased while keeping the same
level of repeatability at high values. A few elements (e.g.,
As, Figure 15) show lowest S?_ values at intermediate levels,
with higher values both near the detection limit and at the
highest concentration levels, due to sample inhomogeneity.
Again, other elements show more or less constant values for
§2_ over the entire concentration range, implying that
contours may be based on equal log-intervals throughout the
range.

The minimum contour intervals and lower detection limit
determined from plots of standard deviation against
concentration for the log-transformed data may then be
applied to cumulative frequency plots of the data to determine
the final contour intervals (Figure 18). The maximum number
of intervals is determined by the ratio of the data range (above
detection limit) to minimum contour interval. In some cases,
the contour interval chosen may be greater than the minimum
interval to keep the number of contours to a reasonable total.

Evaluarion of analytical and sampling errors. From plots
such as Figures 10 and 11, which show the relative
contributions of sampling and analytical errors as a function
of element concentration, the effectiveness of sampling
strategy and analytical methods can be evaluated. The
analytical precision for Co by INAA is quite good compared
with other elements, but it is even better by AAS (Figure 17),
so that the combined sampling and analytical error for the
AAS data is substantially smaller at all concentrations than
the INAA data. The main part of the variance for Co is,
nonetheless, due to sample-site variability (Figure 11),
suggesting that if combined sampling and analytical errors
are to be reduced, it must be by a reduction in sample
variability: i.e., the sampling technique must be inproved or
another sample medium chosen.
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Figure 18, Subdivisions of As in lake sediment based on
cumulative frequency plot using intervals and detection limit
[from site-duplicate data.

CONCLUSIONS

The potential of new digital, image-analysis technology
to allow a full interpretation of geochemical data is limited
fundamentally by data quality. By evaluating the results of
control reference samples, laboratory duplicates and site
duplicates, this data quality can be assessed. In some cases,
batch-to-batch variations in concentration level can be
corrected, and from the site-duplicate data realistic methods
of data presentation can be selected objectively. Finally,
analysis of the results from laboratory and site duplicates
permits a retrospective analysis of survey design that can be
used to guide both further analytical programs on archived
sample material, and the design of further, improved surveys.
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