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ABSTRACT

Using heavy-mineral fractions, especially zircon, found in clastic sedimentary rocks is an important method in investi-
gating zircon (sediment) provenance and depositional history. Zircon is the mineral of choice for geochronological determi-
nations due to its relative uptake of U vs. Pb at the time of crystallization. The spectra of the U-Pb zircon ages measured will
yield information regarding the ages of material in the source region, and can help to identify the direction of detrital trans
port. In this study, new geochronological data is presented from detrital zircons sampled in the Rogerson Lake Conglomer-
ate, in central Newfoundland.

The new data from the two samples indicate that the age spectra in these Rogerson Lake Conglomerate rocks is domi-
nated by Paleozoic zircons with some Mesoproterozoic input; over 80 percent of the zircons have Pal eozoic ages between 550
and 420 Ma; most alternate between 510 to 490 Ma. These ages correspond well with the ages of Exploits arc—back-arc vol-
canic sequences in the Victoria Lake supergroup that are unconformabl e beneath the Rogerson Lake Conglomerate. The con
glomerate detritus also contains zircon populations that are Ordovician (480 to 440 Ma). The source of these grains is most
likely the adjacent rocks of the Notre Dame arc.

A small quantity of zircons from the Laurentian basement were also analyzed. Neoproterozoic age groups (890, 1030 and
1250 Ma) correspond with rocks of the Grenville Orogen, while the middle Mesoproterozoic ages (ca. 1500) are correlated
with basement gneisses of the Grenville Orogen, western Newfoundland. The high proportion of Paleozoic zircons relative to
Proterozoic grains is presumably the result of Middle Ordovician exhumation of the Notre Dame arc and its subsequent col-
lision and accretion to Laurentia. The LAM-1CP-MS technique represents an appropriate method to rapidly date a large num
ber of detrital zircons for the purpose of sediment provenance studies.

INTRODUCTION

The analysis of heavy-mineral fractions, particularly
zircons, in clastic sedimentary rocks is an important method
in investigating their sedimentological history and can be
used to fingerprint sediment sources and depositional envi-
ronments. Zircon (ZrSiO,) is a common accessory mineral
in most rocks and is afrequently studied component of detri-
tal assemblages because it is extremely resistant to chemical
weathering and physical breakdown during transport. Zircon
is also a mainstay for geochronological determinations due
to its extremely high U/Pb ratio at the time of formation and
the ability of the zircon crystal to retain the daughter prod-
ucts of U and Th radioactive decay. The range and frequen-

cy of U-Pb ages measured on detrital zircon populations
yieldsinformation relating to the ages of igneous crustal ele-
ments in the source region and the clastic transport pathway.
This becomes especially important in sedimentary
sequences that lack distinct stratigraphic horizons, individ-
ual biostratigraphical marker beds and dateable crosscutting
intrusions. Preliminary geochronological data is presented
from detrital zircons in the Rogerson Lake Conglomerate in
central Newfoundland in order to determine the maximum
deposition age and sediment provenance of the conglomer-
ate.

When using heavy-mineral fractions such as zircon for
sediment provenance studies, knowledge of the geology and
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geochronology of potential source regions is essential.
Along the Newfoundland Appalachian margin, crustal
growth occurred during two periods that are summarized
according to a model of multiple ocean-closing cycles. The
North American Atlantic margin comprises two collisional
orogens and a modern continental margin. The collisional
orogens are the Grenville, which devel oped along the south-
eastern margin of Laurentia, ca. 1300 to 900 Ma and led to
the formation of the supercontinent Rodinia (Hoffman,
1988). Rifting of this supercontinent to form the Laurentian
margin and lapetus Ocean was initiated between 590 and
500 Ma (van Staal et al., 1998). The subsequent closure of
lapetus (ca. 500 to 300 Ma) and collision of Laurentia and
Gondwana led to the development of the Appalachian Oro-
gen. The Atlantic continental margin (250 Ma to present)
lies seaward of both the Grenville and Appalachian orogens
(Williams et al., 1999).

REGIONAL GEOLOGY

The Newfoundland Appal achians (Figure 1) are charac-
terized by a series of Paleozoic accretionary and collisional
events that involved a series of island arcs and back-arc
basins with associated microcontinents. The present config-
uration of these Cambro-Devonian sequences in central and
western Newfoundland reflects events during the closure of
the lapetus Ocean, during which outboard terranes were
accreted to the Laurentian continental margin. The bound-
aries between the early accreted terranes are soft structural
zones marked by ophiolites and melanges formed through
head-on collision. By the Late Silurian, rocks from the
opposed Godwanan margin rocks were accreted to the Lau-
rentian margin, although their relative spatial configurations
were probably modified by later transcurrent faulting relat-
ed to oblique convergence.

