PRELIMINARY NOTE ON THE LITHOGEOCHEMISTRY AND PETROGENESIS OF INTRUSIVE ROCK SUITES FROM THE LAC BRÛLÉ REGION (NTS MAP AREA 13D), GRENVILLE PROVINCE, LABRADOR

L. Nadeau and D.T. James¹ Earth Sciences Sector, Geological Survey of Canada, GSC-Québec

ABSTRACT

The Lac Brûlé region of southern Labrador straddles the boundary of three major Grenvillian lithotectonic units: from north to south, parts of the Wilson Lake terrane, the southwest extent of the Mealy Mountains terrane and the northern fringe of the Mecatina terrane. The Wilson Lake terrane consists primarily of late Paleoproterozoic high-grade metasedimentary rocks, and intruded by subordinate diatexite, granitoid orthogneisses and minor gabbroic bodies, all of middle Labradorian age (ca. 1.65Ga). In contrast, the Mealy Mountains terrane is dominated by massive to gneissic, intrusive igneous rocks of the Labradorian Mealy Mountains intrusive suite, which host small and scattered screens of older metasedimentary paragneiss. Farther south, the Mecatina terrane consists primarily of Mesoproterozoic granitoid rocks intrusive in metasedimentary gneisses including quartzite attributed to the early Mesoproterozoic Wakeham Group. Both the Mealy Mountains and the Mecatina terranes are intruded by late- to post-Grenvillian, commonly K-feldspar porphyritic intrusions, chiefly granite and subordinate syenite and monzonite.

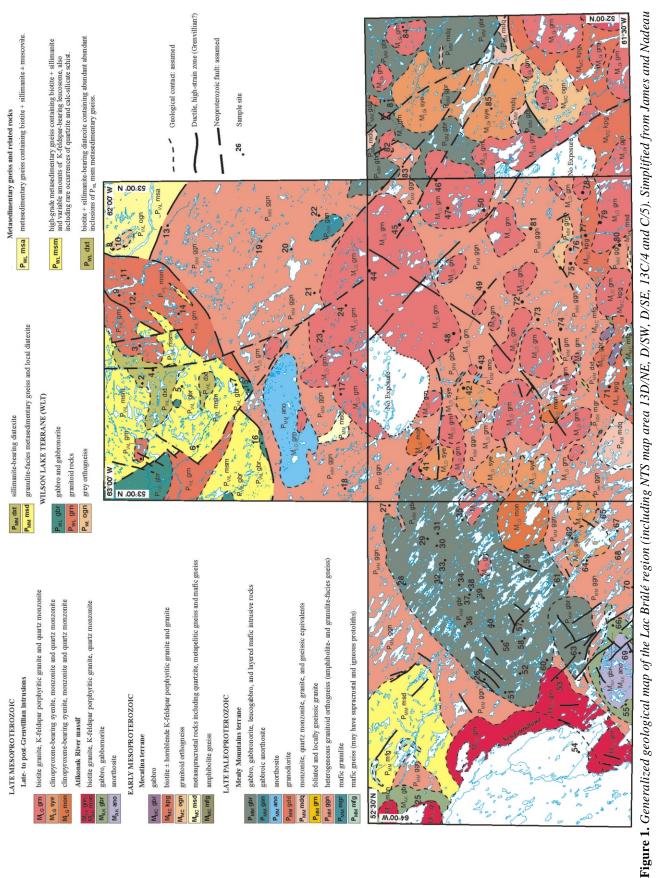
Granitoid rocks of Unit P_{WL} grn from Wilson Lake terrane are slightly to moderately peraluminous and contain corundum in the norm. They display a trace-element signature sharing many similarities with I-type volcanic-arc granite. The rocks are, however, lithologically less diverse than volcanic-arc granitoid rocks of an Andean–Cordilleran setting. Their trace-element pattern is indistinguishable from that of the diatexite samples of Unit P_{WL} dxt, a clear indication of the involvement of a high-grade metasedimentary precursor. Although enriched in aluminum, they do not strictly conform to S-type syn-collision granite. The spatially associated gabbroic rocks also exhibit geochemical signatures that set them apart from volcanic-arc gabbroic magmatism. Given the evidence for the close association in space and time between granitoid and mafic plutonism, for crustal involvement in mafic magma generation, and the fact that both suites have geochemical signatures that depart from typical volcanic-arc rocks, a post-collision tectonic regime is suspected.

In the Lac Brûlé area, the Mealy Mountains intrusive suite includes two somewhat contrasting plutonic rock units. The gabbroic rocks of Unit P_{MM} gbr display regionally uniform geochemical characteristics. The trace-element pattern is duplicated in all the analyses, independently of the silica content of the rocks, in accordance with their likely cogenetic origin. The compositional spectrum of the gabbroic suite is attributed to variable degree of fractionation. The granitoid rocks of Unit P_{MM} ggn display significant variability in major- and trace-element compositions. They define a cluster in the metaluminous field with a spread over to peraluminous compositions, as well as a far-reaching trend across the within-plate to volcanic-arc granite fields on an Rb versus Y+Nb discrimination diagram. Given that the rocks appear to be closely related in time, their petrogenesis does not fit any simple model intimating a more complex setting where crustal and mantle interactions occur during magma genesis, differentiation and/or emplacement. Such instances commonly occur in complex settings such as in regions of attenuated continental lithosphere, and collision zones. In the absence of reliable age constraints, the alternative possibility that these rocks pertain to more than one plutonic suite cannot be ruled out.

¹ Regional Geology Section, Newfoundland Department of Mines and Energy

Late- to post-Grenvillian granitoid rocks of Units M_{LG} grn and M_{LG} sye are enriched in potassium, plotting above the high-K calc-alkaline and shoshonitic divide in K_2O -SiO₂ space. This peculiar signature can be attributed to K-feldspar fractionation and accumulation in the rock samples, and therefore it does not directly reflect the composition of the parent magma. Most samples cluster in the within-plate granite field on an Rb vs. Nb+Y granite tectonic discrimination diagram, with a few samples in the adjacent volcanic-arc and one in the syn-collision granite fields. The extended trace-element pattern of lateto post-Grenvillian granitoid samples share similarities with those of other granitoid suites from both volcanic-arc and within-plate settings. These patterns are all characterized by a general decrease from Rb to Yb, and by marked enrichments in K, Rb, Th, Ce and Sr, which reflect the importance of crustal involvement in the magma generation. In consideration of the timing of this plutonism relative to peak-Grenvillian regional metamorphism, of the absence of evidence for coeval mafic magmatism, and of the fact that a number of samples plot outside the within-plate granite field, a more complex emplacement regime may be considered e.g., post-collision or far-field subduction-related.

INTRODUCTION AND REGIONAL GEOLOGICAL SETTING


The Lac Brûlé region (NTS map area 13D) of southern Labrador is located in the northeastern Grenville Province and straddles the boundary between the Exterior Thrust Belt and Interior Magmatic Belt (Figure 1; see Gower et al., 1991). It includes, from north to south, parts of the Wilson Lake terrane (WLT), the southwest extent of the Mealy Mountains terrane (MMT), and the northern fringe of the Mecatina terrane (MET). These Grenvillian structurally stacked terranes consist primarily of late Paleoproterozoic (Wilson Lake and Mealy Mountains terranes) and Mesoproterozoic (Mecatina terrane) crust. The geology and field relationships of the different plutonic rock suites, which underlie most of the region, have recently been described by James and Nadeau (2000a, b) and James et al (this volume). Preliminary U-Pb geochronology data are reported by James et al. (2001) and James et al. (this volume). The focus of this complementary note is placed on the whole-rock, major- and trace-element geochemical results obtained from a set of seventy representative rock samples collected during the summers of 2000 and 2001. Readers will benefit from assessing this data in view of the more detailed descriptions of the lithological attributes and field relationships provided in James and Nadeau (op. cit.).

The northeastern part of the region (NTS map area 13D/15 and D/16) (Figure 2), part of the WLT, is dominated by high-grade, pelitic and semipelitic metasedimentary gneisses and related diatexite having protolith depositional ages predating ca. 1720 Ma (i.e., pre-Labradorian Orogeny). These are intruded by variably deformed and recrystallized gabbro and granitoid rock bodies provisionally assigned a middle Labradorian age on the basis of overprinting region-al metamorphic relationships. Accordingly, these granitoid rocks appear to be closely related in time to high-grade metamorphism and attendant deformation (ca. 1640 Ma; Corrigan *et al.*, 1997). Farther south, most of the study area comprises the southwestern extent of the MMT (Figure 2) (*see* Gower and Owen, 1984; James and Nadeau, 2001, *this volume*). This terrane is underlain mainly by late Paleopro-

terozoic (Labradorian) plutonic rocks of the Mealy Mountains intrusive suite (MMIS) (see Emslie, 1976; Emslie and Hunt, 1990), minor Paleoproterozoic pre-Labradorian crust, and crosscutting Pinwarian (1510 to 1450 Ma) and late- to post-Grenvillian granitoid intrusions (Gower, 1996; James et al., 2001, this volume). The MMT and the study area are flanked on the southwest by the Atikonak River anorthosite-mangerite-charnockite-granite (AMCG) complex emplaced ca. 1.13 Ga (Emslie and Hunt, 1990). In contrast, the MET, which extends to the southeastern fringe of the study area (in NTS map 13C/4, 13 D/1 and D/2), is underlain primarily by early Mesoproterozoic, variably foliated and commonly porphyritic, granite and quartz monzonite that are intruded by a few small gabbroic plugs. These rocks intrude metasedimentary rocks, including quartzite and pelitic gneiss, provisionally correlated with the early Mesoproterozoic Wakeham Supergroup. These metasedimentary gneisses are sporadically distributed in the northern Mecatina terrane, outcropping at a sole locality along the southern limit of the study area (NTS map 13D/1). The MET, like the MMT, is intruded by plutons consisting of mostly massive, medium- to coarse-grained granite and Kfeldspar porphyritic granite with subordinate quartz monzonite, monzonite and syenite of late- to post-Grenvillian age.

SAMPLING AND ANALYTICAL METHODS

Seventy samples, representative of all major plutonic lithological units (Figure 2), were selected for major- and trace-element analysis on the basis of their mesoscopic textural homogeneity and their representativeness of the outcrop area. None of the samples show field evidence of metamorphic remobilization (e.g., migmatization), fracture related alteration, or weathering. Textures of the rock samples vary from massive, having complete preservation of igneous texture and mineralogy, to metamorphically recrystallized and foliated. Most gabbroic samples are medium to coarse grained, whereas granitic samples vary from coarse grained to K-feldspar porphyritic. With a few exceptions, each sample consisted of over two kilograms of fresh rock.

Major elements, transition metals (Sc, V, Cr, Co, Ni), and Cu, Zn, Sr and Ba were determined by Inductively Coupled Plasma - Atomic Emission Spectrometry (ICP-AES). Rare-earth-elements (REE), Pb, Y, Hf, Zr, Rb, Ta, and Th were analyzed by Inductively Coupled Plasma–Mass Spectrometry (ICP–MS). Detection limits are given in Tables 1 and 2. Samples were low in volatiles with mean H_2O+CO_2 of 0.43 wt.%, and most totals between 98.5 to 100.3 wt.% (mean = 99.11 wt.%). Norms (CIPW) have been calculated volatile-free to 100% (Table 3). Total iron has been expressed as FeO* using the conversion factor of Irvine and Baragar (1971). Analyses were performed at the geochemistry laboratory of the Quebec Geoscience Centre.

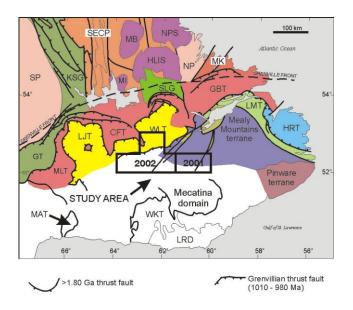


Figure 2. Location of the Lac Brûlé (this study) and Minipi Lake (Nadeau and James, 2001) regions in relation to the tectonic and major lithotectonic divisions of northeastern Laurentia (modified from Wardle et al., 1997). Grenville Province: HRT - Hawke River terrane, LMT - Lake Melville terrane, GBT - Groswater Bay terrane, WLT - Wilson Lake terrane, CFT - Churchill Falls terrane, LJT - Lac Joseph terrane, MLT - Molson Lake terrane, GT - Gagnon terrane, MAT - Matamec terrane, WKT - Wakeham terrane, LRD -La Romaine terrane. Archean divisions: SP - Superior Province, NP - Nain Province (Hopedale Block). Archean and Paleoproterozoic divisions: MK - Makkovik Province, SECP - Southeastern Churchill Province (Core Zone), KSG - Kaniapiskau Supergroup (2.25 to 1.86 Ga). Mesoproterozoic units: NPS - Nain Plutonic Suite, HLIS - Harp Lake intrusive suite, MB - Mistastin batholith, MI - Michikamau Intrusion, SLG - Seal Lake Group.

MAJOR PLUTONIC SUITES

WILSON LAKE TERRANE

In the study area, the WLT consists primarily of upper amphibolite to granulite-facies, pelitic and semipelitic metasedimentary gneisses, which host extensive bodies of diatexite, mapped as Unit PwL dxt (Figure 2) (see James and Nadeau, 2001). Repeated field observations circumstantiate that the metasedimentary gneisses are gradational, at all scales, into diatexites, which consist of massive to variably foliated, medium- to coarse-grained, equigranular to subporphyritic plutonic rocks of granitic to quartz monzonitic compositions. The diatexite contains abundant biotite, commonly up to 15 percent modal, and widespread sillimanite. In spite of the aluminous character of the rocks, neither garnet nor cordierite have been recognized in the field. Diatexite bodies outcropping in the study area also appear to lack other hallmarks of S-type granite, which characteristically occur as shallow-seated plutons with well-developed contact aureoles (e.g., White and Chappell, 1988). Nevertheless, the field relationships advocate that the petrogenesis of P_{WL} dxt diatexite involved nearly complete in situ melting of surrounding pelitic and semipelitic sedimentary precursors.

