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ABSTRACT

The Reid gold deposit of the Brady option exploration licences in NTS map area 2D/05 of central Newfoundland was dis-
covered in 2002, through prospecting and sampling of arsenopyrite-bearing quartz-plagioclase porphyry float, in an area of
extensive till cover, immediately north of the Northwest Gander River. Reid deposit  mineralization is hosted in ophiolitic
basalt, diabase dykes and trondhjemite of the Coy Pond Complex that likely occur in a series of thrust-bound slices, marking
the boundary between the eastern Exploits Subzone (Dunnage Zone) and the ellipsoidal Mount Cormack Subzone, a tectonic
window into the underlying Gander Zone. Trench and drillcore data indicate that the Reid deposit mineralization occurs as
randomly oriented sericite–chlorite–Fe-carbonate–pyrite–arsenopyrite alteration, hosted mainly in silicified and quartz-
veined, quartz-plagioclase porphyritic granitoid (Reid porphyry) and to a lesser extent, in basalt, diabase and microgabbro
of the Coy Pond Complex. The porphyry both crosscuts, and is intruded by fine-grained diabase and basalt. Lithogeochemi-
cal data for the porphyry, diabase and lava indicate that these are all tholeiitic, trace-element depleted, supra-subduction zone
rocks. The Reid (deposit) porphyry is a trondhjemite and likely represents the final product of fractional crystallization of
strongly depleted tholeiitic mafic rocks of the ophiolite complex. 

The U–Pb zircon geochronology indicates the Reid (deposit) trondhjemite crystallized in the Cambrian at 510 ± 4 Ma
and the Coy Pond Complex is, therefore, the oldest known ophiolite fragment in the Appalachian–Caledonide orogen.

INTRODUCTION

The Reid gold deposit, the most significant mineraliza-

tion on the Brady option exploration property,  is located 50

km south of the Town of Grand Falls-Windsor, Newfound-

land, in the Burnt Hill map area (NTS 2D/05; Figure 1). This

part of central Newfoundland forms a peneplained flatland

having little topographical relief (from 130–250 m asl), and

a mature river system developed on thick hummocky ter-

rain, ablation and basal till, with local alluvium and bogs

(Liverman and Taylor, 1990). The thick glacial till blanket,

in conjunction with the flat topography and younger fluvial

deposits, make intact bedrock outcrop very scarce, typically

<1%. Glacial flow indicators, of which there were very few,

are dominantly bidirectional, but local unidirectional striae

indicate ice flow from the north to the south (Proudfoot et
al., 2005).

Prior to the construction of the Bay d’Espoir highway in

the early 1970s, and systematic 1:50 000-scale geological

mapping, little exploration or academic survey work had

been completed. For a complete summary of survey investi-

gations prior to 1985, the reader is referred to Colman-Sadd

(1985), and all subsequent scientific work is summarized in

Colman-Sadd et al. (1992), Valverde-Vaquero et al. (2006)

and Zagorevski et al. (2007). After the release of a Provin-

cial Government regional lake-sediment compilation (Dav-

enport et al., 1994), the mineral exploration industry

renewed its interest in central Newfoundland, and initiated a

number of systematic grass-roots prospecting and soil sam-

pling programs. In 2002, the discovery of auriferous,

arsenopyrite and pyrite mineralized basaltic, ultramafic and

porphyritic granitoid float north of the Northwest Gander

River and west of the Bay d’Espoir highway, led to the

acquisition of the Brady option exploration licences. Explo-
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Figure 1. Simplified geological map of the Island of Newfoundland showing the location of the Burnt Hill map area and the
Reid gold deposit.
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ration at the Brady option property began with systematic

prospecting and soil sampling of a detailed grid at the Reid

Brook Zone, (now referred to as the Reid gold deposit) that

occurs in till and alluvium covered areas, north of the North-

west Gander River (Figure 2). This was immediately fol-

lowed by detailed ground geophysics (VLF-EM, magnetics,

Induced Polarization (IP)), soil geochemistry, prospecting

and trenching as well as diamond drilling (Dimmell, 2003,

2004); and more recently, extensive diamond drilling

(Evans, 2010, 2011). Completed diamond drilling indicates

that the Reid deposit contains an inferred resource of 5.99

million tonnes averaging 0.558 g/t Au for 107 461 ounces of

gold at a cutoff of 0.30 g/t Au (Golden Dory Resources,

Press Release, September 28, 2010).