The Dunnage Zone is separated on the basis of geo-
chemical, metallogenic, geochronological, paleontological
and geophysical parameters into two subzones, the Notre
Dame and Exploits subzones (Williams et al., 1988). These
subzones are separated by an extensive fault system, the Red
Indian Line, which is a major tectonic boundary that is
traceable across Newfoundland. It has been suggested that
the two subzones were developed on opposing sides of the
lapetus Ocean (van Staal et al., 1998) and were not linked
until the Llanvirn.

The Victoria Lake supergroup (Evans and Kean, 2002)
is a composite and structurally complex collection of vol-
canic, volcaniclastic and epiclastic rocks having varying
ages, geochemical signatures and tectonic environments
(Figure 2). The supergroup consists of mafic pillow lava,
mafic and felsic pyroclastic rocks, chert greywacke and
shale, which formed in a variety of island-arc, rifted-arc,
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back-arc and mature-arc settings. The Victoria Lake super-
group has been divided into two major volcanic units, viz.,
the Tally Pond group and Tulks belt (Kean, 1985), which are
unconformably overlain by the Rogerson Lake Conglomer-
ate along its southeastern contact, although this contact is
generally sheared and faulted.

The Rogerson Lake Conglomerate lies within the mid-
dle Paleozoic Botwood Belt of the Newfoundland Appa-
lachians (Figure 1). The Botwood Belt consists of a 300-km-
long, up to 55-km-wide northeast-trending sequence of
mainly Silurian terrestrial volcanic rocks overlain by fluvi-
atile red, green and grey crossbedded sandstones. Polymic-
tic conglomerates occur along the western margin of the
belt. Red beds and volcanic rocks of the Botwood Belt are
identical to those of the Cape Ray and Springdale belts
(Chorlton et al., 1995). Botwood Belt rocks overlie Lower
Paleozoic sequences of the Exploits Subzone of the Dun
nage Zone.

The Rogerson Lake Conglomerate is a northeast-trend-
ing unit that extends for over 100 km from the Burgeo Road
to Sandy Lake. The conglomerate unconformably overlies
the Tally Pond Group and is nonconformable on the Crip-
pleback Lake Quartz Monzonite. The unit consists of con
glomerate, sandstone, siltstone and shale (Kean and Jayas-
inghe, 1980). Conglomerate is dominant in the Tally Pond
area, and is red to purple, with pebble-sized clasts in a
matrix of red sandy material. The matrix consists of quartz,
feldspar, muscovite and chlorite having hematite and car-
bonate cement. The varied clast population includes sub-
rounded to rounded clasts of red siltstone, sandstone, shale,
quartz, limestone and granitic rocks; mafic flows and por-
phyritic rhyolite clasts are abundant. [Imenite, zircon and
tourmaline occur in accessory amounts. Sedimentary struc-
tures are rare and grain-size variations between silt and sand
layers are sharp and well defined (Kean and Jayasinghe, op.
cit.).

DETRITAL ZIRCON SAMPLES

Two 10-kg samples of the Rogerson Lake Conglomer-
ate were collected for detrital zircon analysis. These samples
were subsequently reduced to about 3 to 4 kg by selecting
unweathered portions of rock that are representative of the
unit. One sample was from a pebble conglomerate of the
Cape Ray Belt that outcrops on the Burgeo Highway, and
another sample was collected from the type area in the Bot-
wood Belt, at the south shore of Rogerson Lake (Plate 1).
Zircons were extracted at Memorial University using cor-
ventional mineral separation techniques (crushing, Wilfley
table, heavy liquids) from the least magnetic split obtained
with a Frantz isodynamic separator. The zircons were then
hand-picked in alcohol under abinocular microscope. About
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Figure 1. Location of Proterozoic inliers and middle Paleozoic belts of the Newfoundland Appalachians.

150 zircons were selected and then separated into popula-
tions based on morphology and colour. The Rogerson Lake
sample (#71) consisted of asingle zircon population (50 zir-
cons) consisting of grains that were clear and colourless
having euhedral to subhedral shapes. The sample from the
Burgeo Highway (#72) contained two zircon populations
containing about 50 grains each, zircons that are euhedral,
clear and colourless, and grains that are slightly rounded,

clear and slightly reddish in colour (Plate 2). Some of the
zircon grains from each of the two samples contain internal
cracks and fissures in addition to zircon rims and cores
(Plate 3b). The zircons were mounted with epoxy in 2.5 cm
diameter grain mounts and polished to expose even surfaces
at the cores of the grains for analysis.
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Plate 1. Polymictic Rogerson Lake Conglomerate collected from the type area along

the southern shore of Rogerson Lake.