Metasedimentary gneiss and diatexite of the WLT are intruded by bodies of metamorphosed, foliated to gneissic, lithologically varied granitoid rocks collectively mapped as Unit P_{wL} grn. This extensive unit is made up of a number of plutons consisting mainly of medium- to coarse-grained, Kfeldspar porphyritic, biotite- and hornblende-bearing granitic orthogneisses, along with lesser monzonitic rocks, locally porphyritic, and containing sporadic clinopyroxene. The WLT is also punctuated by small bodies of variably deformed and metamorphosed, massive to foliated and locally gneissic, gabbro, gabbronorite and minor clinopyroxenite embodied as Unit PwL grb. These gabbroic rocks are variable to some degree in texture and modal composition, and may contain accessory biotite and quartz. The granitic and gabbroic rocks making up Units PwL grn and PWL gbr are provisionally assigned to middle Labradorian (ca. 1.65 Ga), in view of their crosscutting igneous and overprinting metamorphic relationships, ascribed to the regional high-grade metamorphic culmination (ca. 1640 Ma; Corrigan et al., 1997). The geochemical results for rock samples from the WLT presented and discussed in this study comprise 3 analyses of diatexite (Unit P_{WL} dxt), 6 of granitoid orthogneiss (Unit P_{WL} grn), and 3 of gabbroic rocks (Unit P_{WL} grb) (Tables 1, 2 and 3).

MEALY MOUNTAINS INTRUSIVE SUITE

The Mealy Mountains intrusive suite (MMIS) is generally described as consisting of an older group of anorthositic, leucogabbroic and leucotroctolitic rocks, and a younger group of pyroxene-bearing monzonite and quartz-monzonite. It constitutes one of the most extensive intrusive suites of the Grenville Province in Labrador, underlying most of the region extending from the highlands southeast of Lake Melville, through the Lake Minipi and Lac Brûlé regions, over more than 350 km in the southwestern direction (cf. Emslie, 1976; Gower and van Nostrand, 1996; Nunn and van Nostrand, 1996; Gower, 1999; James and Lawlor, 1999, James and Nadeau 2000a, 2001). In the Lac Brûlé region (Figure 2), the MMIS includes two regionally extensive rock units consisting mainly of gabbro and gabbronorite (Unit P_{MM} gbr), and of pyroxene-bearing monzodiorite to monzonite (Unit P_{MM} ggn).

MMIS – Gabbroic Suite (P_{MM} gbr)

As described by James and Nadeau (2000a), MMIS gabbro and gabbronorite (Unit P_{MM} gbr) (Figure 2), vary considerably in composition, textures, structures, and aero-magnetic signatures, possibly indicating that the unit consists of intrusions of different ages. The unit also contains subordinate amounts of leucogabbro, leucogabbronorite, anorthosite, pyroxenite, diorite and very minor amounts of monzogabbro, monzogabbronorite and amphibolite. Rocks consist of varied amounts of clinopyroxene, orthopyroxene and plagioclase; biotite is a common accessory mineral. The rocks are texturally varied, from massive and unrecrystal-lized, containing preserved igneous mineral textures, to foliated and pervasively recrystallized. Trace amounts to several percent of pyrite are common.

MMIS – Granitoid Orthogneiss Suite (P_{MM} ggn)

James and Nadeau (2000a, 2001) describe the MMIS pyroxene-bearing monzodiorite and monzonite unit (Unit P_{MM} ggn) as a compositionnally and texturally varied unit including monzodiorite, quartz monzodiorite, diorite, granodiorite, quartz monzonite and granite. The unit also includes minor amounts of gabbroic rocks that are correlated with Unit P_{MM} gbr. Rocks are texturally varied, even at the outcrop scale, from massive with complete preservation of igneous textures, to recrystallized and foliated; gneissic varieties also occur. The unit probably consists of distinct intrusions of relatively uniform composition, although it is so poorly exposed that it cannot be subdivided at the scale of mapping. Clinopyroxene, hornblende, biotite and accessory magnetite are common in these rocks. The hornblende-biotite granodiorite orthogneiss (DJ-00-9006a) of Site 22 (Figure 2) has yielded an igneous emplacement age of 1653 ± 5 Ma based on U–Pb dating of zircon (James *et al., this volume*). This age is comparable to the 1659 ± 5 Ma obtained for the igneous crystallization of gneissic monzodiorite from the Minipi Lake region (NTS map area 13C/10) (James *et al.,* 2000).

LATE- TO POST-GRENVILLIAN GRANITOID SUITE (M_{LG} grn, and M_{LG} sye)

The MMT and MET are intruded by plutons of clinopyroxene-bearing syenite, biotite granite, and K-feldspar porphyritic granite defined as Units M_{LG} sye, M_{LG} grn and M_{LG} kpg, respectively. Rocks in the three units are mainly undeformed and massive, although weakly recrystallized and foliated rocks also occur. The emplacement age of an MLG sye clinopyroxene-bearing syenite from the Lac Arvert map area, based on U-Pb dating of zircon, is estimated to be 982 ± 2 Ma (James et al., this volume). Based on composition and age, the MLG sye plutons correlate with similar intrusions of an early posttectonic AMCG - mafic magmatic suite defined by Gower et al. (2001). The intrusions of granite and K-feldspar porphyritic granite are interpreted to be slightly younger than the syenite intrusions, and form part of a suite of 966 to 956 Ma granite plutons that are widespread in the northeastern Grenville Province (see Gower, 1996). An MLG grn intrusion ocurring in the western part of the Fourmont Lake area has an emplacement age of 964 ± 3 Ma, determined by U-Pb geochronology of zircon (James et al., 2001).

RESULTS AND DISCUSSION

It should be emphasized that because of the nature of the field work, accomplished by making helicopter landings on isolated outcrops, contact relationships between the various rock types were infrequently observed, the size and extent of individual plutons could not be delineated, and detailed variations within single plutons cannot be addressed. Nevertheless, individual rock bodies appear to be fairly continuous and extensive at the regional scale, allowing adequate delineation of first-order petrochemical variations. It is also emphasized that most gabbroic to monzodioritic rocks exhibit medium- and coarse-grained igneous or relict igneous textures, locally with a distinct igneous mineral foliation and, more rarely, pronounced compositional layering. Granitic rocks are generally coarse-grained, equigranular or K- feldspar porphyritic, and locally retain a subtle prismatic mineral foliation possibly of igneous origin. These primary igneous textural attributes indicate that some crystal separation and settling occurred during crystallization. Therefore, the geochemistry of the rocks cannot be directly discussed in terms of models applied to lava, considerably limiting the petrogenetic interpretation. Normative mineral mode (CIPW norm; Table 3) and composition dia-

Table 1. Major-element co	ontents of intrusive roo	ck samples from the l	Lac Brûlé region
---------------------------	--------------------------	-----------------------	------------------

		Iuo	le 1. <i>Majo</i>	n etemer	n comei	us oj in	Tusive I	oek sam	pies ji oi	n inc Lu	e brute	region			
Site	Sample	UTM	Element Method		TiO2 ICP-AES	Al2O3 ICP-AES		MnO ICP-AES	MgO ICP-AES		Na2O ICP-AES	K2O ICP-AES	P2O5 ICP-AES		Total
		Coordinate	Unit Limit	% 0.010	% 0.0005	% 0.015	% 0.00	% 0.0005	% 0.0005	% 0.0015	% 0.005	% 0.010	% 0.025	%	%
Late	- to post-Grenvi	llian granito	oid suite: M _T	ogrn and M	fr esve										
62	NK-01-3032	492182	6e+06	60.50	1.23	17.30	5.11	0.12	1.25	2.56	4.46	6.36	0.44	0.29	100.30
41	NK-01-3002B	506533	6e+06	62.20	1.22	15.10	6.14	0.12	1.40	3.03	3.68	5.56	0.57	0.55	100.00
85	DJ-00-7049	583279	6e+06	62.47	0.90	16.67	3.43	0.09	0.80	1.22	4.61	6.94	0.15	0.48	98.00
47	NK-00-8127	561750	6e+06	62.75	1.15	14.71	5.77	0.11	1.44	2.61	3.52	4.83	0.67	0.57	98.30
48	NK-01-3005	535411	6e+06	65.20	0.78	15.30	4.07	0.08	0.86	2.72	3.68	5.28	0.40	0.23	99.10
50	NK-00-8132	561290	6e+06	65.36	0.88	14.68	4.83	0.07	1.28	2.30	3.41	5.37	0.40	0.70	99.58
42	NK-01-3007	523900	6e+06	66.10	0.72	14.10	5.19	0.12	1.23	2.65	3.78	4.10	0.22	0.23	98.70
79	NK-00-8135	558792	6e+06	66.55	0.77	13.96	4.24	0.08	0.89	1.90	3.40	5.37	0.30	0.62	98.37
45	NK-00-8149	558350	6e+06	66.92	0.76	14.46	4.72	0.08	1.08	2.01	3.37	5.00	0.43	0.32	99.49
23	NK-00-8030	535732	6e+06	68.43	0.78	14.44	4.08	0.06	1.08	1.50	2.94	5.91	0.30	0.75	100.49
46	NK-00-8126	567967	6e+06	68.45	0.50	14.24	3.62	0.07	0.73	1.18	3.16	5.99	0.19	0.69	98.97
17	NK-00-8059	522615	6e+06	69.42	0.44	14.41	2.87	0.03	0.64	1.49	3.29	5.39	0.22	0.52	98.87
44	NK-00-8140	548500	6e+06	71.23	0.27	14.49	2.03	0.03	0.81	0.79	2.93	6.29	0.11	0.92	100.03
24	NK-00-8028	541183	6e+06	72.45	0.25	13.83	1.93	0.04	0.67	0.78	3.16	5.62	0.08	0.65	99.57
84	DJ-00-7003	600476	6e+06	72.71	0.23	12.80	1.58	0.05	0.28	0.67	3.38	5.49	0.03	0.41	97.65
	ly Mountains int amafic	trusive suite	: gabbroic sı	iite, PMMgr	b										
38		481300	6e+06	41.00	1.25	18.30	14.40	0.13	6.69	13.60	1.77	0.32	0.01	0.17	98.10
38	NK-01-3035A	481300	6e+06	42.70	0.17	7.05	14.40	0.22	23.90	8.44	0.48	0.08	0.01	1.52	99.20
56	NK-01-3047	470357	6e+06	42.80	0.60	12.60	14.90	0.19	14.60	13.30	0.74	0.08	0.03	0.01	100.20
30	NK-01-3031	490602	6e+06	43.20	0.30	10.40	12.90	0.17	18.90	10.70	0.81	0.18	0.05	0.57	98.70
61	NK-01-3027	482306	6e+06	43.20	0.77	13.30	15.70	0.19	11.40	11.60	1.53	0.58	0.17	0.86	99.50
40	NK-01-3021	473685	6e+06	44.60	2.72	15.30	15.70	0.20	5.43	7.58	3.47	1.05	0.84	0.34	97.60
37	DJ-01-1123	480350	6e+06	45.00	1.01	14.50	13.00	0.16	9.08	16.50	1.27	0.25	0.03	0.04	101.00
57	NK-01-3022	474700	6e+06	45.70	2.84	16.00	15.80	0.20	6.56	8.19	3.45	0.78	0.83	-0.02	100.80
Mafi	ic														
59	NK-01-3041B	486350	6e+06	46.20	1.47	15.80	14.00	0.21	7.78	10.20	2.39	0.58	0.12	0.66	99.50
52	NK-01-3062	463578	6e+06	46.30	1.94	16.20	15.00	0.20	7.65	9.73	2.75	0.47	0.23	-0.71	99.90
35	NK-01-3011	496096	6e+06	46.40	1.95	15.30	17.20	0.21	6.88	7.86	2.66	1.13	0.35	-0.53	99.70
31	NK-01-3014	493160	6e+06	46.40	0.69	9.88	14.70	0.26	14.00	10.60	1.68	0.61	0.12	-0.09	99.00
81	DJ-00-7100	585081	6e+06	46.51	1.89	16.38	14.06	0.19	7.07	8.29	3.00	0.79	0.26	1.09	99.66
27	NK-01-3010	499150	6e+06	47.40	0.92	17.60	14.70	0.15	4.18	7.97	3.64	1.92	0.79	1.17	97.10
32	NK-01-3037	482805	6e+06	47.90	1.89	16.00	14.20	0.19	7.29	8.85	2.69	0.83	0.21	-0.26	100.10
36	NK-01-3020	473645	6e+06	47.90	0.72	21.50	9.64	0.12	3.51	10.60	3.60	0.70	0.83	0.27	99.80
51	NK-01-3069	459679	6e+06	48.00	0.95	14.90	12.10	0.22	7.31	10.50	3.03	0.63	0.68	-0.02	98.70
26	NK-01-3061	462428	6e+06	48.20	0.48	21.50	7.46	0.09	3.91	11.30	3.61	0.61	0.93	0.33	98.80
34	NK-01-3036	482392	6e+06	48.50	0.90	10.10	14.80	0.29	11.70	9.58	1.75	1.19	0.24	-0.18	99.10
59	NK-01-3041A	486350	6e+06	48.60	1.43	12.90	13.90	0.21	8.13	10.50	2.29	0.51	0.15	0.19	99.00
28	NK-01-3044	482549	6e+06	48.70	1.09	19.90	9.05	0.13	3.80	9.08	3.84	1.59	0.75	0.54	99.00
29 Inter	NK-01-3030 rmediate	492093	6e+06	51.90	0.69	14.10	10.90	0.21	8.07	8.88	3.01	1.53	0.33	0.14	100.00
63	NK-01-3054	467911	6e+06	54.00	0.65	18.50	6.40	0.11	2.92	6.61	4.13	3.19	0.67	0.51	98.20
58	NK-01-3048	471061	6e+06	54.20	0.69	17.20	8.10	0.11	4.66	7.62	3.83	2.38	0.50	0.18	98.20 99.80
38 39	NK-01-3048 NK-01-3042	479598	6e+06	54.20 54.70	0.69	17.20	7.73	0.15	4.00 4.95	7.82	3.85 3.90	2.38	0.30	-0.04	99.80 99.50
33	NK-01-3039	487612	6e+06	56.60	0.82	18.10	6.72	0.13	2.36	5.34	4.65	3.93	0.55	-0.04	99.60 99.60
Meal	ly Mountains int	trusive suite	: granitoid o	rthogneiss s	uite: P _{MM}	ggn									
Inter	rmediate														
81	NK-00-8134	557400	6e+06	52.46	0.68	17.51	8.81	0.18	5.18	8.00	4.44	1.57	0.46	0.70	100.18
22	DJ-00-9006A	560136	6e+06	58.98	0.65	16.39	6.85	0.14	3.04	4.78	3.72	4.08	0.35	0.63	99.85
19		554682	6e+06	62.91	0.93	15.43	6.81	0.11	2.16	3.32	2.78	4.09	0.25	0.23	99.20
76	NK-00-8145	553210	6e+06	63.00	0.94	13.73	6.45	0.14	1.52	3.08	3.65	3.58	0.37	0.31	97.08
80	NK-00-8144	554100	6e+06	63.77	1.14	14.57	6.33	0.11	1.49	2.68	3.44	5.38	0.49	0.58	100.50
70	NK-01-3051	481760	6e+06	64.70	0.58	15.70	4.70	0.11	1.64	3.61	4.04	3.03	0.25	0.53	99.20
20	NK-00-8025	552990	6e+06	65.99	0.89	14.57	5.96	0.09	0.98	2.90	3.59	4.45	0.30	0.16	100.14
43		528262	6e+06	66.00	0.70	15.20	3.37	0.06	0.66	1.63	3.99	5.98	0.18	0.04	98.10
Felsi 67	c NK-01-3034	493700	6e+06	66.10	0.67	14.20	4.39	0.10	0.58	1.72	3.67	5.70	0.15	0.17	97.90
75	NK-00-8151	550071	6e+06	66.48	0.83	13.88	5.37	0.10	1.20	2.65	3.88	3.81	0.13	0.17	97.90 99.07
73	NK-00-8151 NK-00-8157	538360	6e+06	66.68	0.85	15.88	3.64	0.13	1.20	2.63	3.88 4.12	4.27	0.51	0.28	99.07 98.75
83	NK-00-8137	571500	6e+06	66.90	0.39	13.33	4.11	0.09	0.88	2.33	3.36	5.52	0.13	0.27	98.73 99.28
49	NK-00-8147	543931	6e+06	67.36	0.78	14.55	3.60	0.08	0.81	1.79	3.43	5.97	0.32	0.32	99.28 99.11
21	NK-00-8029	543825	6e+06	68.86	0.87	14.60	4.97	0.10	1.36	2.51	2.63	4.19	0.18	0.56	100.98
18	NK-00-8105B	502442	6e+06	69.19	0.39	14.65	2.47	0.03	0.63	1.33	3.12	6.04	0.12	0.71	98.85
68	NK-01-3050	489881	6e+06	69.30	0.24	14.80	2.27	0.07	0.63	2.28	4.43	3.30	0.12	0.29	98.00
64	NK-01-3049	487488	6e+06	70.40	0.11	15.00	1.17	0.03	0.30	1.79	4.41	3.94	0.04	0.20	97.80
										/					

