DIGITAL GEOSCIENCE ATLAS OF LABRADOR

P.H. Davenport, L.W. Nolan, R.W. Wardle¹, G.J. Stapleton¹ and G.J. Kifoil Geochemistry, Geophysics and Terrain Sciences Section

ABSTRACT

The digital geoscience atlas of Labrador provides, on a single CD-ROM, complete regional coverage for Labrador of the bedrock and surficial geology, drainage, geochemistry and potential-field geophysics, together with a database of mineral occurrences, and a topographic base and NTS grid. The various "information layers" have been designed to take full advantage of the capabilities of the commonly used desk top GIS systems Arcview 3 and Mapinfo 4. The data and their organization are described in a set of help files.

INTRODUCTION

The CD-ROM version of the 1:1 000 000-scale geological map of Labrador (Wardle et al., 1997) provides a digital frame of reference for the Geoscience database that has been built up methodically for the region over the past 25 years. In addition to the bedrock geology database, Labrador is completely covered by regional geophysical (aeromagnetic and gravity) surveys, regional geochemical (lake- and stream-sediment and water) surveys, reconnaissance surficial geology, and a mineral occurrence database (MODS). Although useful individually, when brought together as a digital atlas designed around commonly used desktop GIS systems, they provide a comprehensive overview of the geoscience knowledge base for Labrador that can be applied in mineral exploration planning, mineral resource appraisal, environmental baseline studies and land-use planning. The digital atlas also provides a multiparameter, contextual framework within which other more detailed, but geographically restricted, geoscience surveys can be placed.

GEOSCIENCE DATA LAYERS

BEDROCK GEOLOGY

The bedrock geology layer (Figure 1) is taken from the Digital Geological Map of Labrador (Wardle *et al.*, 1997). The digital map has seven components:

- 1. Geological units as polygons (GEOLOGY)
- 2. Geological contacts as lines (CONTACTS)

- 3. Geological faults as lines (FAULTS)
- 4. Shear zones as polygons (SHEARP)
- 5. Shear zones as lines (SHEARL)
- 6. Tectonic provinces as polygons (TECTP)
- 7. Limits of post-1970 mapping (MAPLIMIT)

These components are organized to take advantage of the capabilities of the viewers to display information, and although no changes have been made to the map units, some of the attribute tables have been reorganized. The geological unit polygons (GEOLOGY) contain the attributes listed in Table 1. Geological contacts, i.e. polygon outlines, are also included as lines (GEOLOGYL) having three pairs of attribute fields; ROCKCL L and ROCKCL R (the values for ROCKCLASS, Table 1, to the left and right of the line segment), AGE_L and AGE_R (the values for AGE_DIVISI, Table 1, to the left and right of the line segment), and TECT_L and TECT_R (the values for TECTONIC_P, Table 1, to the left and right of the line segment). These fields can be used through viewer queries to remove internal boundaries between map units that are generalized by rock classification, geological age or tectonic province, respectively.

Faults (FAULTS) may or may not form polygon boundaries, and constitute a separate line layer having two attribute fields; TYPE with four valid categories: fault, normal fault, thrust fault and transcurrent fault and QUALIFIER, which may take the values major, minor or reactivated. Shear zones are treated in two ways; individual shears are included as lines (SHEARL), and major zones of shears have been placed in a separate category as polygons (SHEARP).

¹ Mineral Deposits Section

Figure 1. Bedrock geology of Labrador, units classified by major rock type (from Wardle et al., 1997).

1.	UNITCODE	Map unit label			
2.	UNIT_NAME	Name of Geological Unit			
3.	ROCKTYPE	Major rock types in unit			
4.	MINROCKTYPE	Minor rock types in unit			
5.	ROCKCLASS	Rock classification			
		PLUTONIC			
		METAMORPHIC			
		STRATIFIED			
6.	AGE_DIVISI	Geological age			
		Archean and/or Paleoproterozoic			
		Early Mesoproterozoic			
		Early Paleoproterozoic			
		Eo-Paleoarchean			
		Late Mesoproterozoic			
		Late Paleoproterozoic			
		Mesoarchean			
		Mid Mesoproterozoic			
		Mid Paleoproterozoic			
		Neoarchean			
		Neoproterozoic			
		Neoproterozoic - Cambrian			
		Paleo and/or Mesoproterozoic			
		Tertiary			
		Undivided Archean			
7.	TECTONIC_P	Tectonic Province			
		GP - Grenville Province			
		MP - Makkovik Province			
		NP - Nain Province			
		CP - Churchill Province			
		SP - Superior Province			
10.	. AGE_DATING	Absolute (Radiometric) age, millions of years (text field)			
11.	. DESCRIPTION	Description of map unit (from legend of Map 97-07)			
12.	. AREA	Area of each mapped unit (km ²)			
13.	. RED	Map unit Colour, RGB scheme, red			
14.	. GREEN	Map unit Colour, RGB scheme, green			
15.	. BLUE	Map unit Colour, RGB scheme, blue			