Plate 2. Photomicrograph of detrital zircons obtained from the Rogerson Lake Con-
glomerate at Burgeo Road.

ANALYTICAL METHODS

The U-Pb method followed is that described by Kosler
et al. (in press). Laser Ablation Microprobe-Inductively
Coupled Plasma-Mass Spectrometry (LAM-ICP-MS) analy -
ses were performed in the Department of Earth Sciences at
Memorial Univeristy, using a VG PlasmaQuad 2 S+ mass
spectrometer coupled to an in-house custom-built Q
switched Nd:YAG ultraviolet laser operating with a wave-

length of 266 nm. Zircons were ablat-
ed using a laser repetition rate of
10Hz and a laser energy of 0.8
mJ/pulse. The laser beam was
focussed 100 um above the sample
surface and reduced to a diameter of
10 to 20 um by masking with awhite
Teflon® aperture. The sample cell
was mounted on a computer driven
motorized stage on the microscope.
The computer-driven stage was
moved beneath the stationary laser to
produce a rectangular pit of variable
length, usually in the range of 20 to 40
pum, in order to match zircon crystal
size (Plate 4). The depth of the pit var-
ied from ca. 10 to 50 um depending
on line/pit length and ablation time.

Using He as a carrier gas, the
ablated sample material was trans
ported, via acid-washed plastic tub-
ing, from the sample cell to the ICP-
MS. Data was acquired to allow
measurement of the U/Pb and Pb iso-
topic ratios in detrital zircons, as well
as the isotopic ratios in the TI/Bi/Np
tracer solution that was nebulized
simultaneously with the laser ablated
solid sample. The tracer solution cor-
tained natural Tl @TI/*°T|=2.3871),
2Bj and ®Np at concentrations of
approximately 10 ppb for each iso-
tope.

Typical time-resolved data
acquisitions consisted of ca. 60 s
measurements of the He gas blank
and tracer solution signals just before
the start of ablation, aswell the U and
Pb zircon ablation signal, along with
the simultaneous TI/Bi/Np solution
signal were acquired for another 180
to 200 s. The data were acquired in
peak jumping-pulse counting mode
with 1 point measured per peak using
PQVision v. 4.30 software. In total 11 masses were meas-
ured, 201 (flyback), 203 (TI), 204 (Pb), 205 (TI), 206 (Ph),
207 (Pb), 209 (Bi), 237 (Np) and 238 (U) and oxides of Np
(®*Np*0 = 254) and U #U™*0 = 254) were monitored to
correct for oxide formation. Quadrupole settling time was 1
ms for all masses and the dwell time was 8.3 ms for all
masses except for mass 207 where it was 24.9 ms. Over the
240 seconds of measurement approximately 1600 data
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Plate 3. Scanning electrom micrograph of detrital zircons of the Rogerson Lake Conglomerate showing a) internal cracks and

fissures; and b) complex rim and core zoning.

acquisition cycles (sweeps) were collected (Kosler et al.,
2001).

DATA REDUCTION

The raw data were corrected for electron multiplier
dead time (20 ns) and downloaded to a computer for offline
processing using an in-house spreadsheet-utility program.
The *PbP®Pb, Pb/*™Pb, *Pb/Z1 and *Pb/*U ratios
were calculated and blank corrected for each analysis. The
natural 2*U/*U ratio of 137.88 was used to calculate the 2°U
since it was not acquired with other isotopes due to its low
natural abundance. Aspiration of the tracer solution allowed
for a real-time instrument mass bias correction using the
known isotopic ratios of the tracer solution measured while
the sample was ablated; this technique is largely independ-
ent of matrix effects that can variably influence measured
isotopic ratios and hence the resulting ages (Kosler et al., in
press). The amount of common Pb present in zrcons
analysed in this study was insignificant relative to the con-
tent of radiogenic Pb and accordingly, no common Pb cor-
rection was applied to the data. Accuracy and reproducibili-
ty of U-Pb analysis in the Memorial University laboratory
are routinely monitored by measurments of natural in-house
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zircon standards of known TIMS U-Pb age. For this study,
zircon 02123 that is 295 £ 1 Ma (Ketchum et al., 2001) was
utilized. The average mass bias corrected Pb/2*U value for
the zircon standard 02123 (N = 55), taken over the 3 days of
this study, was 0.04697. Thisvalueisin excellent agreement
with the accepted value of 0.046818 (Ketchum et al., 2001).
Final ages and concordia diagrams were produced using the
Isoplot/Ex macro (Ludwig, 1999) in conjunction with the
LAMdate Excel spreadsheet program (Kosler et al., in
press).