						Table	1. Coll	innucu							
Site	Sample	UTM Coordinate	Element Method Unit Limit	SiO2 ICP-AES % 0.010	TiO2 ICP-AES % 0.0005	A12O3 ICP-AES % 0.015	Fe2O3T ICP-AES % 0.00	MnO ICP-AES % 0.0005	MgO ICP-AES % 0.0005	CaO ICP-AES % 0.0015	Na2O ICP-AES % 0.005	K2O ICP-AES % 0.010	P2O5 ICP-AES % 0.025	LOI %	Total %
Wils	on Lake terran	e granitoid su	iite: P _{WL} grı	1											
12	NK-00-8024	543453	6e+06	56.36	1.31	17.95	9.23	0.15	2.83	5.02	3.55	2.95	0.39	0.25	100.26
11	NK-00-8023	546760	6e+06	57.73	1.28	16.95	8.93	0.15	2.71	4.40	3.35	3.13	0.43	0.63	99.91
9	NK-00-8031	543169	6e+06	61.55	0.89	15.75	7.02	0.12	2.13	3.58	3.21	3.30	0.18	0.37	98.26
3	NK-00-8044	532442	6e+06	63.00	0.61	16.49	6.44	0.08	2.28	2.34	3.06	3.34	0.10	0.36	98.31
14	NK-00-8036	539254	6e+06	66.77	0.68	15.02	5.06	0.07	1.44	2.44	2.87	4.29	0.08	0.23	99.08
1	NK-00-8120	508642	6e+06	67.21	0.64	14.91	5.15	0.08	1.64	2.43	2.97	3.68	0.08	0.42	99.37
Wils	on Lake terran	e diatexite: F	WL dxt												
2	NK-00-8080	524625	6e+06	60.70	0.76	17.10	7.62	0.11	3.32	2.59	3.27	2.43	0.08	0.34	98.50
4	NK-00-8084	527366	6e+06	64.52	0.68	15.76	5.81	0.13	2.34	3.63	3.08	2.69	0.06	0.14	98.95
5	NK-00-8066	524021	6e+06	61.98	0.71	17.80	6.42	0.11	2.04	1.49	2.61	3.67	0.09	0.33	97.40
Wils	on Lake terran	e gabbro and	gabbronori	te: P _{WL} grb											
16	NK-00-8087	512031	6e+06	46.10	1.33	15.94	12.40	0.17	8.55	10.53	2.14	0.26	0.11	-0.05	97.57
6	NK-00-8102	511354	6e+06	46.81	3.80	11.92	18.50	0.27	5.03	9.14	2.52	0.94	0.38	-0.36	99.19
15	NK-00-8063	523336	6e+06	49.28	0.82	13.84	10.07	0.18	10.96	7.67	2.02	1.33	0.21	1.94	98.48

 Table 1. Continued

grams are used to characterize the rocks and to emphasize their similarities and differences.

WILSON LAKE TERRANE INTRUSIVE SUITES

Granitoid orthogneiss samples from the WLT (Unit PWL grn) have major-element compositions typical of granite (s.s.) and quartz monzonite, except for two samples of pronounced monzonitic affinity (Tables 1 and 3). The SiO₂ contents range between 56.36 to 67.21 wt.% (mean = 62.1 wt.%), K₂O between 2.95 and 4.29 wt.% (mean = 3.45 wt.%), $Na_2O + CaO$ between 8.57 and 5.31 wt.% (mean = 6.54 wt.%), and Al_2O_3 between 14.91 and 17.95 wt% (mean = 16.18 wt.%). They define an array extending across the boundary between the granite and quartz monzonite fields on a normative quartz-K-feldspar-plagioclase ternary diagram (Figure 3a) and have MgO + MnO + Fe_2O_3 (as total iron) ranging between 6.87 and 12.21 wt.% (mean = 9.25 wt.%), and contain 9.0% to 16.7% (mean = 13.3%) hypersthene in the norm. The samples have high K₂O / Na₂O ratios (mean = 1.1), plot in the high-K calc-alkaline field (Figure 3b), are enriched in aluminum with elevated Al_2O_3 / $(Na_2O + K_2O)$ (mean = 2.4), and contain in average 1.6% (up to 3.9%) corundum in the norm. Accordingly, the rocks are slightly to moderately peraluminous, except for one sample crossing the metaluminous devide (Figure 3c).

In spite of their marked aluminum enrichment and peraluminous signature, granitoid rocks of the WLT display extended trace-element patterns characterized by enrichments in K_2O , Rb, Ba, Th, Ce and Sm relative to Ta, Nb, Hf, Y, and Yb that are typical of volcanic-arc granite (Figure 4a). Indeed, their mean trace-element pattern displays very close similarities with the pattern of the Chilean volcanicarc granitoid rocks (Figure 4c). The mean Wilson Lake granitoid pattern differs a little, however, from that of the volcanic-arc granite reference line in showing i) a less-pronounced fractionation slope from the large ion lithophile elements (Rb and Th) to the high-field strength element (Nb, Hf and Zr) and the rare-earth-elements, ii) an enrichment in Zr relative to Hf and Sm, and iii) no negative Ba spike (Figure 4a and c). These differences in pattern can be attributed to the presence of accessory phases (e.g., zircon and allanite) in the rocks sampled, and to their porphyritic texture which is indicative of K-feldspar accumulation.

In spite of these differences, the PWL grn granitoid plot with typical I-type Andean-Cordilleran granites in the volcanic-arc field on the Rb versus Y+Nb tectonic discrimination diagram of Pearce et al. (1984) (Figure 3d). However, the PWL grn granitoid samples display several features that set them apart from typical granitoid rocks of this group. First, they are lithologically much less diverse than volcanic-arc granitoid suite of Andean-Cordilleran setting. Indeed, P_{WL} grn samples appear to define a trend from the quartz monzonite to the granite (s.s.) fields on Streckeisen (1973) classification triangle (Figure 3a) that is quite distinct from the quartz diorite-tonalite-granodiorite-granite trend typical of Andean-Cordilleran suites. Second, it is emphasized that the PwL grn granitoid are mildly to moderately peraluminous (mean Al_2O_3 / (CaO + Na₂O + K₂O) = 1.61) and present elevated K₂O/Na2O ratios (0.83 to 1.49). Accordingly, PWL grn granitoid are corundum normative, in departure from granitoids of Andean-Cordilleran, suites which usually contain diopside in their norm. Such geochemical features are generally attributed to the assimilation by the magma of sedimentary precursor (e.g., Patino Douce, 1999). In this respect, it is striking and significant that samples from diatexite (Unit P_{WL} dxt) display extended traceelement patterns undistinguishable from those of P_{WL} grn

	ELEMENT Method	Cr ICP-AES	Ni ICP-AES	Co 5 ICP-AES	Cu S ICP-AES	Zn S ICP-AES	Pb ICP-MS	Sc ICP-AES	V S ICP-AES	Rb S ICP-MS	Sr ICP-AES	Ba S ICP-AES	Nb ICP-MS	Zr ICP-MS	Y ICP-MS	Th ICP-MS
SITE	Unit Limit	ppm 10	ppm 37.5	ppm 15	ppm 15	ppm 37.5	ppm 0.005	ppm 1	ppm 10	ppm 0.003	ppm 0.5	ppm 1	ppm 0.020	ppm 0.010	ppm 0.020	ppm 0.002
Late- to	o post-Grenvillia	n granitoi	d suite: M	l _{LG} grn an	d M _{LG} sy	e										
62	NK-01-3032	32	-	-	-	133	35.2	9	37	72	777	4682	17.0	851	33	4.85
41	NK-01-3002B	84	-	-	-	127	32.4	9	55	133	708	2744	36.0	629	50	9.57
85	DJ-00-7049	70	-	-	-	73	37.2	11	21	81	163	1150	25.8	1395	48	11.80
47	NK-00-8127	103	-	-	41	113	36.0	7	61	221	431	1244	80.5	524	90 42	26.27
48 50	NK-01-3005 NK-00-8132	133 100	-	-	11 13	112 104	32.6 47.0	7 6	31 53	162 211	649 541	2331 1780	34.0 46.6	655 652	43 45	17.00 29.50
42	NK-01-3007	113	-	-	13	104 98	17.3	13	33 46	120	295	1533	40.0	278	43 57	29.30 6.56
79	NK-00-8135	97	-	-	-	91	36.6	8	24	139	372	2037	36.7	806	54	14.82
45	NK-00-8149	95	208	-	74	94	41.4	6	47	271	446	1327	57.6	623	64	28.12
23	NK-00-8030	120	-	-	21	93	47.0	6	33	210	317	1397	42.1	794	29	27.01
46	NK-00-8126	118	16	-	33	86	53.1	6	30	273	248	989	39.5	649	48	121.58
17	NK-00-8059	161	12	-	215	57	54.4	3	33	187	299	969	12.0	508	17	130.82
44	NK-00-8140	97	-	-	57	51	47.5	4	28	262	266	972	23.2	233	20	52.31
24 84	NK-00-8028 DJ-00-7003	139 133	12 -	-	7 17	55 33	41.1 44.4	4 2	15 -	266 234	378 88	1007 323	20.9 40.7	209 260	9 40	41.06 27.60
Mealy I	Mountains intru	sive suite:	gabbroic	suite, PM	⊿grb											
Ultram	afic		-		-											
38	NK-01-3035B	14	53	45	1168	94	2.4	43	622	2	1536	229	0.6	11	11	-
38	NK-01-3035A	1037	387	109	24	106	-	33	75	1	449	79 122	0.1	4	4	-
56	NK-01-3047	426	109	73	191	102	0.6	56 29	298	1	895	122	0.3	14	7	-
30 61	NK-01-3031 NK-01-3027	2498 168	609 81	73 63	96 70	162 114	- 1.4	38 39	167 408	2 12	479 1148	137 380	0.2 1.2	9 26	7 11	0.08 0.50
40	NK-01-3027	36	66	49	53	131	2.7	23	408 254	9	765	1112	5.8	20 157	35	0.30
37	DJ-01-1123	42	173	43	93	91	0.7	61	528	2	1087	152	0.4	13	13	0.08
57	NK-01-3022	50	102	53	38	118	0.8	21	273	6	864	1020	5.3	141	29	0.37
Mafic																
59	NK-01-3041B	150	128	59	84	123	5.4	36	260	24	211	99	6.1	81	23	0.52
52	NK-01-3062	123	125	59	117	126	0.5	31	230	9	277	149	8.7	113	28	0.80
35	NK-01-3011	24	116	64	92	159	3.8	25	207	23	328	541	4.6	86	26	1.72
31	NK-01-3014	513	157	64	36	123	1.5	48	290	12	716	457	1.4	38	17	0.79
81 27	DJ-00-7100 NK-01-3010	119 18	100	53 23	71 389	100 109	11.3 9.8	25 22	173 234	12 45	298 1489	279 1388	6.4 1.7	105 27	24 21	0.63 0.57
32	NK-01-3037	201	- 134	23 53	138	130	9.8 4.3	22 29	234	22	278	243	10.0	150	29	2.23
36	NK-01-3020	201	-	24	102	86	2.4	15	213	9	2409	2 4 5 974	1.2	9	15	0.27
51	NK-01-3069	152	40	35	124	135	4.6	36	285	6	1581	941	0.8	20	21	0.28
26	NK-01-3061	40	27	25	608	68	4.1	13	230	9	2325	702	0.9	11	9	0.66
34	NK-01-3036	420	123	53	16	151	3.4	45	315	18	695	805	2.6	62	25	1.03
59	NK-01-3041A	249	94	54	101	116	2.2	47	286	14	199	154	7.9	101	27	1.18
28	NK-01-3044	30	-	21	150	100	4.7	20	234	32	2003	2121	2.8	22	17	0.46
29	NK-01-3030	280	81	39	93	115	6.5	33	204	26	888	1154	2.8	50	20	1.30
Interme 63	NK-01-3054	71	24	14	259	77	9.7	13	194	65	1612	2654	2.2	34	16	1.27
58	NK-01-3048	126	24 39	24	135	90	6.5	13 22	194	35	1120	1735	3.2	36	19	1.27
39	NK-01-3042	169	40	22	104	89	8.1	21	182	31	1211	1652	2.1	42	18	0.69
33	NK-01-3039	46	-	11	118	87	11.3	15	144	60	972	1978	7.9	123	23	0.51
Mealy I	Mountains intrus	sive suite:	granitoid	orthognei	ss suite: I	MMggn										
Interm																
81	NK-00-8134	89	63	28	32	97 72	19.0	23	204	62	976 622	309	7.6	126	22	2.76
22	DJ-00-9006A	41	- 26	18	82	73 82	24.8	17	141	140	633 205	811	17.6	211	26 25	13.48
19 76	NK-00-8017A NK-00-8145	124 58	26 -	16 -	106 14	83 103	25.0 23.1	15 16	100 72	117 65	295 360	1276 1880	12.4 13.1	432 357	25 46	7.06 2.20
80	NK-00-8145	124	- 77	-	-	103	37.8	10	43	120	500 688	3295	43.1	946	40 59	11.32
70	NK-01-3051	68	-	-	13	78	10.2	12	43 70	60	662	1477	8.5	239	20	1.79
20	NK-00-8025	116	-	-	26	99	23.3	17	49	102	190	1909	35.9	718	47	0.65
43	NK-01-3004A	121	-	-	6	85	34.1	4	20	142	425	1861	37.0	574	75	11.00
Felsic																
67	NK-01-3034	70	-	-	19	75	19.6	11	9	93	165	2639	12.0	645	19	0.62
75	NK-00-8151	66	-	-	-	93 51	25.6	14	48	77	277	1562	13.4	337	41	2.49
73	NK-00-8157	85	-	-	-	51	26.6	7	53 20	110	529 465	1216	9.8 53.0	194 756	20	11.36
83 49	NK-00-8002 NK-00-8147	111 82	-	-	24 9	101 74	40.1 49.9	6 6	39 28	240 212	465 390	1793 1561	53.0 54.1	756 590	55 69	33.74 20.27
21	NK-00-8147 NK-00-8029	82 121	- 16	-	-	74 64	49.9 29.2	6 13	28 66	212 148	390 265	1339	54.1 17.4	390 384	69 36	20.27 7.04
18	NK-00-8029 NK-00-8105B	90	-	-	- 53	64 46	29.2 42.7	3	27	235	265 365	1339	17.4	384 386	11	7.04 51.65
			-	-	18	55	16.3	3	14	76	699	1755	6.1	139	9	5.88
68	NK-01-3050	134	-	-	10			5								