Table 1. Variables included in geological polygon attribute set

The major tectonic divisions of Labrador are presented as a polygon coverage (TECTP). Tectonic province boundaries are projected through posttectonic intrusions and sedimentary cover using geophysical and other evidence. The limits of poorly mapped areas (pre-1970 reconnaissancescale mapping only) are contained as lines in MAPLIMIT.

SURFICIAL GEOLOGY

The surficial geology layer (Figure 2) is taken from the 1:1 000 000-scale map of glacial landforms and deposits by Klassen *et al.* (1992). Glacial deposits are subdivided into a simple seven-fold classification (attribute field GENETIC); "ablation drift", "drift poor", "glaciofluvial", "glaciolacus-trine", "glaciomarine and marine", "rogen moraine", and

"till, undifferentiated". Surficial deposit units are presented in the atlas as polygons (SURFPOLY), some of which are so large that they have been internally subdivided because of limitations of the viewer software. The areas of the polygons (in km²) are given in the field AREA, as well as RGB colours in the fields Red, Green and Blue. The complete unit boundaries have been included as lines (SURFLINE).

MINERAL OCCURRENCES

The information on mineral occurrences (Figure 3) from the MODS/PC database (Stapleton and Parsons, 1996) is presented in an abbreviated form as a point layer. The attributes for each occurrence are listed in Table 2.

Figure 2. Surficial geology of Labrador, units classified by depositional style (from Klassen et al., 1992).

Figure 3. Mineral occurrences of Labrador, classified by development status.

GEOCHEMISTRY

The geochemical data (Figure 4) for most of the region (south of latitude 58°30'N) are based on systematic lake-sediment and water surveys (Friske *et al.*, 1992a,b; 1993a to j; 1994a to e), although stream-sediment and water were the sample media north of latitude 58° N in the Torngat Mountains (Friske *et al.*, 1994f), where lakes are few and irregularly distributed. The data were first released as a series of open files under the National Geochemical

Reconnaissance (NGR) program (Friske and Hornbrook, 1991).

The parameters included in the geochemical data sets are listed in Tables 3 (lakes) and 4 (streams). Lake and stream data are not directly comparable for most parameters (Davenport, 1990) and are therefore treated separately in the digital atlas, where each type has been prepared for display in the following formats.