U-Pb RESULTS

SAMPLE 71 — SOUTH SHORE OF ROGERSON
LAKE

The U—Pb data for detrital zircons from the Rogerson
Lake Conglomerate at Rogerson Lake are listed in Table 1
and plotted on a concordia diagram in Figure 3. The 31
grains analyzed from the sample are split into two groups
that are well separated in frequency and age. The data show
one major cluster of 30 analyses (al-al3 and al5-a31) that
produced *Ph/U ages between 407 and 552 Ma (Figure
4). These zircons varied from 1 to almost 80 percent discor-
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Plate 4. Scanning electrom micrographs showing line raster-ablation pit in zircon crystal.

dant and show a concentration of ages at ca. 495 Ma, repre-
senting a dominantly Paleozoic zircon source. Although
comprising only one grain (al4) that is 23 percent discor-
dant, aminor |ate M esoproterozoic component is recognized
with a *Pb/ZU age of 994 Ma and a “Pb/ZU age of 972
Ma. Most of analyses plot either on concordia or slightly
above concordia; the negative discordance maybe due to an
uncorrected common Pb contamination or an incorrect mass
bias correction for some analyses.

SAMPLE 72 -BURGEO HIGHWAY

A total of 80 single detrital zircon grains analyzed from
the Burgeo Highway sampleinclude both zircon populations
of clear, colourless zircons and clear, red zircons. The data
(Table 2) show that no age differences are apparent between
detrital zircons of different colour. The distribution of data
points in the concordia diagram on Figure 5 and the cumu-
lative probability plot (Figure 6) suggests that the ages of the
sample have five maxima. Most of the zircons (70 grains)
have *Pb/*U ages between 530 and 419 Ma that vary
between 1 to 80 percent discordant. These data show a
strong concentration of ages at ca. 500 Ma and a minor con-
centration of ages in the 480 to 450 Ma range. The second
cluster of ages is represented by analyses al, a2 and a28

with 2Pb/U ages of 759, 698 and 723 Ma, respectively,
that are between 6 to 15 percent discordant and bracket the
age of the source at ca. 725 Ma.

The presence of Neoproterozoic and late Mesoprotero-
zoic components isindicated by the cluster of zircon analy-
ses at ages of 890 and 1030 Ma. Zircons al8, a43 and ab6
are between 4 and 20 percent discordant and have ages
between 838 and 915 Ma. Two analyses (a23 and a31) pro-
duced ages of 1079 and 1016 Ma that are 27 and 9 percent
discordant, respectively. Middle Mesoproterozoic ages of
1240 and 1480 Ma are represented by three analyses (a38,
a40, a68). Zircon a68 has a **Po/ZU age of 1244 Ma and a
27ph/=U age of 1233 Ma; the analysis lies close to concor-
diaand is 7 percent discordant. Analyses a38 and a40 pro-
duced Pb/”U ages of 1469 and 1487 Ma and *"Pb/*U
ages of 1481 and 1514, respectively. These agesare 2 and 8
percent discordant and indicate the age of the zircon com-
ponent is approximately 1480 Ma.

DISCUSSION

The new data from the two samples of the Rogerson
Lake Conglomerate indicate that the age spectra in these
rocks is dominated by Paleozoic zircons with minor Meso-
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Figure 3. Concordia diagram showing data points meas
ured on detrital zircons from the Rogerson Lake Conglom-
erate (Sample 71), Rogerson Lake, for the ca. 500 Ma
range. The inset shows a detailed concordia plot for the
whole range.
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Figure 4. Cumulative probability plot of detrital zircons
from the Rogerson Lake Conglomerate (Sample 71).

proterozoic input. Both conglomerate samples contain over
80 percent zircons that have Paleozoic ages of between 552
and 419 Ma; however the majority of these grains have an
age in the 510 to 490 Ma range. These ages correspond well
with the ages of Exploits arc—back-arc volcanic sequences
in the Victoria Lake supergroup that are unconformable
beneath the Rogerson Lake Conglomerate. Zircons derived
from two rhyolite samples of the Tally Pond group have

yielded identical U—Pb ages of 513 + 2 Ma (Dunning et al.,
1991) and dating of a subvolcanic porphyry of the Tulks belt
yielded a Tremadocian age of 498 +6/-4 Ma (Evans et al.,
1990). A coeval quartz monzonite intrusion in the Tulks belt
also yielded a Tremadocian age of 495 + 2 Ma (Evanset al.,
1990). Therefore, the volcanic sequences represented by the
Victoria Lake supergroup (the Tally Pond group and Tulks
belt) represent the major component in the sediment source
to the Rogerson Lake Conglomerate.