Largely, because of the paucity of exposed bedrock, the

geological and geochronological database for this part of

central Newfoundland is sparse (Anderson and Williams,

1970; Colman-Sadd, 1985; Dunning et al., 1990; Colman-

Sadd et al., 1992; Valverde-Vaquero et al., 2006) making

interpretation of the geology and setting of the Reid gold

deposit difficult. Robust lithogeochemical data are lacking

for rocks hosting the deposit, and although there are a num-

ber of regionally significant U–Pb crystallization and meta-

morphic ages, none is directly pertinent to the rocks of this

investigation. Herein are reported whole-rock lithogeo-

chemistry for select rocks from the Reid gold deposit of the

ophiolitic Coy Pond Complex, including mineralized and

unmineralized samples. A new U–Pb (SHRIMP) zircon age

determination for the quartz-plagioclase porphyry of the

Reid deposit is also reported. 

REGIONAL SETTING AND

PREVIOUS WORK

In central Newfoundland, the late 1960s and early

1970s regional-scale aeromagnetic surveys and geological

mapping by the Geological Survey of Canada (Anderson

and Williams, 1970) were followed by 1:50 000-scale sys-

tematic mapping by the Newfoundland and Labrador

Department of Natural Resources (Colman-Sadd, 1980a,

1985; Blackwood, 1982; Colman-Sadd and Swinden,

1984a, 1989; Swinden, 1988; Colman-Sadd and Russell,

1988). These regional mapping programs resulted in a series

of investigations (Colman-Sadd, 1980b; Colman-Sadd and

Swinden, 1982, 1984b; Colman-Sadd et al., 1992) that have

greatly improved our understanding of the geodynamic evo-

lution of the region. 

The northeast portion of the Burnt Hill map area (NTS

2D/05) encompasses the southeastern margin of the ellipti-

cal Mount Cormack Complex, the southward-lying ophi-

olitic rocks of the Coy Pond and Great Bend (ophiolite)

complexes and the felsic volcanic, volcaniclastic and fine-

grained clastic sedimentary rocks of the Baie d’Espoir

Group (Figures 2 and 3; Colman-Sadd, 1980a, 1985). The

rocks of the Mount Cormack Complex are dominated by

chlorite to biotite metamorphic zone, decimetre- to metre-

scale bedded psammite and pelite of the Spruce Brook For-

mation. These low-grade rocks pass gradationally north-

westward into sillimanite and K-feldspar-grade metamor-

phic gneisses and metasedimentary diatexite, along with

minor mafic intrusions and the Middle Ordovician (464+4/-3

Ma) anatectic, garnet–tourmaline–muscovite Through Hills

granite (Colman-Sadd, 1985; Colman-Sadd et al., 1992;

Valverde-Vaquero et al., 2006).

Southeast of, and in structural contact with, the rocks of

the Mount Cormack Complex and underlying the Northwest

Gander River lowlands are the ophiolitic rocks of the Coy

Pond and Great Bend complexes (Colman-Sadd, 1982,

1985; Colman-Sadd and Russell, 1988). North of Coy Pond

(Figure 2), an almost complete ophiolite stratigraphy is pre-

served with peridotites exposed in the west and mafic dykes,

lavas and sedimentary rocks exposed in the east. Thin-bed-

ded black argillite, sandstone and polymict conglomerate

conformably overlie mafic pillow lavas that are inferred to

grade transitionally into diabase and gabbro (Colman-Sadd,

1985). Altered trondhjemite forms a large irregular intrusion

that crosscuts gabbro and diabase, but is itself cut by mafic

dykes. Gabbro and diabase pass gradationally westward into

massive and layered pyroxenite, wehrlite and intermixed

gabbro. These units are separated from a thick basal

harzburgite by a thin unit of strongly sheared serpentinite

and talc–magnesite schist. To the northeast, the ophiolite

complex tapers into a narrow (~1 km wide) zone of brec-

ciated and sheared peridotite. Contacts between the Coy

Pond and Mount Cormack complexes are not exposed, but

are interpreted to be faulted. 