		Table 2. Variables in mineral occurrence attribute set		
1.	DEP_NAME	Deposit Name: the most commonly accepted deposit name found in the literature.		
2.	ALT_NAME	Secondary name, if deposit or occurrence has been known by some other name.		
3.	NMINO	National Mineral Inventory Number consists of three parts separated by slashes. The first two parts		
		place the deposit in the NTS grid. The third identifies the major commodity, e.g., NMINO =		
		012b/08/Gyp001.		
4.	MAJOR_COM	Major Commodity (full name) present in the deposit, eg. copper, zinc, granite.		
5.	MOD_TYPE	Major Commodity (abbreviation) present in the deposit, eg. Cu, Zn, stn.		
6.	MINOR_COM	Field contains all secondary commodities (as abbreviations) present in the deposit.		
7.	DEP_TYPE	Deposit Type; coded genetic classification of mineral deposits.		
8-11.	DEP_CHAR	Deposit Character (4 fields) describes deposit attributes, such as morphology of the mineralization and the best rocks in which it occurs (a.g., disseminated sulphides in motio volcanica):		
		metamorphism alteration of the wall rock denosit shape age of mineralization atc		
12-13.	STATUS	Indicator of amount of work done and hence the amount of information available on a deposit:		
		STATUS, numeric code; STATUS_KEY, label.		
		1. Producer - Commodity is extracted for sale		
		2. Developed Prospect - Reserves or demonstrated resources of the commodity can be		
		calculated but the commodity has not yet been produced (i.e., three dimensional data plus grade).		
		3. Past Producer Dormant - the commodity is no longer produced, although there are known		
		reserves or demonstrated resources.		
		4. Past Producer Exhausted - the commodity is no longer produced and there are no longer		
		reserves or demonstrated resources.		
		5. Prospect - two dimensional data and grade are available but not enough data to calculate		
		reserves.		
		 Snowing - One dimensional data and grade Indication on indication of the existence of the commodity is field charged at a second state. 		
14	CEOLOCY	7. Indication - an indication of the existence of the commodity. It. field observation, assay, etc.		
14.	GEOLOGI	Geological unit in which occurrence lies; codes from field UNIT-CODE from 1:1,000,000 bedrock		
15	HOST BOCK	geology layer Individual rock types associated with the denosities an anorthosite paragnesis shale atc		
15.	STRUNIT	Stratigraphic Unit refers to the geological name of the unit in which the denosit occurs		
10.	GEOLWK	If Geological Work done on the area around the mineral denosit field contains a 'Y' (does not count		
17.	OLOLWK	regional studies).		
18.	GEOPHWK	If Geophysical Work done on the area around the mineral deposit, field contains a 'Y' (does not		
		count regional studies).		
19.	GEOCHWK	If Geochemical Work done on the area around the mineral deposit, field contains a 'Y' (does not		
		count regional studies).		
20.	DDH	The number of drillholes into the deposit; 0 means that the deposit has been drilled but the number		
		of holes is unknown. A value of -9 indicates that the deposit has not been drilled.		
21.	WORKING	Type of mine workings. This field would have a value for deposits of status 1, 3 or 4.		
		Underground - u		
		Open Pit or Quarry - o		
		Strip - s		
		Placer - p		
		Solution/Leaching -1		
		Underground and Open Pit - uo		
		Underground and Strip - us		
		Uncertain un		
22.22	DDODES	Uncertain - un Deschustion and Descrives (2 fields): rescards of production per day or per year and reserves (using the		
22-23.	FRORES	McKelvey classification i.e. Measured Indicated inferred)		
	Example: PROD - 8 000 tonnes (ner day) of 3% Cu 5% Zn: Das (indicated) of 2 000			
		tonnes		
24.	Utmzone	UTM Zone		
25.	Utmeast	UTM easting, m		
26.	Utmnorth	UTM northing, m		

Table 2. Variables in mineral occurrence attribute set

Figure 4. Shaded-relief, colour image of the interpolated distribution of nickel from regional geochemical surveys in Labrador.

1) Interpolated geochemical surfaces as colour raster images, with and without shading, which are useful for displaying broad, qualitative variations in the geochemical background of individual elements (Figure 4, shaded from the northwest, and Figure 5, unshaded).

2) Interpolated geochemical surfaces as line contours at the 5th, 10th, 15th, 20th, 25th, 30th, 35th, 40th, 45th, 50th, 55th, 60th, 65th,

70th, 75th, 80th, 85th, 90th, 95th and 98th percentiles, labeled in concentration units. The complete set of contours can be displayed, or specific levels can be selected. This format is useful for displaying broad, quantitative variations in the geochemical background of individual elements (Figure 6), and can be placed over raster images or coloured thematic information such as bedrock geology. Because the contours are quantitative, they are prepared only for elements whose

Table 3. Variables ind	cluded in la	ke geochemical	dataset
------------------------	--------------	----------------	---------