The Rogerson Lake Conglomerate detritus also con
tains zircon populations that are Ordovician, approximately
480 to 440 Ma. The source of these grainsis most likely the
adjacent rocks of the Notre Dame arc. This arc is a collec-
tion of Arenig to Llanvirn calc-alkaline volcanic rocks
intruded by Lower to Upper Ordovician (488 to 456 Ma)
magmatic arc plutons (van Staal et al., 1998), represented by
the Dashwoods Subzone. The Dashwoods Subzone is locat-
ed west of the Cape Ray Belt and consists of medium- to
high-grade metamorphic rocks cut by tonalites and granites.
The Cape Ray Granite and Cape Ray Tonalite from the
Dashwoods Subzone have been dated by U-Pb zircon
geochronology and yielded ages of 488 + 3 Maand 469 + 2
Ma, respectively (Dubé et al., 1996). A deformed volcanic
rock from the Windsor Point Group yielded a U-Pb zircon
age of 453 +5/-4 Ma. The Windowlass Hill Granite, a pre-
tectonic S-type granite, has been dated at 424 + 2 Ma (Dubé
et al., 1996).

The three detrital zircons ages in the ca. 725 Ma range
do not correlate with any known rocks in the Laurentian
basement or Notre Dame arc sequences. However, these
ages may be related to the earliest stages of lapetan rifting
along the Laurentian Margin. Wanless et al. (1968) reported
an igneous crystallization K-Ar age of 761 + 100 Ma for
mafic dykes of the Long Range Dyke swarm and similar
ages (730 Ma) have been reported for mafic dykes in the
central and southern Appalachians (Hoffman, 1989). Late
Proterozoic intrusive episodes related to the breakup of Law-
rentia are present in the southwestern and northern Canadi-
an Shield (Kamo et al., 1995). One of these events, the
Franklin dyke swarm located in Nunavut, has been dated by
U-Pb geochronology at 723 Ma (Heaman et al., 1992). This
intrusive dyke event has been considered to be associated
with the break-up and rifting along northwestern Laurentia
and may, in part, be linked to a series of discrete, large-scale
intrusive events, including the Long Range dykes, that span
over 200 Ma, culminating in the final breakup of Laurentia
(Heaman et al., 1992).

The possibility also exists that the 725 Ma zircons are
Avalonian, as similar 760 to 700 Ma ages are found in the
Burin Group (763 £ 2 Ma) and Flemish Cap granodiorite
(751 Ma). However, due to the absence of additional Aval-
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Figure 5. Concordia diagram for detrital zircons from the
Rogerson Lake Conglomerate (Sample 72) at Burgeo Road
for the ca. 500 Ma range. The inset displays a concordia
diagram for the whole range.
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Figure 6. Cumulative probability plot of detrital zircons
from the Rogerson Lake Conglomerate (Sample 72).

onian ages and the fact that the provenance source indicates
a dominantly westward-transportation direction of the zir-
cons, an Avalonian source for detritus in the Rogerson Lake
Conglomerate is not contemplated.

The Neoproterozoic (890 Ma) and M esoproterozoic age
groups (1250 and 1030 Ma) correspond with rocks of the
Grenville Orogen, whereas the middle Mesoproterozoic
ages (ca. 1500) are correlated with basement gneisses of the
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Grenville Orogen (Owen and Erdmer, 1990). These Lau
rentian rocks contributed a minor quantity (approximately
10 percent) of the zircons that were analysed in the Roger-
son Lake Conglomerate. The Indian Head Inlier of western
Newfoundland contains several granitic gneiss units dated
in the 900 to 800 Ma range. Samples from the Stephenville
area contain hornblende and biotite that yielded an undis-
turbed “Ar/®Ar spectra with ages of 880 and 825 Ma,
respectively (Dallmeyer, 1978). The K—Ar ages obtained
from biotite yield ages that correspond with the “Ar/®Ar
data. A granitic gneiss unit was dated at 830 + 42 Ma (Low-
den, 1961) and a 900 + 45 Ma age was obtained from biotite
in a pegmatite dyke (Lowden et al., 1963).