South and east of the Coy Pond Complex are clastic

sedimentary, volcaniclastic and volcanic rocks of the North

Steady Pond Formation of the Baie d’Espoir Group (Figures

2 and 3; Colman-Sadd, 1980a; 1985). The thickness and

internal stratigraphy of the formation are not known because

of the poor exposure, a lack of marker horizons and the pres-

ence of isoclinal folding. From north to south, the rocks

include a sequence of felsic volcanic flows, tuffs and vol-

caniclastic sandstones also termed the Huxter volcanic belt

(Colman-Sadd and Swinden, 1982); a discontinuous horizon

of clast-supported polymict conglomerate containing

argillite, siltstone, psammite, chert and felsic and mafic vol-

canic clasts and interbedded packages of thin- and medium-

bedded arkosic sandstone, siltstone and phyllite. The contact

between the North Steady Pond Formation and the rocks of

the Coy Pond Complex is exposed at one locality, where a

sheared serpentinite marks the trace of an easterly dipping

normal fault. Elsewhere, the contact is assumed to be fault-

ed.  
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Figure 2. Simplified geological map of the area around the Reid gold deposit adapted after Colman-Sadd (1985). All contacts
are assumed.



H. SANDEMAN, V. McNICOLL AND D.T.W. EVANS

Colman-Sadd and Swinden (1984b) and Colman-Sadd

(1985) recognized that the quartz-rich, turbiditic sedimenta-

ry rocks of the Spruce Brook Formation of the Mount Cor-

mack Complex, exhibited paleontological fauna and sedi-

mentological characteristics similar to rocks of the

Davidsville Group of the Gander Zone. The rocks encircling

the Mount Cormack Complex, however, were noted to have

lithological associations and faunal evidence of Exploits

Subzone rocks. Colman-Sadd and Swinden (op. cit.) there-

fore proposed that the Mount Cormack Subzone represents

Gander Zone rocks exposed in an upward-domed basement

window, encircled by a structurally modified, tectonic

klippe of intra-oceanic-arc and back-arc complexes of the

eastern Dunnage Zone (Colman-Sadd and Swinden, 1984b).

Subsequently, the Gander Zone of Newfoundland was divid-

ed into three distinct constituents, the Gander Lake, Meel-

paeg and Mount Cormack subzones (Williams et al., 1988).

Faunal provenance studies on graptolite-bearing black shale

conformable at the top of the Coy Pond Complex indicate

that the local rocks of the Exploits Subzone included ocean-

ic crust that must have formed proximal to the Gondwanan

eastern margin of Iapetus (Williams et al., 1992). These

Upper Cambrian (e.g., Pipestone Pond Complex, ca. 494

Ma; Dunning and Krogh, 1985), eastern Dunnage Zone

‘Penobscot’ arc ophiolites were thrust eastward (present-day

coordinates) over the Gander Zone margin (Colman-Sadd et
al., 1992; Zagorevski et al., 2007). Metamorphism and

accompanying anatexis in the Mount Cormack Complex at

ca. 464 Ma (Colman-Sadd et al., 1992; Valverde-Vaquero et
al., 2006), and intrusion of the ‘stitching’, Partridgeberry

Hills Granite (Middle Ordovician: 464 +6/-4 Ma) were inter-

preted to indicate that overthrusting of the eastern Exploits

oceanic tract and concomitant doming and anatexis in the

Mount Cormack window, must have finished by that time

(Colman-Sadd et al., 1992). The origin of younger, normal

faulted contacts between the Coy Pond and Mount Cormack

complexes, and second-generation fabrics in the southern

portions of the Partridgeberry Hills Granite and the adjacent

Baie D’Espoir Group was described as uncertain by Col-

man-Sadd et al. (1992). Those authors suggested that these

faults and fabrics may have resulted from further crustal

shortening, or perhaps forceful intrusion of a semi-solidified

granitic intrusion (i.e., Partridgeberry Hills Granite).