1.	Sample ID		32.	Rb1_ppm	Rubidium, ppm, by INAA
2.	nts	NTS sheet (1:50 000)	33.	Sb1 ppm	Antimony, ppm, by INAA
			34.	Sc1 ppm	Scandium, ppm, by INAA
LAK	KE SEDIMEN	T	35.	Sm1 ppm	Samarium, ppm, by INAA
3.	Ag3_ppm	Silver, ppm, by FAAS	36.	Ta1_ppm	Tantalum, ppm, by INAA
4.	As1_ppm	Arsenic, ppm, by INAA	38.	Tb1_ppm	Terbium, ppm, by INAA
5.	As19_ppm	Arsenic, ppm, by HAAS	39.	Th1_ppm	Thorium, ppm, by INAA
6.	As21_ppm	Arsenic, ppm, by COL	40.	U1_ppm	Uranium, ppm, by INAA
7.	Au1_ppb	Gold, ppb, by INAA	41.	U8_ppm	Uranium, ppm, by NANC
8.	Ba1_ppm	Barium, ppm, by INAA	42.	V5_ppm	Vanadium, ppm, by FAAS
9.	Br1_ppm	Bromine, ppm, by INAA	43.	W1_ppm	Tungsten, ppm, by INAA
10.	Cd3_ppm	Cadmium, ppm, by FAAS	44.	Yb1_ppm	Ytterbium, ppm, by INAA
11.	Ce1_ppm	Cerium, ppm, by INAA	45.	Zn3_ppm	Zinc, ppm, by FAAS
12.	Co1_ppm	Cobalt, ppm, by INAA	46.	LOI_pct	Loss-on-ignition, %, GA
13.	Co3_ppm	Cobalt, ppm, by FAAS	47.	INAAWT_g	Sample weight (g) used for INAA
14.	Cr1_ppm	Chromium, ppm, by INAA		-	
15.	Cs1_ppm	Cesium, ppm, by INAA	LAK	E WATER	
16.	Cu3_ppm	Copper, ppm, by FAAS	48.	Fw9_ppb	Fluorine, ppb, by PA
17.	Eu1_ppm	Europium, ppm, by INAA	50.	pHw	pH (hydrogen ion activity) by PA
18.	F9_ppm	Fluorine, ppm, by PA	51.	Uw10_ppb	Uranium, ppb, by LIF
19.	Fe1_pct	Iron, %, by INAA	52.	Uw11_ppb	Uranium, ppb, by FTA
20.	Fe3_pct	Iron, %, by FAAS			
21.	Hf1_ppm	Hafnium, ppm, by INAA	SITE	E DESCRIPT	ORS
22.	Hg18_ppb	Mercury, ppb, by CVAAS	53.	Year	Year of sample collection
23.	La1_ppm	Lanthanum, ppm, by INAA	54.	UTMZone	UTM Zone
24.	Lu1_ppm	Lutetium, ppm, by INAA	55.	Utmeast	UTM easting, m
25.	Mn3_ppm	Manganese, ppm, by FAAS	56.	Utmnorth	UTM northing, m
26.	Mo1_ppm	Molybdenum, ppm, by INAA	57.	Depth_m	Lake depth, m, at sample site
27.	Mo5_ppm	Molybdenum, ppm, by FAAS	58.	Lakesize	Lake area
28.	Na1_pct	Sodium, %, by INAA	59.	Colour	Sediment colour
29.	Ni1_ppm	Nickel, ppm, by INAA	60.	Contamin	Site contamination; 0 - absent; 1 - present
30.	Ni3_ppm	Nickel, ppm, by FAAS	61.	Openfile1	Original open file number
31.	Pb3_ppm	Lead, ppm, by FAAS	62.	Openfile2	Latest open file number
		KE	Y		

COL CVAAS	Colorimetry Cold-Vapour atomic absorption spectrophotometry	HAAS INAA LIF	Hydride atomic absorption spectrophotometry Instrumental Neutron Activation Analysis Laser induced fluorescence
FAAS	Flame atomic absorption spectrophotometry	NANC	Neutron Activation, delayed Neutron Counting
FTA GA	Fission track analysis Gravimetric analysis	PA	Potentiometric analysis

between-site variance is greater than 3 times the combined sampling and analytical variance as determined from site duplicates (Garrett, 1973). Details of the analysis of variance and interpolation methods used to produce both the contours and colour images of the geochemical data are given in the atlas documentation.

3) *Individual sites* that the viewer can symbolize and classify in a variety of user-defined ways using the data contained in the attribute tables (Tables 3 and 4). There are 18 640 lake

sites, and 1244 stream sites (Figure 7). Site data are most useful at more detailed scales.