Correlative rocks of the Indian Head Inlier and the
Long Range and Steel Mountain inliers contain similar high-
grade quartz feldspar gneisses and granites that are Meso-
proterozoic. Basement gneisses of the Long Range Inlier in
the area of Western Brook Pond have ages of 1250 Ma (Erd-
mer, 1986). These rocks were intruded by a belt of granitoid
plutons in the Long Range Inlier and the adjacent Grenville
Province in southern Labrador and adjacent Quebec. These
large plutons yielded U—Pb zircon ages between 1080 and
960 Ma (Gower and Loveridge, 1987; Scharer and Gower,
1988), with a U-Pb zircon age of 1023 +7/-5 Ma obtained
from a granitoid intrusion of the Lake Michel intrusive suite
(Owen and Erdmer, 1990). A felsic granulite gneiss of the
Disappointment Hill complex in the Steel Mountain Inlier
yielded an upper intercept U-Pb zircon age 1498 +9/-8 Ma
and afoliated gabbro related to Steel Mountain anorthositic
rocks has an upper intercept age of 1254 + 14 Ma (Currie et
al., 1992). The ages of Proterozoic zircons in the Rogerson
Lake Conglomerate, therefore, correlate within the limits of
uncertainty with the ages previously reported for Laurentian
rocks of the Grenvillian basement inliers in western New-
foundland.

McNicoll and van Staal (2001) reported U-Pb SHRIMP
data for zircons from syntectonic sediments in the Badger
Belt along the Red Indian Line. Coarse-grained sandstone
samples from the base and top of the Badger group were
dominated by Late Cambrian to Ordovician zircons with the
amount of Grenville-aged zircons decreasing toward the top
of the group. The Rogerson Lake Conglomerate and the
Botwood Belt overlie the Badger group and contain asmall-
er proportion of Grenvillian detrital zircons. The decrease in
contribution of Laurentian zircons from the base of the Bad-
ger group stratigraphically upwards to the Rogerson Lake
Conglomerate is attributed to the collision-induced uplift of
the Notre Dame arc that diminished the input of Laurentian
basement (McNicoll and van Staal, 2001). Similarly, McNi-
coll and van Staal (op. cit.) attribute the absence of zircons
in the 680 to 620 Ma range as evidence for the presence of
a seaway separating the Gander margin and Avalonia from
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the Notre Dame, Victoria and Exploits arc terranes that were
accreted to Laurentia.

CONCLUSIONS

The zircon age ranges obtained by LAM-ICP-MS pro-
vide new insights into the depositional history of the Roger-
son Lake Conglomerate. This Silurian sedimentary
sequence dominantly consists of detritus derived from the
underlying Late Cambrian to Early Ordovician arc volcanic
sequences of the Victoria Lake supergroup. The conglomer-
ate also yielded a smaller proportion of Ordovician (480 to
440 Ma) zircons that were in all probability were derived
from the calc-alkaline volcanic rocks and associated mag-
matic arc plutons of the adjacent Notre Dame arc. The pres-
ence of asmall number of ca. 725 Ma zircons may possibly
be attributed to input from igneous intrusions associated
with the earliest stages of lapetan rifting on the Laurentian
margin.

The Rogerson Lake Conglomerate also contains a
minor zircon population derived from Proterozoic rocks of
Laurentian basement. High-grade quartz feldspar basement
gneisses and younger granite plutons within Grenville
inliers have yielded U—Pb zircon ages ranging from ca. 1500
to 900 Ma. These data suggest that the dominant transport
direction for detritus that make up the conglomerate was
from west to east and that the conglomerate contains mate-
rial sampled from a geographically large area presently
exposed over 50 000 kne. The high proportion of Paleozoic
zircons relative to Proterozoic grains is presumably the
result of Middle Ordovician exhumation of the Notre Dame
arc and its subsequent collision and accretion to Laurentia.

This study demonstrates the effectiveness of using
LAM-ICP-MS for detrital zircon geochronology. This
method, although less precise than conventional TIMS
analysis, provides for better spatial resolution and therefore
more accurate age dates and is the more efficient and cost
effective technique, having the potential to analyse a greater
number of zircon grainsin a shorter time period. The LAM-
| CP-M S technique represents a suitable method for the rapid
dating of alarge number of detrital zircons for the purpose
of sediment provenance studies.
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