Table 2. Transition metal and trace-element contents of intrusive rock samples from the Lac Brûlé Minipi region

SITE Method	ELEMENT ICP-MS	La ICP-MS	Ce ICP-MS	Hf ICP-MS	Nd ICP-MS	Sm ICP-MS	Eu ICP-MS	Tb ICP-MS	Yb ICP-MS	Gd ICP-MS	Dy ICP-MS	Ho ICP-MS	Er ICP-MS	Tm ICP-MS	Ta ICP-MS	Lu
	Unit Limit	ppm 0.002	ppm 0.002	ppm 0.002	ppm 0.002	ppm 0.002	ppm 0.001	ppm 0.001	ppm 0.002	ppm 0.005	ppm 0.002	ppm 0.0001	ppm 0.002	ppm 0.0005	ppm 0.0005	ppm 0.000
						0.002	0.001	0.001	0.002	0.005	0.002	0.0001	0.002	0.0005	0.0005	0.000
	post-Grenvillian															
52	NK-01-3032	123.0	259	15.00	114	18.00	5.65	1.32	1.92	12.00	6.69	1.13	2.86	0.34	0.75	0.29
41	NK-01-3002B	127.0	272	15.00	115	18.00	3.94	1.61	3.76	13.00	9.12	1.65	4.46	0.60	1.89	0.57
85	DJ-00-7049	377.4	728	26.34	286	35.67	5.05	2.05	3.92	23.51	10.76	1.82	4.77	0.64	1.03	0.65
47 48	NK-00-8127 NK-01-3005	162.3 115.0	414 253	11.45 15.00	181 103	27.32 17.00	3.23 3.20	2.47 1.44	9.57 3.29	18.41 12.00	15.04 8.07	2.98 1.46	9.52 3.95	1.49 0.54	5.57 2.27	1.43 0.47
+0 50	NK-00-8132	142.2	323	13.00	103	17.00	2.86	1.44	3.29	12.00	8.50 8.50	1.40	4.31	0.54	2.58	0.47
42	NK-00-8132 NK-01-3007	53.0	525 113	6.64	55	10.00	2.80 1.99	1.47	5.08	9.42	8.30 9.04	1.90	5.57	0.82	0.70	0.37
79	NK-00-8135	106.6	267	17.79	115	19.22	3.71	1.79	4.52	14.34	10.50	1.91	5.37	0.75	1.72	0.69
45	NK-00-8149	143.4	318	13.19	116	18.97	2.37	1.31	6.36	12.39	9.67	1.93	6.09	0.97	3.68	0.99
23	NK-00-8030	125.7	273	14.96	99	14.99	2.42	1.11	1.72	10.04	5.74	0.96	2.46	0.31	1.56	0.25
46	NK-00-8126	245.6	524	15.58	185	26.18	2.23	1.81	3.91	16.67	9.99	1.76	4.85	0.66	1.65	0.58
17	NK-00-8059	85.6	181	10.53	63	8.72	1.62	0.58	1.08	5.22	3.11	0.55	1.48	0.19	0.49	0.16
44	NK-00-8140	92.0	220	6.29	80	13.02	1.49	0.89	1.28	8.19	4.52	0.71	1.76	0.22	1.19	0.20
24	NK-00-8028	38.8	79	5.16	32	5.10	1.08	0.34	0.80	3.27	1.68	0.29	0.81	0.12	1.00	0.14
84	DJ-00-7003	83.2	168	7.38	62	10.28	0.85	1.25	3.83	8.31	7.31	1.42	4.20	0.63	2.12	0.56
Mealy N	Iountains intrusi	ive suite: g	abbroic s	uite, P _{MM}	grb											
Ultrama		2.4	10	0.42	10	0.70	1.00	0.25	0.72	2.00		0.46	1.05	0.12	0.02	0.10
38	NK-01-3035B	3.6	10	0.43	10	2.79	1.20	0.37	0.73	2.88	2.22	0.40	1.05	0.13	0.03	0.10
38 56	NK-01-3035A NK-01-3047	1.6 3.8	4 10	0.15 0.54	4 8	0.96 2.00	0.44 0.75	0.12 0.25	0.30 0.56	0.94 1.88	0.77 1.50	0.15 0.28	0.38 0.76	0.05 0.10	- 0.02	0.04 0.08
30	NK-01-3047	2.5	6	0.34	8 5	2.00 1.24	0.48	0.23	0.50	1.88	1.30	0.28	0.70	0.10	0.02	0.08
50 61	NK-01-3027	2.5 8.5	19	0.33	3 14	3.13	0.48	0.21	0.37	2.85	2.10	0.20	1.05	0.10	0.01	0.08
40	NK-01-3021	22.0	53	3.79	35	7.64	2.65	1.01	2.70	7.66	6.33	1.20	3.40	0.45	0.39	0.41
37	DJ-01-1123	3.5	10	0.56	11	3.10	1.27	0.43	0.89	3.30	2.54	0.48	1.23	0.15	0.02	0.13
57	NK-01-3022	18.0	43	3.36	30	6.75	2.42	0.88	2.19	6.51	5.37	1.02	2.81	0.38	0.37	0.33
Mafic																
59	NK-01-3041B	6.2	15	2.17	11	3.14	1.18	0.62	2.20	3.84	4.15	0.86	2.49	0.35	0.42	0.32
52	NK-01-3062	9.6	24	3.03	16	4.25	1.58	0.76	2.61	5.11	5.05	1.03	2.84	0.41	0.67	0.38
35	NK-01-3011	13.0	29	2.26	17	4.14	1.57	0.66	2.22	4.62	4.32	0.87	2.50	0.35	0.29	0.34
31	NK-01-3014	9.8	24	1.11	17	4.13	1.16	0.50	1.38	3.81	3.04	0.59	1.61	0.23	0.07	0.21
81 27	DJ-00-7100 NK-01-3010	8.6 31.0	21 67	2.33 0.81	14 39	3.72 7.09	1.49 1.98	0.65 0.67	2.28 1.60	4.21 5.76	4.34 3.98	0.87 0.76	2.57 2.05	0.36 0.27	0.33 0.07	0.35 0.23
32	NK-01-3037	15.0	34	3.81	19	4.45	1.50	0.76	2.64	5.09	4.93	1.02	2.05	0.27	0.65	0.23
36	NK-01-3020	23.0	48	0.31	27	5.20	1.72	0.48	0.98	4.12	2.70	0.52	1.37	0.17	0.05	0.14
51	NK-01-3069	22.0	51	0.76	32	6.86	2.02	0.72	1.71	5.69	4.21	0.80	2.13	0.29	0.04	0.26
26	NK-01-3061	16.0	35	0.35	20	3.83	1.38	0.34	0.70	3.07	1.98	0.35	0.92	0.12	0.13	0.11
34	NK-01-3036	18.0	43	1.75	29	6.80	1.54	0.80	2.44	6.10	5.03	0.96	2.82	0.40	0.14	0.37
59	NK-01-3041A	9.3	23	2.70	14	3.73	1.28	0.72	2.54	4.45	4.78	1.00	2.83	0.41	0.56	0.38
28	NK-01-3044	25.0	55	0.60	31	5.79	1.91	0.56	1.18	4.78	3.15	0.58	1.55	0.20	0.12	0.17
29	NK-01-3030	21.0	47	1.42	26	5.43	1.59	0.60	1.71	4.64	3.54	0.70	1.95	0.28	0.14	0.27
Interme		20.0	~	0.00		E (=	1.72	0.52	1.24	1.20	2.1.4	0.50	1.64	0.00	0.12	0.01
63	NK-01-3054	30.0 29.0	61 61	0.89 1.10	31 31	5.67 5.93	1.73	0.53	1.34	4.39	3.14	0.58 0.71	1.64 1.91	0.22 0.27	0.13 0.16	0.21 0.25
58 39	NK-01-3048 NK-01-3042	29.0 26.0	54	1.10	28	5.95 5.40	1.76 1.62	0.61 0.57	1.69 1.51	4.75 4.47	3.61 3.18	0.71	1.91	0.27	0.16	0.23
33	NK-01-3039	40.0	85	2.67	41	7.29	1.87	0.70	1.97	5.71	4.19	0.81	2.26	0.32	0.33	0.24
	Iountains terran		suite ar													
Interme		- 1111 05170	Suite gl		mogneiss	Sales I M										
81	NK-00-8134	24.5	54	2.63	28	6.12	1.78	0.53	2.09	5.40	3.82	0.74	2.20	0.31	0.46	0.35
22	DJ-00-9006A	44.4	93	4.84	42	7.32	1.45	0.75	2.50	6.03	4.49	0.86	2.58	0.38	0.65	0.39
19	NK-00-8017A	49.6	108	8.14	43	7.22	1.80	0.76	1.71	6.12	4.40	0.83	2.21	0.29	0.36	0.27
76	NK-00-8145	41.2	91	7.69	46	9.22	2.48	1.21	4.29	8.91	8.12	1.63	4.81	0.68	0.53	0.67
80 70	NK-00-8144	161.5	353	18.74	155	25.09	5.51	2.16	4.49	18.23	12.12	2.14	5.68	0.76	1.82	0.67
70	NK-01-3051	37.0	73	5.98	33	5.61	1.46	0.58	1.77	4.58	3.54	0.70	1.99	0.27	0.36	0.27
20 43	NK-00-8025 NK-01-3004A	49.8	107 278	13.86 15.00	50 136	9.52 24.00	2.71 3.52	1.28	4.10 5.57	8.89 17.00	7.88 14.00	1.59 2.49	4.68	0.66 0.95	1.70	0.64
45 Felsic	NK-01-3004A	119.0	210	15.00	150	24.00	3.32	2.30	5.57	17.00	14.00	2.49	6.85	0.95	3.20	0.77
67	NK-01-3034	24.0	42	13.00	21	4.06	3.02	0.52	1.96	3.92	3.34	0.69	2.01	0.30	0.47	0.34
75	NK-00-8151	36.4	82	7.36	40	8.09	2.43	1.04	4.32	7.51	7.15	1.48	4.48	0.68	0.51	0.69
73	NK-00-8157	41.1	84	4.80	37	6.20	1.15	0.60	2.05	4.68	3.65	0.72	2.14	0.31	0.37	0.32
83	NK-00-8002	143.9	330	14.63	134	21.18	3.34	1.77	4.44	14.19	10.35	1.88	5.14	0.72	3.35	0.66
49	NK-00-8147	122.8	285	13.24	127	22.73	3.04	2.16	5.93	16.81	13.14	2.42	6.94	0.98	4.62	0.84
21	NK-00-8029	46.8	96	7.43	43	7.80	2.05	0.96	2.90	7.19	6.07	1.19	3.32	0.46	0.95	0.45
18	NK-00-8105B	137.7	273	8.05	78	9.55	1.43	0.46	0.76	5.43	2.17	0.35	0.95	0.13	0.43	0.12
68	NK-01-3050	38.0	67	3.33	23	3.16	0.73	0.28	0.83	2.21	1.52	0.31	0.84	0.13	0.27	0.15
64	NK-01-3049	34.0	52	1.96	14	1.45	0.70	0.12	0.54	0.91	0.73	0.14	0.45	0.07	0.19	0.09

	ELEMENT Method	Cr ICP-AES	Ni ICP-AES	Co ICP-AES	Cu S ICP-AES	Zn ICP-AES	Pb ICP-MS	Sc ICP-AES	V ICP-AES	Rb ICP-MS	Sr ICP-AES	Ba ICP-AES	Nb ICP-MS	Zr ICP-MS	Y ICP-MS	Th ICP-MS
SITE	Unit Limit	ppm 10	ррт 37.5	ppm 15	ppm 15	ррт 37.5	ppm 0.005	ppm 1	ppm 10	ppm 0.003	ppm 0.5	ppm 1	ppm 0.020	ppm 0.010	ppm 0.020	ppm 0.002
Wilsor	Lake terrane g	ranitoid sui	te: P _{WL} g	rn												
12	NK-00-8024	86	26	20	49	105	20.2	19	126	50	450	1961	12.8	580	23	0.32
11	NK-00-8023	97	26	20	52	102	18.5	18	125	55	390	1641	16.9	525	37	0.62
9	NK-00-8031	101	24	16	73	82	25.5	16	103	83	322	1196	14.0	450	28	17.36
3	NK-00-8044	216	41	18	39	88	27.2	10	82	75	563	1432	10.9	290	20	10.85
14	NK-00-8036	100	26	12	39	71	32.5	12	69	99	271	1154	10.5	291	15	12.15
1	NK-00-8120	131	20	11	94	67	29.6	12	65	82	292	1130	10.1	357	37	17.57
Wilsor	Lake terrane d	iatexite: P _v	VL dxt													
2	NK-00-8080	278	62	18	-	78	25.9	15	89	47	564	1171	12.9	322	19	9.84
4	NK-00-8084	134	36	16	10	75	22.8	18	76	78	316	915	11.6	288	27	33.58
5	NK-00-8066	155	29	15	-	85	32.1	11	73	107	400	1299	17.4	409	29	15.82
Wilsor	Lake terrane g	abbro and	gabbrono	rite: P _{WL}	grb											
16	NK-00-8087	259	176	58	84	81	8.5	34	227	6	189	70	6.0	92	22	0.66
6	NK-00-8102	88	45	49	87	148	10.3	44	440	24	182	208	26.2	311	61	2.73
15	NK-00-8063	761	296	49	-	90	11.8	29	171	106	408	430	7.8	114	25	0.29

 Table 2. Continued

granitoid (Figure 4b). Indeed, strongly peraluminous granite are commonly assumed to be largely derived from the anatexis of sedimentary rocks (e.g., Patino Douce, 1999). Plotting in the volcanic-arc field on Rb versus Y+Nb discrimination diagrams (Pearce *et al., op. cit.*), the P_{WL} grn samples, however, are well set apart from S-type granites, which characteristically plot in the syn-collisional granite field.