GEOPHYSICS

The regional aeromagnetic- and gravity-survey data for Labrador are presented as interpolated shaded-relief images (raster format) (Figures 8 and 9). The aeromagnetic data are included at two resolutions; a single image based on an 800m-square grid, and a higher resolution image based on a

Table 4.	V	ariable	s inc	cluded	in	stream	geochemical	dataset
----------	---	---------	-------	--------	----	--------	-------------	---------

C	CVAAS Cold-va		hotometry	LIF NA1	NC	Neutron a
C	OL	Colorime	etry	INA	A	Instrumen
				KEY		
4(U. ID	ı_ppm	eroium, ppm, by INAA			
39	9. Tal 0 ты	_ppm	Tantalum, ppm, by INAA	75.	FA	_WT_g
38	8. Sn1	l2_ppm	Tin, ppm, by SEAAS	74.	IN	AAWT_g
3'	7. Sm	1_ppm	Samarium, ppm, by INAA	73.	Str	eam_source
30	6. Sc1	_ppm	Scandium, ppm, by INAA	72.	Str	eam_order
3.	5. Sb1	19_ppm	Antimony, ppm, by HAAS	71.	Str	eam_type
34	4. Sb1	l_ppm	Antimony, ppm, by INAA	70.	Dra	ainage
3.	3. Rb	1_ppm	Rubidium, ppm, by INAA			
32	2. Pb4	1_ppm	Lead, ppm, by FAAS	69.	Phy	ysiography
3	1. Ni4	_ppm	Nickel, ppm, by FAAS	68.	Ba	nk_stain
30	0. Ni1	_ppm	Nickel, ppm, by INAA	67.	Sec	l_precip
29	9. Na	l_pct	Sodium, %, by INAA	66.	Sec	lColor
28	8. Mo	5_ppm	Molybdenum, ppm, by FAAS	65.	Flo	wrate
2	7. Mo	1_ppm	Molybdenum, ppm, by INAA	64.	H2	OColor
20	6. Mn	4_ppm	Manganese, ppm, by FAAS	63.	Ba	nktype
2	5. Lu	l_ppm	Lutetium, ppm, by INAA	62.	Co	ntam
24	4. La1	l_ppm	Lanthanum, ppm, by INAA	61.	Sar	nptype
23	3. Hg	18_ppb	Mercury, ppb, by CVAAS	60.	Utı	nnorth
22	2. Hf1	l_ppm	Hafnium, ppm, by INAA	59.	Utı	neast
2	1. Fe4	_pct	Iron, %, by FAAS	58.	UT	MZone
20	0. Fe1	_pct	Iron, %, by INAA	57.	Ye	ar
19	9. F9_	ppm	Fluorine, ppm, by PA	56.	De	pth_cm
18	8. Eu	l_ppm	Europium, ppm, by INAA	55.	Wi	dth_cm
1′	7. Cu4	4_ppm	Copper, ppm, by FAAS	54.	OR	GS_PCT
10	6. Cs1	l_ppm	Cesium, ppm, by INAA	54.	FIN	NES_PCT
1:	5. Cr1	_ppm	Chromium, ppm, by INAA	53.	SA	ND_PCT
14	4. Co4	4_ppm	Cobalt, ppm, by FAAS	РНУ	SIC	AL AND SI
1.	3. Co	1_ppm	Cobalt, ppm, by INAA			
12	2. Cel	l_ppm	Cerium, ppm, by INAA	52.	Uw	/10_ppb
11	1. Cd4	4_ppm	Cadmium, ppm, by FAAS	51.	pН	W
10	0. Br1	_ppm	Bromine, ppm, by INAA	50.	Fw	9_ppb
9.	. Ba2	20_ppm	Barium, ppm, by FAAS	STR	EAN	I WATER C
8.	. Bal	l_ppm	Barium, ppm, by INAA			
7.	. Au	16_ppb	Gold, ppb, by Fire Assay, INAA	49.	LO	I_pct
6.	. Au	1_ppb	Gold, ppb, by INAA	48.	Zn	4_ppm
5.	. Asl	19_ppm	Arsenic, ppm, by HAAS	47.	Yb	1_ppm
4.	. As	l_ppm	Arsenic, ppm, by INAA	46.	W1	3_ppm
3.	. Ag	4_ppm	Silver, ppm, by FAAS	45.	W1	_ppm
S	TREAM	1 SEDIME	NT CHEMISTRY	44.	V5	_ppm
				43.	U8	_ppm
2.	. nts		NTS sheet (1:50 000)	42.	U1	_ppm
1.	. San	nple ID		41.	Th	1_ppm