GEOLOGY OF THE REID GOLD DEPOSIT

The rocks hosting the Reid gold deposit are very poor-

ly exposed, but sparse local outcrop and rubble-crop, along

with trenching, indicate that the mineralization is hosted by

massive to weakly deformed, block-faulted and likely

thrust-imbricated ophiolitic rocks of the Coy Pond Complex

(e.g., Colman-Sadd, 1985; Colman-Sadd et al., 1992; Dim-

mell et al., 2003; Dimmell, 2004; Evans et al., 2007; Evans,

2010, 2011). Trenching at the Reid deposit was successful in

exposing only sporadic, isolated outcrop and subcrop of

quartz-veined and chlorite + Fe carbonate ± sericite ± epi-

dote altered, arsenopyrite- and pyrite-bearing, fine- to medi-

um-grained mafic volcanic, hypabyssal diabase (microgab-

bro) and rare quartz-plagioclase porphyry (Dimmell et al.,
2003). Diamond-drill hole data at the Reid deposit (Dimmell

et al., 2003; Dimmell, 2004; Evans, 2010, 2011), however,

provide new insight into the orientations and spatial rela-

tionships of the rocks of the Coy Pond Complex and the

Spruce Brook Formation of the Mount Cormack Subzone.

The drillholes record the first clear and unambiguous rela-

tionships documented for the ophiolitic rocks at the Reid

deposit and provide for material for lithogeochemistry and

suitable siliceous granitoid U–Pb geochronology.

Anomalous gold at the Reid deposit occurs throughout

the upper and middle parts of the drillholes and is hosted by

basalt, diabase and quartz-plagioclase porphyry. Several

diamond-drill holes, in particular the vertical BO-04-13

(Dimmell, 2004) and the inclined BO-09-17 (Evans, 2010,

2011) intersected thick sequences of ophiolitic stratigraphy.

Diamond-drill hole BO-09-17 (Evans, 2010, 2011) yielded

some of the highest and continuous gold assays so it was

examined in greater detail, and representative, 20-cm-quar-

tered core samples were taken throughout. Gold assays were

determined for much of the drillhole and ranged from

<5–5378 ppb Au in 1-m-wide, split core intervals (Evans,
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Figure 3: Schematic representation of rock types encoun-
tered in diamond-drill hole BO-09-17 that intersected rocks
of the Reid gold deposit of the Coy Pond Complex (adapted
from Evans, 2010).
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2010). In basalt and diabase near the top of the drillhole, val-

ues ranged from <5–3146 ppb Au and in the quartz-plagio-

clase porphyry ranged from <5–5378 ppb Au. Other ele-

ments were not analyzed. Earlier auriferous drillhole inter-

sections (Dimmell et al., 2003; Dimmell, 2004), however,

demonstrated that Au is strongly correlated with As and per-

haps weakly correlated with Cu and Zn. 

Examination of drillhole BO-09-17 (Figure 3) reveals

that the upper parts contained about 40 m of generally fine-

grained, massive chloritic basalt (sample BO-09-17_7.13 m,

Plate 1) interlayered in repeated intervals with fine- to medi-

um-grained gabbro and basaltic dykes exhibiting chill mar-

gins. Granitoid veins, herein interpreted as trondhjemite (the

Reid quartz-plagioclase porphyry), and basaltic breccia

zones occur locally in these basaltic rocks (Plate 2). The

veins and breccia clasts exhibit chloritic margins and do not

have distinct chill zones. All of the rock types had locally

extensive disseminated pyrite, were quartz veined and yield-

ed anomalous Au assays (see above; Evans, 2010, 2011).

Below the upper mafic-rock-dominated horizon, is an inter-

val (~28 m) of typically medium-grained (<5 mm) leuco-

cratic quartz and plagioclase porphyritic biotite trond-

hjemite or tonalite (BO-09-17_60.95 m, Plate 3). The trond-

hjemite preserves diffuse, poorly developed chill margins

against some basalt, but is also crosscut by basaltic dykes

with well-developed chills. Some of this interval of the por-

phyritic granitoid was sericite + Fe carbonate altered, but

only yielded anomalous gold where dissected by generally

narrow quartz veinlets.