The major petrochemical departures between the Andean-Cordilleran volcanic-arc granitoid suites and the P_{wL} grn granitoids suggest that the latter are not directly subduction related nor mantle derived, and that a metasedimentary precursor was involved in their petrogenesis. It is noteworthy that, as pointed out by Pearce et al. (1984), neither the extended trace-element patterns nor the Rb versus Nb+Y discrimination diagram allow the separation of post-collision from volcanic-arc granites. Indeed, post-collision granites commonly lie with I-type granites in the volcanic-arc granite field and, as illustrated by the post-collision granites from Oman, they could exhibit extended trace-element patterns indistinguishable from volcanic-arc granites (Figure 4c). The characteristics of post-collision granites arise from the fact that they result both from melting of the lower crust due to thermal relaxation following collision and from melting of lithospheric mantle due to adiabatic decompression that accompanies post-collision deep crustal exhumation, uplift and erosion (Harris et al., 1993). The fact that Unit PWL grn contain ubiquitous metasedimentary inclusions and are intimately associated in space and time with both high-grade metasedimentary rocks and diatexites are consistent with their emplacement in a post-collision setting.

Beside the above considerations, it is noteworthy that the three analyses of gabbroic rocks from Unit PWL grb show significant variability in trace-element contents and do not define a systematic distribution pattern (Tables 1, 2 and

3). Assuming that these rocks are genetically related, the geochemical differences could be attributed to crustal contamination, as suggested by the fact that the samples display elevated Ti/Zr, Zr/Y, Nb/Y and Ce/Y ratios relative to primitive mantle, N-MORB and E-MORB, which are intermediate to values typical for continental crust (Table 4). In addition, the analysed samples plot either or both, along or outside the 10 percent probability ellipse for volcanic-arc and within-plate basalts fields on an Hf-Th-Ta discrimination diagram (Wood et al., 1979; Pearce, 1996) (Figure 4d). They all plot, however, well within the broader 10 percent probability field for gabbroic rocks emplaced in attenuated continental lithosphere (Pearce, 1995). Given the distinctive geochemical signatures of P_{WL} grb gabbroic rocks, which suggests crustal involvement, and the evidence for their close association in space and time with P_{WL} grn granitoid plutonism, the data is further consistent with plutonic emplacement in a post-collision tectonic regime.

MEALY MOUNTAINS INTRUSIVE SUITE

Rock samples of the MMIS selected in this study typify the two most important lithological units that make up the MMT in the Lac Brûlé region (Figure 2). Map Unit P_{MM} gbr comprises a variety of coeval and petrogenetically related chiefly gabbroic, along with rare dioritic, rocks. In contrast, Unit P_{MM} ggn consists of more felsic and diverse gneissic and foliated granitoid rocks, mainly granite, quartz monzonite and quartz monzodiorite. Representative samples from these two units differ in major- and trace-elements composition, intimating that the two rock groups are not directly related through simple magmatic process (e.g., fractional crystallization) and differ significantly in their petrogenesis. Relative age constraints based on field and overprinting metamorphic relationships suggest, however, that the two rock groups have middle Labradorian (ca. 1650 Ma)

						Tabl	le 2 sui	te. Con	unued							
SITE Method	ELEMENT ICP-MS Unit Limit	La ICP-MS ppm 0.002	Ce ICP-MS ppm 0.002	Hf ICP-MS ppm 0.002	Nd ICP-MS ppm 0.002	Sm ICP-MS ppm 0.002	Eu ICP-MS ppm 0.001	Tb ICP-MS ppm 0.001	Yb ICP-MS ppm 0.002	Gd ICP-MS ppm 0.005	Dy ICP-MS ppm 0.002	Ho ICP-MS ppm 0.0001	Er ICP-MS ppm 0.002	Tm ICP-MS ppm 0.0005	Ta ICP-MS ppm 0.0005	Lu ppm 0.0005
Wilson l	Lake terrane gra	nitoid suit	e: P _{WI} gr	n												
12	NK-00-8024	40.4	83	10.70	38	6.56	2.62	0.70	1.79	5.88	4.14	0.79	2.13	0.28	0.37	0.29
11 9	NK-00-8023 NK-00-8031	41.1 71.9	86 158	9.83 8.57	46 60	7.88 9.32	2.25 1.84	0.85 0.86	3.46 1.98	6.73 7.32	5.21 4.80	1.10 0.92	4.16 2.44	0.63 0.33	0.77 0.48	0.51 0.32
3 14	NK-00-8044 NK-00-8036	49.9 49.1	108 98	5.76 5.83	41 40	6.60 5.97	1.57 1.79	0.62 0.47	1.60 1.62	5.02 4.29	3.57 2.55	0.67 0.47	1.83 1.41	0.26 0.23	0.51 0.48	0.27 0.28
1	NK-00-8120	60.1	125	8.19	53	9.21	1.63	0.98	3.08	8.12	5.97	1.17	3.49	0.49	0.28	0.48
Wilson I	Lake terrane dia	texite: P _W	Ldxt													
2 4	NK-00-8080 NK-00-8084	44.1 78.6	89 186	6.27 5.75	37 73	6.27 11.96	1.35 1.93	0.61 1.06	1.50 1.81	4.85 8.92	3.54 5.68	0.66 0.97	1.78 2.42	0.24 0.30	0.64 0.39	0.24 0.29
5	NK-00-8066	57.2	119	7.87	50	8.49	1.60	0.87	1.87	6.74	5.04	0.95	2.48	0.32	0.83	0.29
Wilson l	Lake terrane gal	obro and g	abbronor	ite: P _{WL} g	rb											
16 6	NK-00-8087 NK-00-8102	5.6 20.4	14 51	2.08 7.20	10 32	2.89 8.63	1.14 2.56	0.57 1.58	2.06 5.29	3.65 10.33	3.89 10.50	0.79 2.09	2.31 6.10	0.32 0.86	0.32 1.39	0.31 0.81
15	NK-00-8063	18.4	44	2.32	24	4.98	1.34	0.70	2.25	4.62	4.26	0.85	2.49	0.36	0.30	0.35

 Table 2 suite.
 Continued

emplacement ages, as determined by U–Pb zircon dating of monzodioritic orthogneiss bodies from Site 22 (Figure 2) (James *et al., this volume*) and from the Lake Minipi region (James *et al.,* 2000).

MMIS – Gabbroic Unit (P_{MM} gbr)

Rocks mapped as Unit P_{MM} gbr comprise two major intrusive bodies consisting of locally massive, but generally variably deformed and metamorphosed, biotite gabbro, gabbro, gabbronorite locally displaying metre-scale layering including subordinate ultramafic facies, and rare diorite. Rocks of this unit extend easterly throughout much of the Minipi Lake region (NTS map 13D) displaying the same field, mesoscopic and geochemical characteristics (see Nadeau and James, 2001). Mesoscopic examination of (Unit P_{MM} gbr) gabbroic to dioritic samples indicates that they are essentially composed of plagioclase, clinopyroxene, orthopyroxene, accessory hornblende and biotite, and up to a few percent sulphides and Fe-Ti oxides. Olivine is rare and has been recognized only sporadically in the field. Dioritic and monzodioritic samples are distinguished by ubiquitous K-feldspar and by greater abundances of biotite and hornblende, locally porphyritic, at the expense of pyroxenes.

Analyzed gabbroic to dioritic samples of Unit P_{MM} gbr (Tables 1 and 2) have SiO₂ contents ranging from 41.00 to 56.60 wt.%. Three subgroups are distinguished in Figures 5, 6 and 7; ultramafic (SiO₂<46 wt.%), mafic (46 to 52 wt.% SiO₂), and intermediate (SiO₂>52 wt.%). The mafic and ultramafic subgroups have mean CaO of 10.41 wt.% (7.58 to 16.5 wt.%), Na₂O of 2.27 wt.% (0.48 to 3.84 wt.%), K₂O of 0.67 wt.% (0.08 to 1.92 wt.%), MgO of 9.65 wt.% (3.51 to 23.90 wt.%), and total iron expressed as Fe₂O₃ of 13.79 wt.% (9.05 to 15.8 wt.%). The four monzodioritic samples

of the intermediate subgroup are very similar in composition. They have SiO₂ ranging from 54.00 to 56.60 wt.% (mean=54.88), and are set apart from the mafic subgroup by their higher mean K₂O at 2.97 wt.%, Na₂O at 4.13 wt.%, and lower mean CaO of 6.73 wt.%, MgO of 3.72 wt.%, and total iron as Fe₂O₃ of 7.24 wt.%. The mafic and ultramafic samples are also markedly enriched in Al₂O₃ (mean=14.65 wt.%) and deficient in TiO₂ (1.22 wt.%) compared to mantle plume related gabbroic plutonism, e.g., the Mackenzie dyke swarm (Al₂O₃=13.86 wt.%; TiO₂= 2.47 wt.%), to the Columbia River basalts (Al₂O₃=14.34 wt.%; TiO₂= 2.33 wt.%), and to ocean-island basalts (Al₂O₃=12.80 wt.%; TiO₂=2.57 wt.%). This is consistent with crystal fractionation and accumulation.

All the analyzed Unit P_{MM} gbr gabbroic to dioritic samples are silica-saturated (olivine and hypersthene in the norm) or silica-undersaturated (olivine and nepheline in the norm) (Table 3). They can be described as transitional to alkaline because they straddle the alkaline–subalkaline dividing line on (Na₂O + K₂O) vs SiO₂ diagram (Figure 5a). On an AFM diagram (Figure 7a), they straddle the tholeiitic–calc-alkaline divide of Irvine and Baragar (1971). The abundance of normative olivine contrasts with its scarcity in the field. This results essentially from the anhydrous nature of the norm. The abundance of primary hornblende and biotite, which are common accessory minerals in these rocks, was likely essentially controlled by the availability of deuteric water during crystallization.

That Unit P_{MM} gbr gabbroic to dioritic samples are essentially mixtures of plagioclase, pyroxenes and olivine is well illustrated in the ACF and normative plagioclase– pyroxenes–olivine diagrams (Figures 5b, d). Normative plagioclase content of the ultramafic, mafic and intermediate

CURRENT RESEARCH, REPORT 02-1

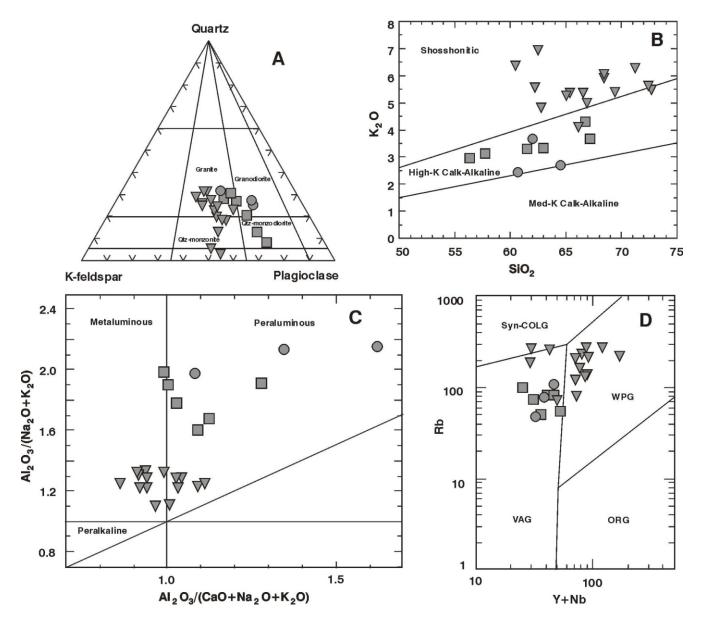
Table 3. Table of the	e CIPW norm of intrus	ive rock samples from	the Lac Brûlé region