1.	Th1_ppm	Thorium, ppm, by INAA
2.	U1_ppm	Uranium, ppm, by INAA
3.	U8_ppm	Uranium, ppm, by NANC
4.	V5_ppm	Vanadium, ppm, by FAAS
5.	W1_ppm	Tungsten, ppm, by INAA
6.	W13_ppm	Tungsten, ppm, by COL
7.	Yb1_ppm	Ytterbium, ppm, by INAA
8.	Zn4_ppm	Zinc, ppm, by FAAS
9.	LOI_pct	Loss-on-ignition, %, GA
TD	EAM WATED C	HEMICTOV
	EAM WATER C	Elucring and by DA
U. 1	rw9_ppu	riuonne, ppb, by rA
1. ว	Uw10 pph	Uranium and by LIE
Ζ.	UwI0_ppb	Oranium, ppb, by LIF
ΡHΥ	SICAL AND SIT	FE PROPERTIES
3.	SAND_PCT	Proportion of sand (>0.125mm)
4.	FINES_PCT	Proportion of fines (<0.125mm)
4.	ORGS_PCT	Proportion of organics (<0.125mm)
5.	Width_cm	Stream width (cm)
6.	Depth_cm	Stream depth (cm)
7.	Year	Year of sample collection
8.	UTMZone	UTM Zone
9.	Utmeast	UTM easting, m
0.	Utmnorth	UTM northing, m
1.	Samptype	Sample type
2.	Contam	Site contamination
3.	Banktype	Bank material at sample site
4.	H2OColor	Water colour
5.	Flowrate	Stream water flow rate
6.	SedColor	Sediment colour
7.	Sed_precip	Colour of any pebbles coatings
8.	Bank_stain	Colour of any rock staining near site
9.	Physiography	General physiography of drainage
		basin
0.	Drainage	Drainage pattern
1.	Stream_type	Stream type
2.	Stream_order	Stream order
3.	Stream_source	Source of water
4.	INAAWT_g	Sample weight (g) used for INAA
5.	FA_WT_g	Sample weight (g) used for Fire
	-	Assay, INAA

COL CVAAS	Colorimetry Cold-vapour atomic absorption	INAA LIF	Instrumental neutron activation analysis Laser induced fluorescence
	spectrophotometry	NANC	Neutron activation, delayed neutron counting
FAAS	Flame atomic absorption spectrophotometry	PA	Potentiometric analysis
FTA	Fission track analysis	SEAAS	Solvent-extraction, atomic absorption
GA	Gravimetric analysis		spectrophotometry
HAAS	Hydride atomic absorption spectrophotometry		

100 km

Figure 5. Unshaded colour image of the interpolated distribution of nickel from regional geochemical surveys in Labrador.

200-m-square grid, which because of its size is broken into several parts. Both images were produced from profile data from the National aeromagnetic database at the Geophysical Data Centre, Geological Survey of Canada, Ottawa, as described by Kilfoil and Bruce (1990, 1994). The gravity data, from the National gravity database, Geophysical Data Centre, were interpolated to a 1000-m-square grid, and transformed to a shaded-relief image (Kilfoil and Bruce, 1994). Both the gravity and aeromagnetic images are shaded from the north.

TOPOGRAPHIC REFERENCE DATA

The topographic base-map information is taken from the 1:1 000 000-scale International Map of the World series. The digital data were obtained from the Crown Lands Branch, Newfoundland Department of Government Services and Lands. The drainage network is contained in two layers: RIVERS, having a single field SIZE, which has the values SMALL, MEDIUM, LARGE and CANAL; and LAKES, having a single attribute field SIZE, which gives

50 km

Figure 6. Interpolated distribution of nickel as line contours in regional stream-sediment geochemical data, northern Labrador.

approximate lake areas in hectares. The Quebec–Labrador border and the sea coast are contained in a single line layer OUTLINE, which has a single attribute LINECODE having the values BORDER and COAST.

As a frame of reference the National Topographic System (NTS) grid is included as both a polygon layer

(GRIDPOLY) and a line layer (GRIDLINE). GRIDPOLY contains three attribute fields MAP_250K, which gives the 1:250 000-scale map reference, MAP_50K, which gives the 1:50 000-scale sheet within the 1:250 000-scale quadrangle, and MAPNAME, which gives the 1:50 000-map sheet name.

Figure 7. Distribution of nickel as proportionally sized symbols in regional stream-sediment geochemical data, northern Labrador.

DATA ORGANIZATION

For the atlas, the information is formatted for use with the popular commercial desktop GIS Arcview 3.0 and Mapinfo 4.0 (and higher versions of both). The data are organized to make display and manipulation as straightforward as possible, and are documented through a set of help files that can be opened with the viewer. All layers are presented in the North American Datum 1927 (NAD27), using a Universal Transverse Mercator (UTM) projection based on zone 20.

Figure 8. Shaded-relief, colour image of the interpolated regional aeromagnetic field for Labrador.

CONCLUSION

This initial version (1.0) of the atlas incorporates currently available information for each of the main themes. Updates are anticipated to the geochemical layers with the addition of analytical data for a further 12 elements, and for the mineral deposits information with the addition of more detailed information including references for each occurrence. For parts of Labrador of particular interest, further compilations of more detailed information in a similar format are planned. The inclusion of a customized data viewer with subsequent atlases is also envisaged.

REFERENCES

Davenport, P.H.

1990: A comparison of regional geochemical data from lakes and streams in northern Labrador; implications for mixed-media geochemical mapping. Journal of Geochemical Exploration, Volume 39, pages 117-151.

Figure 9. Shaded-relief, colour image of the interpolated regional Bouguer gravity field for Labrador.

Friske, P.W.B. and Hornbrook, E.H.W.

1991: Canada's National Geochemical Reconnaissance program. Transactions of the Institution of Mining and Metallurgy, Volume 100, pages B47-56.

Friske, P.W.B., McCurdy, M.W., Lynch, J.J., Gross, H., Day, S.J., Adcock, S.W., Durham, C.C. and Karam, H.

1992a: National Geochemical Reconnaissance lake sediment and water data, central Labrador (NTS 13F). Geological Survey of Canada, Open File 2471. Friske, P.W.B., McCurdy, M.W., Day, S.J., Lynch, J.J., Gross, H., Durham, C.C. and Karam, H.

1992b: National Geochemical Reconnaissance lake sediment and water data, central Labrador (NTS 13G). Geological Survey of Canada, Open File 2472.

Friske, P.W.B., McCurdy, M.W., Gross, H., Day, S.J., Lynch, J.J. and Durham, C.C.

1993a: National Geochemical Reconnaissance lake sediment and water data, central Labrador (NTS 13E). Geological Survey of Canada, Open File 2474. Friske, P.W.B., McCurdy, M.W., Day, S.J., Gross, H., Lynch, J.J. and Durham, C.C.

1993b: National Geochemical Reconnaissance lake sediment and water data, western Labrador (NTS 23H and part of 23G). Geological Survey of Canada, Open File 2475.

Friske, P.W.B., McCurdy, M.W., Gross, H., Day, S.J., Lynch, J.J. and Durham, C.C.

1993c: National Geochemical Reconnaissance lake sediment and water data, central Labrador (NTS 13K). Geological Survey of Canada, Open File 2645.

Friske, P.W.B., McCurdy, M.W., Gross, H., Day, S.J., Lynch, J.J. and Durham, C.C.

1993d: National Geochemical Reconnaissance lake sediment and water data, eastern Labrador (NTS 13I, 13J and 13O). Geological Survey of Canada, Open File 2646.

Friske, P.W.B., McCurdy, M.W., Gross, H., Day, S.J., Lynch, J.J. and Durham, C.C.

1993e: National Geochemical Reconnaissance lake sediment and water data, central Labrador (NTS 13L). Geological Survey of Canada, Open File 2647.

Friske, P.W.B., McCurdy, M.W., Gross, H., Day, S.J., Lynch, J.J. and Durham, C.C.

1993f: National Geochemical Reconnaissance lake sediment and water data, eastern Labrador (NTS 13N). Geological Survey of Canada, Open File 2648.

Friske, P.W.B., McCurdy, M.W., Gross, H., Day, S.J., Lynch, J.J. and Durham, C.C.