	Normative mineral	Q	С	or	ab	an	ne	Di	Di (wo)	Di (en)	Di (fs)	Hy	Hy (en)	Hy (fs)	Ol	Ol (fo)	Ol (fa)	mt	il	ap
ITE	LITHOLOGY																			
ate-	to post-Grenvillian granit	oïd: M _l	LGgrn a	and M_L	Gsye															
52	porphy epi-neph? sye	2.5	-	38.0	38.1	8.4	-	1.5	0.8	0.3	0.4	6.7	2.8	3.9	-	-	-	1.4	2.4	1.0
41	porphy hb mon/sye	10.8	-	33.4	31.6	8.3	-	3.0	1.5	0.6	0.9	7.8	3.0	4.8	-	-	-	1.6	2.4	1.3
35	monzonite	4.8	-	42.3	40.2	4.4	-	0.8	0.4	0.2	0.2	4.5	1.9	2.6	-	-	-	1.0	1.8	0.3
47	biotite granite	15.8	0.4	29.4	30.6	9.3	-	-	-	-	-	9.1	3.7	5.4	-	-	-	1.6	2.2	1.5
48	bio-hb monzonite	16.4	-	31.9	31.7	9.8	-	1.4	0.7	0.2	0.4	5.4	2.0	3.4	-	-	-	1.1	1.5	0.9
50	hbl-bio granite	17.5	-	32.4	29.4	9.0	-	0.2	0.1	0.0	0.1	7.8	3.2	4.6	-	-	-	1.3	1.7	0.9
42	porphy mon+modio ogn	20.0	-	24.8	32.7	9.6	-	2.2	1.1	0.4	0.7	7.6	2.8	4.8	-	-	-	1.3	1.4	0.5
79	bio-qtz syenite	20.5	-	32.7	29.6	7.1	-	0.6	0.3	0.1	0.2	6.1	2.2	3.9	-	-	-	1.1	1.5	0.7
45	bio-granite	2.6	0.8	30.0	28.9	7.6	-	-	-	-	-	7.5	2.7	4.7	-	-	-	1.2	1.5	1.0
23	bio granite	23.1	1.1	35.2	25.0	5.7	-	-	-	-	-	6.5	2.7	3.8	-	-	-	1.1	1.5	0.7
46	aplitic granite	22.8	0.8	36.2	27.3	4.9	-	-	-	-	-	5.7	1.9	3.8	-	-	-	0.9	1.0	0.4
17	bio granite	25.3	0.9	32.5	28.4	6.2	-	-	-	-	-	4.5	1.6	2.9	-	-	-	0.7	0.8	0.5
44 24	bio granite	26.9 29.6	1.7 1.3	37.6 33.7	25.1 27.1	3.3 3.4	-	-	-	-	-	4.2 3.8	2.0 1.7	2.1 2.1	-	-	-	0.5 0.5	0.5 0.5	0.2 0.2
24 84	bio granite granite	29.0 30.4	0.1	33.4	27.1	3.4	-	-	-	-	-	2.4	0.7	1.7	-	-	-	0.5	0.5	0.2
	<u> </u>					5.2	-	-	-	-	-	2.4	0.7	1.7	-	-	-	0.4	0.4	0.1
	Mountains intrusive suite	: Gabb	roic gr	oup, P _N	4M ^{grb}															
Ultrar 38	nafic rocks layered gab/ultramaf			2.0	3.2	42.6	6.7	22.7	11.5	5.7	5.5				16.8	8.2	8.7	3.5	2.5	0.0
38 38	layered gab/ultramaf	-		2.0 0.5	3.2 4.2	42.6	6./ -	22.7	11.5	5.7 7.6	5.5 2.3	- 7.9	- 6.0	- 1.9	45.6	8.2 34.0	8.7 11.6	3.3 3.3	2.5 0.3	0.0
58 56	mela-gabbronorite	-	-	0.5	4.2 3.0	31.2	- 1.8	20.7	10.8	7.6 9.3	2.5 4.6	-	0.0 -	-	45.6 30.1	54.0 19.4	10.7	3.3 3.4	1.2	0.0
30	porphy meta-cpxenite	_	_	1.1	7.1	25.0	-	23.8	12.4	8.5	2.9	0.9	0.7	0.2	38.4	27.9	10.7	3.0	0.6	0.1
61	hb mela-gabbro	_		3.5	8.7	28.5	2.5	24.3	12.4	7.1	4.7	-	-	-	26.9	15.6	11.4	3.7	1.5	0.4
40	oli?-hb mela-gab	_	_	6.5	30.4	24.1	0.1	8.4	4.2	2.0	2.2	_	_	-	19.0	8.6	10.4	4.2	5.4	1.9
37	layered gabbro	-	-	1.5	3.0	33.2	4.2	39.8	20.4	11.7	7.7	-	-	-	13.3	7.7	5.6	3.1	1.9	0.1
57	porphy bio mela-gabbro	-	-	4.7	29.4	26.1	-	8.3	4.2	2.1	1.9	0.1	0.0	0.0	20.1	10.1	10.0	4.1	5.4	1.8
Mafic								0.0												
59	frsh gabbronorite	-	-	3.5	20.7	31.4	-	16.2	8.2	4.5	3.5	5.0	2.8	2.2	16.6	8.9	7.7	3.4	2.9	0.3
52	fresh massive gabbro	-	-	2.8	23.4	30.7	-	13.7	7.0	3.7	3.0	2.9	1.6	1.3	18.6	9.8	8.8	3.7	3.7	0.5
35	frsh fg bio-gabbro	-	-	6.8	22.8	26.8	-	8.9	4.5	2.1	2.3	9.5	4.6	4.9	16.4	7.5	8.9	4.2	3.8	0.8
31	cpx-hb-bio meta-gabbro	-	-	3.7	14.5	18.0	-	28.4	14.7	9.1	4.7	3.9	2.6	1.3	26.4	16.9	9.5	3.4	1.3	0.3
81	mela-gabbro	-	-	4.8	26.1	29.7	-	9.1	4.6	2.5	2.0	5.9	3.2	2.6	16.7	8.8	7.9	3.6	3.7	0.6
27	px-hb-bio dioritic ogn	-	-	12.0	29.9	27.5	1.4	7.9	4.0	1.8	2.1	-	-	-	14.9	6.5	8.4	2.7	1.8	1.8
32	frsh gabbronorite	-	-	5.0	23.0	29.4	-	11.3	5.7	3.1	2.5	12.6	7.0	5.6	11.1	5.9	5.2	3.5	3.6	0.5
36	cpx? meta dio-gab	-	-	4.2	29.5	41.1	0.8	6.2	3.1	1.4	1.7	-	-	-	12.7	5.3	7.4	2.3	1.4	1.8
51	frsh gabbronorite	-	-	3.8	26.3	25.8	-	19.3	9.8	5.4	4.1	4.0	2.3	1.8	14.4	7.8	6.6	2.9	1.8	1.6
26	metagabbro	-	-	3.7	29.5	41.7	1.0	8.5	4.3	2.2	2.0	-	-	-	10.9	5.5	5.4	1.8	0.9	2.1
34	bio-meta-gabbronorite	-	-	7.2	15.1	16.5	-	24.9	12.8	7.6	4.6	16.2	10.1	6.1	14.3	8.6	5.7	3.5	1.8	0.5
59	frsh gabbronorite	-	-	3.1	19.9	24.0	-	23.4	11.9	6.6	4.9	17.8	10.2	7.6	5.3	2.9	2.4	3.4	2.8	0.3
28	bio meta-gabbro	-	-	9.7	30.3	33.3	1.7	7.1	3.6	1.8	1.8	-	-	-	11.9	5.6	6.3	2.3	2.1	1.7
29	cpx-hb-bio monzodiorite	-	-	9.2	25.8	20.7	-	17.9	9.2	5.3	3.4	13.9	8.5	5.4	7.9	4.6	3.3	2.6	1.3	0.7
	nediate rocks								•											
63	frsh bio-gabbro	-	-	19.5	36.1	23.2	-	5.5	2.8	1.4	1.3	8.7	4.4	4.3	2.5	1.2	1.3	1.6	1.3	1.5
58	ol? gabbronorite	-	-	14.3	32.8	23.0	-	10.1	5.2 5.2	2.8	2.2	13.4	7.4	5.9	2.1	1.1	1.0	1.9	1.3	1.1
39 33	monzogabbro ogn	-	-	14.4 23.6	33.5 39.8	21.8 17.1		10.2 5.4	3.2 2.7	2.9 1.2	2.1 1.5	14.8 7.0	8.6 3.2	6.2 3.8	1.3 2.6	0.7 1.1	0.6 1.5	1.8 1.7	1.2 1.6	1.0 1.2
	px? qtz-mon ogn	-	-							1.2	1.5	7.0	3.2	3.0	2.0	1.1	1.5	1.7	1.0	1.2
	Mountains terrane ortho nediate rocks	gneiss s	suite: G	ranitoi	de orth	ogneiss	suite: l	PMMgg	n											
81	dioritic ogn	-	-	9.4	38.0	23.5	0.0	11.5	5.9	37	2.5	-	-		-	7.0	6.1	2.1	1.3	1.0
22	granodiorite gneiss	- 5.7	-	9.4 24.5	38.0 32.0	23.5 16.2	-	4.8	5.9 2.4	3.2 1.2	2.5 1.2	- 13.2	- 6.5	- 6.6	-	7.0	0.1 -	2.1 1.7	1.3	0.8
22 19	bio-granite	3.7 18.5	- 0.9	24.5 24.6	52.0 23.9	15.3	-	4.8 -	2.4 -	1.2	1.2	13.2	6.5 5.5	0.0 7.2	2	-	-	1.7	1.5	0.8
76	bio-hbl granodioritic ogn	18.5	-	24.0	32.2	10.9	-	2.3	- 1.2	- 0.4	- 0.8	9.7	3.5	6.1	-	-	-	1.7	1.8	0.8
80	bio granitic ogn	14.3	2	32.2	29.4	8.5	2	1.7	0.9	0.4	0.5	9.0	3.4	5.5	-	-	-	1.6	2.2	1.1
70	strky bio-hb granitic ogn	14.3	-	18.3	34.8	16.0	-	0.6	0.3	0.5	0.2	9.0	4.0	5.0			-	1.0	1.1	0.6
20	hbl-qtz monz/gra ogn	19.1	-	26.5	30.6	10.0	-	1.9	0.5	0.1	0.2	9.0 7.6	2.2	5.4	-	-	-	1.2	1.1	0.0
43	dio ogn+porph mon-sye	15.2	-	36.3	34.6	6.0	-	1.9	0.5	0.2	0.7	4.3	1.5	2.8	-	-	-	0.9	1.4	0.4
	rocks	-0.2		2010	20	5.0		1.0		~	5.0			2.0				2.2		5r
67	augen bio granitic ogn	17.8	-	34.8	32.0	5.6	-	2.0	1.0	0.2	0.8	5.0	1.2	3.8	-	-	-	1.1	1.3	0.3
75	granodioritic ogn	21.1	-	23.0	33.4	9.3	-	1.9	0.9	0.3	0.6	7.6	2.7	4.9	-	-	-	1.4	1.6	0.7
73	hbl-bio granodioritic ogn	18.4	-	25.8	35.5	10.9	-	0.8	0.4	0.2	0.2	6.6	2.7	3.9	-	-	-	0.9	0.8	0.3
83	bio-granitic ogn	20.0	-	33.3	28.9	8.0	-	0.7	0.4	0.1	0.2	5.8	2.1	3.7	-	-	-	1.1	1.5	0.7
49	bio-granitic ogn	19.1	-	36.0	29.5	6.7	-	0.9	0.5	0.2	0.3	4.9	1.9	3.1	-	-	-	1.0	1.4	0.4
21	bio-granitic ogn	28.4	1.5	24.8	22.3	11.4	-	-	-	-	-	8.2	3.4	4.8	-	-	-	1.3	1.7	0.4
	bio-granodioritic gne	23.9	0.8	36.5	27.0	6.0	-	-	-	-	-	4.1	1.6	2.5	-	-	-	0.6	0.8	0.3
18			_			-														
18 68	porphy bio-granitic ogn	24.9	-	20.1	38.5	11.0	-	0.0	0.0	-	-	4.2	1.6	2.6	-	-	-	0.6	0.5	0.2

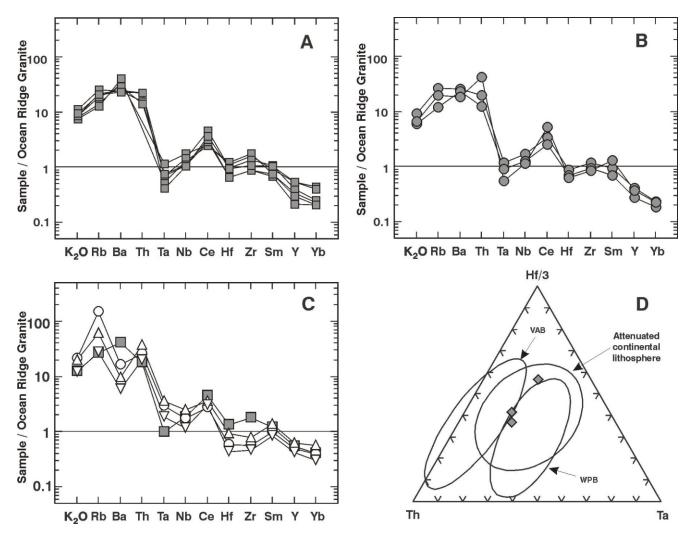
							Ta	ble 3.	Cont	inued										
SITE	Normative mineral	Q	С	or	ab	an	ne	Di	Di (wo)	Di (en)	Di (fs)	Ну	Hy (en)	Hy (fs)	Ol	Ol (fo)	Ol (fa)	mt	il	ap
Wilso	n Lake terrane granitoid	suite, P	wLgrn																	
12	porphy pyx-hbl monzo	6.2	0.6	17.6	30.3	22.9	-	-	-	-	-	16.7	7.2	9.5	-	-	-	2.3	2.5	0.9
11	porphy hbl-bio monzo	9.9	1.0	18.8	28.8	19.7	-	-	-	-	-	16.2	6.9	9.3	-	-	-	2.3	2.5	1.0
9	K-feld augen granite	17.0	0.8	20.1	27.9	17.2	-	-	-	-	-	13.1	5.5	7.6	-	-	-	1.8	1.7	0.4
3	granite/qtz monzo	21.6	3.9	20.3	26.6	11.4	-	-	-	-	-	13.2	5.9	7.4	-	-	-	1.6	1.2	0.2
14	K-feld augen gra ogn	24.5	1.4	25.8	24.7	11.8	-	-	-	-	-	9.0	3.7	5.3	-	-	-	1.3	1.3	0.2
1	porphy bio-granite	26.4	1.8	22.1	25.5	11.8	-	-	-	-	-	9.7	4.2	5.5	-	-	-	1.3	1.2	0.2
Wilso	n Lake terrane diatexite	P _{WL} dxt	t																	
2	s-type qtz monzo/grn	18.8	4.7	14.8	28.4	12.7	-	-	-	-	-	17.2	8.5	8.6	-	-	-	1.9	1.5	0.2
4	s-type granite	22.7	1.3	16.2	26.5	18.0	-	-	-	-	-	12.4	6.0	6.4	-	-	-	1.4	1.3	0.1
5	bio-sil granite	24.5	7.3	22.5	22.9	7.1	-	-	-	-	-	12.5	5.3	7.2	-	-	-	1.6	1.4	0.2
Wilso	n Lake terrane gabbro a	ıd gabbı	ronorit	e P _{WL} g	rb															
16	gabbro	-	-	1.6	18.7	34.3	-	15.6	8.0	4.7	3.0	11.1	6.8	4.3	12.6	7.5	5.2	3.1	2.6	0.2
6	amphibolite/meta gbr	0.3	-	5.7	21.8	18.8	-	21.1	10.6	4.6	6.0	19.2	8.3	10.9	-	-	-	5.0	7.4	0.8
15	meta gabbro	-	-	8.2	17.9	25.9	-	10.2	5.3	3.5	1.5	26.4	18.6	7.8	6.8	4.7	2.2	2.5	1.6	0.5

subgroups averages 40%, 46%, and 57% respectively. Orthose contents of intermediate samples average 18%, in contrast to the 5.7% and 2.5% means for the mafic and ultramafic subgroups respectively. Mean anorthite content in plagioclase decreases from ~An₅₄ in mafic samples to ~An₃₈ in intermediate samples. Except for 3 samples with normative plagioclase < An₅₀, the rocks of the mafic subgroups can be described as olivine-gabbronorite. Giving their high normative Or and K₂O contents, intermediate samples are best described as olivine-monzodiorite. The trend of decreasing normative anorthite in plagioclase is reflected in the ACF and Na₂O–CaO–(FeOT +MgO) diagrams (Figures 5b, c), which also illustrate the compositional variability and the continuous nature of the suite.

The principal features of the trace-element patterns for the three subgroups are shown in N-MORB normalized extended elemental plots (Figure 6). It is emphasized that the elemental abundances and distribution patterns are indistinguishable from those presented for the MMIS gabbroic rocks of the Minipi Lake region (see Nadeau and James, 2000). The patterns of the three subgroups are remarkably similar, largely overlapping each others. The patterns show a marked enrichment in high-field-strength-elements (HFSE) relative to N-MORB, and a fairly flat heavy-REE distribution somewhat below the normalizing values. As expected, the samples of the intermediate subgroup are depleted in transition metals relative to the more mafic rock, and the rare-earth-element mean concentrations increase from the ultramafic toward the more felsic subgroups (Figure 6d). Along with the field relationships, the close similarities displayed in the trace-element patterns provide strong support to the hypothesis that these rocks are genetically related. Accordingly, the cross-over in the heavy-REE abundances between the mafic and intermediate subgroups


can be attributed to hornblende fractionation. The most notable features of the patterns are given by the well-defined negative Th, Nb, Zr, and Hf anomalies, which are coupled with a positive Sr spike. Ti also defines a small negative anomaly (relative to Eu and Gd) that is more pronounced in the intermediate samples. The absence of Eu anomaly (relative to Sm and Gd) is also notable. Such patterns emphasize the importance that fractional crystallization could have played in the petrogenesis of the suite. Given the compatibility of Sr in plagioclase, the latter, cotectically crystallizing with olivine and (or) pyroxenes, maintains nearly constant Sr in magma as elements highly incompatible in plagioclase, olivine, and pyroxenes gradually increase concentration in residual melt.

MMIS – Granitoid Orthogneiss Suite (P_{MM} ggn)


Granitoid rocks of Unit P_{MM} ggn comprise an assortment of locally massive with preserved igneous textures, commonly foliated and gneissic amphibolite-facies orthogneisses, mainly derived from biotite \pm hornblende \pm clinopyroxene granite, granodiorite, quartz-monzonite, quartz monzodiorite, and rare diorite. Accordingly, the representative rock samples selected for analysis tend to plot near the common boundary between these rock types on the Streckeisen (1976) classification diagram. The unit consists of distinct intrusions of variable sizes which appear to be relatively uniform in composition. Although lithologically composite, it is emphasized that all major plutonic rock bodies comprised in Unit P_{MM} ggn appear to be closely related in age (middle Labradorian) as evidenced from their field association and from regional metamorphic overprinting relationships. These rocks generally contain from 5 to 15 percent ferromagnesian minerals.

Except for one dioritic sample likely affiliated with Unit PMM gbr, the 16 remaining samples have SiO_2 contents from between 58.98 and 70.40 wt.% (mean= 66.04 wt.%), K₂O between 3.03 and 6.04 wt.% (mean = 3.45 wt.%), CaO between 1.33 and 4.78 wt.% (mean = 2.55 wt.%), Na₂O between 2.63 and 4.43 wt.% (mean = 3.64

wt.%), MgO between 0.03 and 3.02 wt.% (mean = 1.19 wt.%), and total Fe as tFe_2O_3 between 1.17 and 6.85 wt.% (mean = 4.53wt.%). Contents in TiO₂, tFe_2O_3 , MgO, CaO, MnO, and P₂O₅ show a negative correlation with SiO₂ that is compensated by less systematic increases in Al₂O₃, K₂O and Na₂O contents. Felsic (SiO₂ > 66 wt.%) are distinguished

Figure 3. Selected normative, major- and trace-element composition diagrams of granitoid samples from the WLT granitoid map units, and from the late- to post-Grenvillian intrusions. Legend: square - P_{WL} grn; circle - P_{WL} dxt; triangle - M_{LG} grn and M_{LG} sye. (A) Ternary plot of normative quartz, K-feldspar, and plagioclase; rock name and subdivisions after Streckeisen (1976). (B) Plot of K_2O vs SiO₂ with the limits of the shoshonitic, high-K calc-alkaline and med-K calc-alkaline fields. (C) Alumina saturation diagram with the limits of the metaluminous, peraluminous and paralkaline fields. The $Al_2O_3 / (Na_2O+K_2O)$ and $AL_2O_3 / (CaO+Na_2O+K_2O)$ ratios are calculated from molar values. (D) Rb vs (Y+Nb) tectonic discrimination diagram of Pearce et al., (op. cit.). WPG - within-plate granite; ORG - ocean-ridge granite; VAG - volcanic-arc granite; Syn-COLG - syn-collision granite.

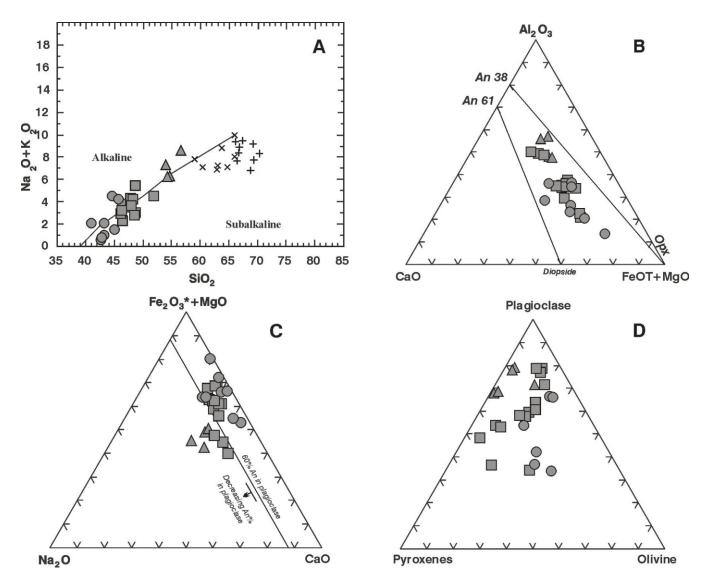
Figure 4. Comparative ocean-ridge granite normalized incompatible trace-element patterns of granitoid and diatexite samples of WLT, and Hf-Th-Ta ternary plot of associated gabbroic samples. (A) Granitoid samples of Unit P_{WL} grn. (B) Diatexite samples of Unit P_{WL} dxt. (C) Average composition of Unit PWL grn granitoid samples - shaded square, compared to post-collision granitoids of Bolivia - circle and Oman - inverted triangle, and to volcanic-arc granitoids of Chile - upright triangle (after Pearce et al., 1984). (D) Hf-Th-Ta tectonic discrimination diagram (Wood et al., 1979) for gabbroic samples of Unit P_{WL} gbr. The diagram emphasizes the fact the WLT gabbroic samples plot near or outside the 10 percent probability ellipses for volcanic-arc (VAB) and within-plate (WPB) basalts, well within the field of basalts emplaced in attenuated continental lithosphere (Pearce, 1996).

from intermediate samples in Figures 5a and 7 for comparative purpose. The samples define a trend below the calcalkaline-tholeiitic divide of Irvine and Baragar (1971) on AFM plots (Figure 7a). They are subalkaline (Figure 5a), with Al_2O_3 / (Na_2O+K_2O) <1.75 (Figure 7b). They define a cluster centered in the metaluminous field and spreading over the devide to the peraluminous field on aluminum saturation diagram (Figure 7b). Along with these compositional hallmarks, 11 and 3 of the samples contain respectively diopside and corundum in the norm. It is significant that as a group, the samples are not clustered, and define a far-reaching trend across the within-plate to volcanic-arc granite fields on Rb versus Y+Nb discrimination diagram of Pearce *et al.* (1984) (Figure 7c). It is also noteworthy that at any given Y+Nb content, felsic samples tend to be enriched in Rb compared to intermediate samples, hence suggesting that the two groups are genetically related. In addition, the extended trace-element spectrum (not plotted) for the rocks of this unit does not fit any simple pattern, beside the fact that their patterns do not closely fit those

Table 4. Trace-element ratios indicative of continent-crust
contribution in PWL gbr gabbroic samples. Data
for Primitive Mantle, N-MORB, and E-MORB
from Sun and McDonough (1989), and for BCC -
bulk continental crust, UCC - upper continental
crust, and LCC - lower continental crust from
Taylor and McLennan (1985)

~		(/		
	Ti/Zr	Zr/Y	Nb/Y	Ce/Y
Site 16	86	4.2	0.28	0.64
Site 6	73	5.1	0.43	0.84
Site 15	43	4.6	0.31	1.76
Primitive mantle	116	2.5	0.16	0.39
N-MORB	110	2.6	0.08	0.27
E-MORB	139	3.3	0.38	0.68
BCC	54	5.0	0.55	1.65
UCC	16	8.6	1.14	2.90
LCC	86	3.7	0.31	1.21

identified by Pearce *et al.* (*op. cit.*) for volcanic-arc and within-plate granite. Given that these rocks appears to be closely related in time, magma generation, differentiation and final emplacement has likely involved complex crustal and mantle interactions. The present data does not allow further petrogenetic interpretations. It is noted however that such instances commonly occur in complex settings, e.g., region of attenuated continental lithosphere and collision zones, and that transitional within-plate to volvanic-arc characteristics are most common in collision zones. The alternative possibility that these rocks pertain to more than one plutonic suite cannot be ruled out.


LATE- TO POST-GRENVILLIAN GRANITOID SUITE

Late- to post-Grenvillian age intrusions of biotite granite, K-feldspar porphyritic granite and quartz monzonite defined as Unit M_{LG} grn, and clinopyroxene-bearing syenite defined as Unit M_{LG} sye, have SiO₂ content between 60.50 and 72.71 wt.% (mean=66.72 wt.%) (Table 1), and Al₂O₃ ranges from 12.80 to 17.30 wt.% (mean=14.70 wt.%). They have mean MgO of 0.96 wt.% (0.28 to 1.44 wt.%), MnO of 0.77 wt.% (0.03 to 0.12 wt.%), and total iron expressed as tFe₂O₃ of 3.97 wt.% (1.58 - 6.14 wt.%.). K₂O contents are high varying from 4.10 to 6.94 wt.% (mean=5.57 wt.%), with means CaO of 1.83 wt.% (0.67 to 3.03 wt.%) and Na₂O of 3.52 wt.% (2.93 to 4.46 wt.%).

These plutonic rocks are calc-alkaline according to the AFM criterion and subalkaline according to the normative nepheline–olivine–quartz criterion of Irvine and Baragar (1971). The samples plot above the boundary between high-K calc-alkaline and shoshonitic series in K₂O–SiO₂ space (Figure 3b), and straddle the boundary between the metalu-

minous and peraluminous fields on aluminum saturation diagram (Figure 3c). The enrichment in potassium of the rocks may be attributed to the porphyritic texture, which is indicative of K-feldspar fractionation. Therefore, the shoshonitic signature of the rocks is unlikely to reflect directly the K₂O and major-element contents of the parent magma. In accordance with their geochemical signature, the samples plot predominantly in the field of granite (s.s.) and define an array that extends to the quartz monzonite and monzonite fields on a quartz-plagioclase-K-feldspar ternary classification diagram (Figure 3a). Of the 15 samples analyzed, 8 are corundum normative (up to 1.66%) whereas 7 contain normative 2 diopside (up to 95%). Normative orthopyroxene ranges from 2.18 to 9.12% (mean=5.83%), with mean magnetite+ilmenite content of 2.45% generally increasing up to 3.97% in monzonitic samples. These rocks have modal biotite ± hornblende as dominant ferromagnesian minerals.

On the Rb vs Nb+Y granite discrimination diagram (Figure 3d) of Pearce et al. (1984), most samples cluster in the within-plate granite field, with three samples in the adjacent volcanic-arc and one in the syn-collision granite fields. Among them, three data points correspond to the most silica enriched (SiO₂ > 69.42 wt.%) and one to the most silicadepleted (SiO₂ = 60.50 wt.%) samples. Ocean-ridge granite normalized extended trace-element patterns for the late- to post-Grenvillian granitoid samples are displayed in Figure 8a. In addition, the pattern derived from averaging the traceelement abundances for the group of samples is reported in Figure 8b, together with the reference patterns from Pearce et al. (op. cit.) for continental margin volcanic-arc granite (Chile), and within-plate granite (Sabaloka) emplaced in continental crust of normal thickness. The late- to post-Grenvillian granite patterns and the reference lines reported for the volcanic-arc and within-plate granite types are characterized by a general decrease in normalized abundance from Rb to Yb, and by marked enrichments in K, Rb, Ba, Th, Ce and Sm relative to Ta, Nb, Hf, Zr, Y and Yb. According to Pearce et al. (op. cit.) such selective enrichments can be attributed to crustal involvement, and the resulting distribution pattern could be described as crust-dominated. Lateto post-Grenvillian granite patterns differ from the reported reference lines essentially in having no large negative Ba anomaly. As pointed out by Pearce et al. (op. cit.), the Ba negative spikes may not be apparent, however, in rocks of intermediate compositions. In addition, the Ba abundance is similar to within-plate granite emplaced in attenuated continental lithosphere (e.g., Mull and Skaergaard) reported by Pearce et al. (op. cit.). The elevated Ba abundances can be attributed to the combined effects of Ba substitution in Kfeldspar and to K-feldspar accumulation as suggested by the porphyritic texture.