1993g: National Geochemical Reconnaissance lake sediment and water data, west-central Labrador (NTS 13M). Geological Survey of Canada, Open File 2649.

Friske, P.W.B., McCurdy, M.W., Day, S.J., Gross, H., Lynch, J.J. and Durham, C.C.

1993h: National Geochemical Reconnaissance lake sediment and water data, southwestern Labrador (parts of NTS 22P, 23A and 23B). Geological Survey of Canada, Open File 2689.

Friske, P.W.B., McCurdy, M.W., Day, S.J., Gross, H., Lynch, J.J. and Durham, C.C.

1993i: National Geochemical Reconnaissance lake sediment and water data, northern Labrador (NTS 14C and parts of 214D and 24A). Geological Survey of Canada, Open File 2690.

Friske, P.W.B., McCurdy, M.W., Day, S.J., Gross, H., Lynch, J.J. and Durham, C.C.

1993j: National Geochemical Reconnaissance lake sed-

iment and water data, northern Labrador (parts of NTS 14E, 14L, 24H and 24I). Geological Survey of Canada, Open File 2691.

Friske, P.W.B., McCurdy, M.W., Gross, H., Day, S.J., Balma, R.G., Lynch, J.J. and Durham, C.C.

1994a: National Geochemical Reconnaissance lake sediment and water data, southeastern Labrador (NTS 3E, 13H). Geological Survey of Canada, Open File 2473.

Friske, P.W.B., McCurdy, M.W., Gross, H., Day, S.J., Balma, R.G., Lynch, J.J. and Durham, C.C.

1994b: National Geochemical Reconnaissance lake sediment and water data, southeastern Labrador (NTS 3D, 13A and parts of 2M and 12P). Geological Survey of Canada, Open File 2790.

Friske, P.W.B., McCurdy, M.W., Gross, H., Day, S.J., Balma, R.G., Lynch, J.J. and Durham, C.C.

1994c: National Geochemical Reconnaissance lake sediment and water data, southern Labrador (NTS 13B). Geological Survey of Canada, Open File 2791.

Friske, P.W.B., McCurdy, M.W., Gross, H., Day, S.J., Balma, R.G., Lynch, J.J. and Durham, C.C.

1994d: National Geochemical Reconnaissance lake sediment and water data, southern Labrador (NTS 13C). Geological Survey of Canada, Open File 2792.

Friske, P.W.B., McCurdy, M.W., Gross, H., Day, S.J., Balma, R.G., Lynch, J.J. and Durham, C.C.

1994e: National Geochemical Reconnaissance lake sediment and water data, southern Labrador (NTS 13D). Geological Survey of Canada, Open File 2793.

Friske, P.W.B., McCurdy, M.W., Gross, H., Day, S.J., Balma, R.G., Lynch, J.J. and Durham, C.C.

1994f: National Geochemical Reconnaissance stream sediment and water data, northern Labrador (NTS 14M and parts of 14L, 24I, 24P and 25A). Geological Survey of Canada, Open File 2794.

Garrett, R.G.

1973: The determination of sampling and analytical errors in exploration geochemistry - a reply. Economic Geology, Volume 67, pages 282-283.

Kilfoil, G.J. and Bruce, P.A.

1990: Regional aeromagnetic data grids (200 m grid cell), in digital form, for all of insular Newfoundland, Version 1.0. Newfoundland Department of Mines and Energy, Geological Survey Branch, Open File NFLD/2063, 24 pages.

1994: A digital geophysical atlas: implications for its design and construction. Newfoundland Department of Mines and Energy, Geological Survey Branch, Reoport 94-1, pages 301-311.

Klassen, R.A., Paradis, S., Bolduc, A.M. and Thomas, R.D. 1992: Glacial landforms and deposits, Labrador, Newfoundland, and eastern Québec. Geological Survey of Canada, Map 1814A, scale 1:1 000 000. Stapleton, G.J. and Parsons, W.K.

1996: MODS/PC Mineral Occurrence Data System for personal computers. Newfoundland Department of Mines and Energy, Geological Survey Branch open file NFLD/2252, Version 1.1a.

Wardle, R.W., Ryan, A.B. and Gower, C.F.

1997: Geology of Labrador. Newfoundland Department of Mines and Energy, Geological Survey Map 97-07.