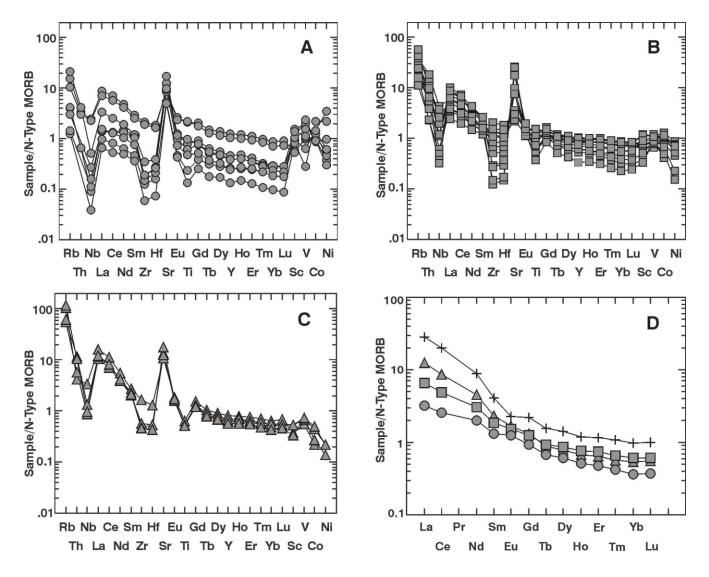


Figure 5. Major-element and normative composition diagrams of the MMIS samples. Legend: circle - Unit P_{MM} gbr ultramafic rock (SiO₂<46 wt.%); square - Unit P_{MM} gbr mafic rock (46-52 wt.% SiO₂); triangle - Unit P_{MM} gbr intermediate rock (SiO₂>52 wt.%); diagonal cross - Unit P_{MM} ggn intermediate rock (58-66 wt.% SiO₂); upright cross - Unit P_{MM} ggn felsic rock (SiO₂>66 wt.%). (A) Plot of total alkali vs. silica showing the alkaline-subalkaline boundary of Irvine and Baragar (1971). (B) ACF diagram. (C) FNC diagram. (D) Ternary plot of normative plagioclase, pyroxenes (diopside+hypersthene), and olivine.

Continental within-plate granites are generally affiliated with extensional tectonic regimes. They are commonly related to rifting, driven by mantle plume or convection, where they are accompanied by coeval gabbroic magmatism in bimodal association. It is noteworthy however that there is no significant mafic magmatism coeval with late- to post-Grenvillian granitoid plutonism. At least two tentative and somewhat contrasting petrogenetic models can be proposed: 1) the generation of granitic magma may have been triggered by decompression melting enhanced by heat transfer from the mantle, both consequences of thinning of overthickened Grenvillian collisional crust, and 2) given the high-K calc-alkaline to shoshonitic signature of the group and the close similarities in the trace-element spectrum with some Andean–Cordilleran type granites, the late- to post-Grenvillian intrusions may represent a far-field intracratonic plutonic manifestation related to the establishment of a flat subduction regime that was established on the Laurentian margin following Grenvillian collision.

ACKNOWLEDGMENTS

Pierre Brouillette is gratefully acknowledged for formatting the figures and tables. This note is a contribution

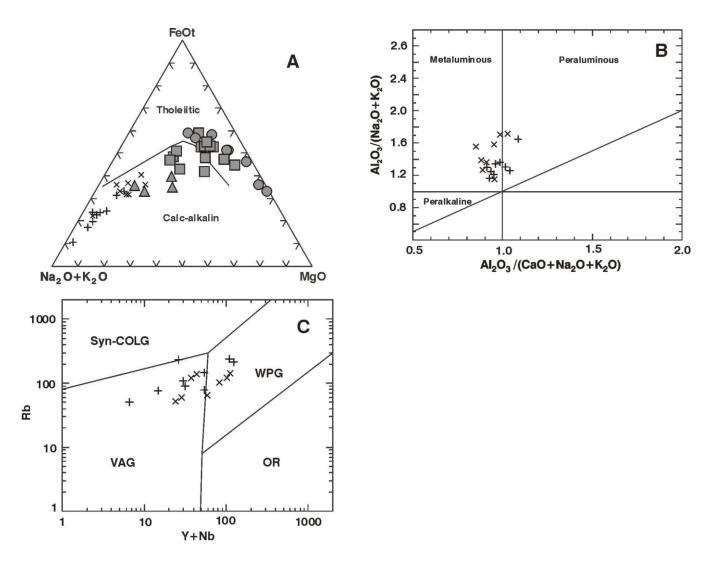
Figure 6. *N*-MORB normalized incompatible trace-element diagrams of the MMIS samples. (A) Unit P_{MM} gbr, ultramafic samples (SiO₂<46 wt.%). (B) Unit P_{MM} gbr, mafic samples (46-52 wt.% SiO₂). (C) Unit P_{MM} gbr, intermediate samples (SiO₂>52 wt.%). (D) Comparative rare-earth-element diagram of mean compositions of Unit P_{MM} ggn and Unit P_{MM} gbr samples. Legend: circle - Unit P_{MM} gbr ultramafic; square - Unit P_{MM} gbr mafic; triangle - Unit P_{MM} gbr; cross - Unit P_{MM} ggn samples.

(GSC 2001173) to a larger, on-going GSNL-GSC-MRNQ, Targeted Geoscience Initiative (TGI Project 000019) to better understand the geological development of the eastern Grenville Province.

REFERENCES

Corrigan, D., Rivers, T., and Dunning, G.R.

1997: Preliminary report on the evolution of the allochthon boundary thrust in eastern Labrador: Mechin River to Goose Bay. *In* Eastern Canadian Shield Onshore-Offshore Transect (ECSOOT), Transect Meeting, April 1997. *Edited by* R.J. Wardle and J. Hall. The


University of British Columbia, LITHOPROBE Secretariat, Report 61, pages 45-56.

Emslie, R.F.

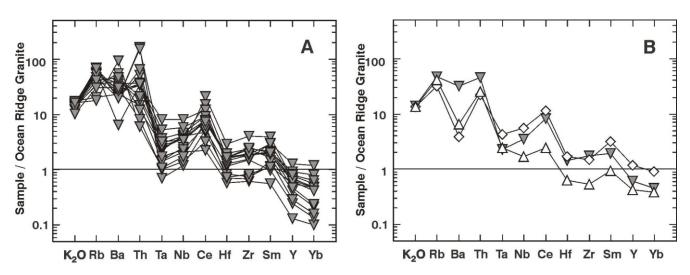
1976: Mealy Mountains complex, Grenville Province, southern Labrador. *In* Report of Activities, Part A. Geological Survey of Canada, Paper 76-1A, pages 165-170.

Emslie, R.F. and Hunt, P.A.

1990: Ages and petrogenetic significance of igneouscharnockite suites associated with massif anorthosites, Grenville Province. Journal of Geology, Volume 98, pages 213-231.

Figure 7. Major- and trace-element composition diagrams of MMIS samples from Unit P_{MM} ggn. Legend: circle - Unit P_{MM} gbr ultramafic rock (SiO₂<46 wt.%); square - Unit P_{MM} gbr mafic rock (46-52 wt.% SiO₂); triangle - Unit P_{MM} gbr intermediate rock (SiO₂>52 wt.%); diagonal cross - Unit P_{MM} ggn intermediate rock (58-66 wt.% SiO₂); upright cross - Unit P_{MM} ggn felsic rock (SiO₂>66 wt.%). (B) Alumina saturation diagram with the limits of the metaluminous, peraluminous and paralkaline fields. The $Al_2O_3 / (Na_2O+K_2O)$ and $AL_2O_3 / (CaO+Na_2O+K_2O)$ ratios are calculated from molar values. (C) Rb vs (Y+Nb) tectonic discrimination diagram of Pearce et al., (op. cit.). WPG - within-plate granite; OR - ocean-ridge granite; VAG - volcanic-arc granite; Syn-COLG - syn-collision granite.

Gower, C.F.


1996: The evolution of the Grenville Province in eastern Labrador. *In* Precambrian Crustal Evolution in the North Atlantic Region. *Edited by* T.S. Brewer. Geological Society Special Publication No. 112, pages 197-218.

1999: Geology of the Crooks Lake map region, Grenville Province, eastern Labrador. *In* Current Research. Newfoundland Department of Mines and Energy, Geological Survey, Report 99-1, pages 41-58. Gower, C.F., Heaman, L.M., Loveridge, W.D., Schärer, U., and Tucker, R.D.

1991: Grenvillian granitoid plutonism in the eastern Grenville Province, Canada. Precambrian Research, Volume 51, pages 315-336.

Gower, C.F., and Owen, V.

1984: Pre-Grenvillian and Grenvillian lithotectonic regions in eastern Labrador - correlations with the Sveconorwegian Orogenic Belt in Sweden. Canadian Journal of Earth Sciences, Volume 21, pages 678-693.

Figure 8. Comparative ocean-ridge granite normalized incompatible trace-element patterns of late- to post-Grenvillian granitoid samples. (A) Unit M_{LG} grn and M_{LG} sye samples. (B) Comparative diagram of trace-element patterns for mean late- to post-Grenvillian granitoid composition - inverted shaded triangle, volcanic-arc granitoids of Chile - triangle, and within-plate granitoids of Sabaloka - diamond (after Pearce et al., 1984).

- Gower, C.F., Perreault, S., Heaman, L.M. and Knight, I. 2001: The Grenville Province in southeastern-most Labrador and adjacent Quebec. Geological Association of Canada - Mineralogical Association of Canada, Joint Annual Meeting, St. John's, Newfoundland, Pre-conference field excursion guide A7.
- Gower, C.F., and van Nostrand, T.
 - 1996: Geology of the southeast Mealy Mountains region, Grenville Province, southeast Labrador. *In* Current Research. Newfoundland Department of Mines and Energy, Geological Survey, Report 96-1, pages 55-71.

Harris, N.B.W., Pearce, J.A., and Tindle, A.G.

- 1986: Geochemical characteristics of collision zone magmatism. *In* Collision Tectonics. *Edited by* R.M. Shackleton, A.C. Ries and M.P. Coward. Geological Society, London, Special Publications, No. 19.
- Irvine, T.N. and Baragar, W.R.A.
 - 1971: A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, Volume 8, pages 523-548.

James, D.T.

1999: Geology of the Kenamu River area (13C/NE), Grenville Province, southern Labrador. Geological Survey of Newfoundland and Labrador, Department of Mines and Energy, Open File 013C/0040, 1:100 000scale map with descriptive notes.

James, D.T., Kamo, S. and Krogh, T.E.

2000: Preliminary U-Pb geochronological data from

the Mealy Mountains Terrane, Grenville Province, southern Labrador. *In* Current Research. Newfoundland Department of Mines and Energy, Geological Survey, Report 2000-1, pages 169-178.

James, D. T., Kamo, S., Krogh, T.E. and Nadeau, L.

2001: Preliminary U-Pb geochronological data from Mesoproterozoic rocks, Grenville Province, southern Labrador. *In* Current Research. Newfoundland Department of Mines and Energy, Geological Survey, Report 01-1, pages 45-53.

This volume: Preliminary report on U–Pb ages for intrusive rocks from the western Mealy Mountains and Wilson Lake terranes, Grenville Province, southern Labrador.

James, D.T. and Lawlor, B.

1999: Geology of the Grenville Province, Kenamu River area (NTS 13C/NE), southern Labrador: Preliminary observations of Labradorian and Pre-Labradorian(?) intrusions. *In* Current Research. Newfoundland Department of Mines and Energy, Geological Survey, Report 99-1, pages 59-70.

James, D.T. and Nadeau, L.

2000a: Geology of the Minipi Lake Area (NTS 13C/south): New Data from the southern Mealy Mountains Terrane, Grenville Province, Labrador. *In* Current Research. Newfoundland Department of Mines and Energy, Geological Survey, Report 2000-1, pages 179-196. 2000b: Geology of the Minipi Lake area (NTS 13C/South), Grenville Province, southern Labrador. Geological Survey of Newfoundland and Labrador, Department of Mines and Energy, Open File 013C/0041, 1:100 000-scale map with descriptive notes.

2001: Geology of the Little Mecatina River (NTS 13D/NE) and Lac Arvert (NTS 13C/SW) areas, Grenville Province, southern Labrador. *In* Current Research. Newfoundland Department of Mines and Energy, Geological Survey, Report 01-1, pages 55-73.

James, D.T., Nadeau, L. and Nunn, G.A.G.

This volume: Geology of the Natashquan River (NTS 13D/SE) and Senécal Lake (NTS 13D/SW) areas, Grenville Province, southern Labrador.

Nadeau, L. and James, D.T.

2000: Preliminary note on the lithogeochemistry and petrogenesis of intrusive rock suites from the Minipi Lake region (NTS map area13C/south), Grenville Province. *In* Current Research. Newfoundland Department of Mines and Energy, Geological Survey, Report 2000-1, pages 179-196.

Nunn, G.A.G. and van Nostrand, T.

1996: Geology of the Kenemich River map area (NTS 13G/SW), Labrador. *In* Current Research. Newfound-land Department of Mines and Energy, Geological Survey, Report 96-1, pages 73-83.

Patino Douce, A.E.

1999: What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magma? *In* Understanding Granites: Integrating New and Classical Techniques. *Edited by* A. Castro, C. Fernandez and J.L. Vigneresse. Geological Society, London, Special Publication, No. 68, pages 55-75.

Pearce, J.A., Harris, N.B.W. and Tindle, A.G.

1984: Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, Volume 25, pages 956-983.

1996: A user's guide to basalt discrimination diagrams. *In* Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration. *Edited by* D.A. Wyman. Geological Association of Canada, short course notes, Volume.12, pages 79-113.

Pearce, J.A. and Cann, J.R.

1973: Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, Volume 19, pages 290-300.

Sun, S.S. and McDonough, W.F.

1989: Chemical and isotopic systematics of ocean basalts; implications for mantle composition and processes. *In* Magmatism in Ocean Basins. *Edited by* A.D. Saunders and M.J. Norry. Geological Society, London, Special Publication, No. 42, p ages 313-345.

Streckeisen, A.

1976: To each plutonic rock its proper name. Earth Sciences Review, Volume 12, pages 1-33.

Taylor, S.R. and McLennan, S.M.

1985: The continental crust: its composition and evolution. Blackwell Scientific, Oxford, 312 pages.

Wardle, R.J., Gower, C.F., Ryan, B., Nunn, G.A.G., James, D.T. and Kerr, A.

1997: Geological map of Labrador; 1:1 million scale. Government of Newfoundland and Labrador, Department of Mines and Energy, Geological Survey, Map 97-07.

White, A.J.R., and Chappell, B.W.

1988: Some supracrustal (S-type) granites from the Laclan Fold Belt. Transactions of Royal Society of Edinburgh: Earth Sciences, Volume 79, pages 169-181.

Wood, D.A., Joron, J.-L. and Treuil, M.

1979: A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth and Planetary Science Letters, Volume 45, pages 326-336.