Below the upper trondhjemite is a fine- to medium-

grained gabbro varying to diorite (sample BO-09-17_69.39

m, Plate 4) that is inferred to represent an approximately 20-

m-thick gabbro sill or dyke that crosscuts the trondhjemite.

This unit was poorly mineralized relative to the top and

lower sections of the drillhole.

Immediately below the gabbro sill is the widest inter-

section of trondhjemite, corresponding to arguably the most

anomalous mineralized section of the drillhole. This is a

~50-m-thick interval of commonly quartz-veined, strongly

chlorite + Fe carbonate + sericite ± epidote-altered,

arsenopyrite- and pyrite-bearing, typically medium-grained

trondhjemite (sample BO-09-17_107.34 m, Plate 5; Evans,

2010, 2011). Mineralization consists of disseminated pyrite,

less common chalcopyrite and abundant arsenopyrite that

occurs in spatial association with pervasive, flooding-style

alteration of the trondhjemite matrix. Alteration consists of
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Plate 1.  Massive, fine-grained pyritic basalt from the top of
drillhole BO-09-17 (sample BO-09-17_7.13 m). This inter-
section yielded an assay of <5 ppb Au. The $2 coin is 28 mm
in diameter. 

Plate 2.  Pyritic, massive and brecciated chlorite + Fe-car-
bonate + epidote-altered basalt cut by veinlets of medium-
grained pyrite + arsenopyrite + sericite+ Fe-carbonate +
chlorite-altered trondhjemite (sample BO-09-17_27.32 m).
This intersection yielded an assay of 1694 ppb Au. The $2
coin is 28 mm in diameter.

Plate 3. Weakly chlorite–sericite–Fe-carbonate-altered
quartz-plagioclase porphyry from drillhole BO-09-17 (sam-
ple BO-09-17_60.95 m). This intersection yielded an assay
of <5 ppb Au. The $2 coin is 28 mm in diameter.
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anastamosing, millimetric chlorite + Fe carbonate + sericite

+ epidote veinlets that wrap around large remnant phe-

nocrysts of quartz and saussuritized plagioclase (Plates 6

and 7). Quartz veining is sporadic and discontinuous

throughout, with individual veins rarely exceeding 10 cm in

width. Free gold has been observed as fracture coatings and

as isolated tiny (≤ 10µm) grains in pyrite (Seymour, 2003;

Plate 8). This lower trondhjemite interval is crosscut by a

1.5-m-wide, fine-grained basaltic dyke (sample BO-09-

17_125.90 m, Plate 9) that has well-developed chill margins

against the trondhjemite.

The trondhjemite passes abruptly downward into gener-

ally weakly altered to massive, medium- to coarse-grained

chloritized and serpentinized gabbro (Plate 10) and locally

peridotite. 
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Plate 4. Fine- to medium-grained chlorite+epidote-altered
diorite of the Coy Pond Complex (sample BO-09-17_69.39
m). This intersection yielded an assay of 94 ppb Au. The $2
coin is 28 mm in diameter.

Plate 5. Medium-grained moderately to strongly altered
and quartz-veined quartz-plagioclase porphyry (sample
BO-09-17_107.34 m). This intersection yielded an assay of
3036 ppb Au. The $1 coin is 25 mm in diameter. Key: Qtz =
quartz; Chl = chlorite.

Plate 6. Strongly pyrite–arsenopyrite–chlorite–sericite +
Fe-carbonate-altered and quartz-veined and mineralized
quartz-plagioclase porphyry (sample BO-09-17_150.72 m).
This intersection yielded an assay of 2916 ppb Au. The $1
coin is 25 mm in diameter. Key: Qtz = quartz; Chl = chlo-
rite.

Plate 7. Photomicrograph of quartz-plagioclase porphyry
under crossed polars showing typically euhedral pyrite and
arsenopyrite in a sericite + quartz + albite + Fe-carbonate
+ chlorite-altered matrix surrounding remnant interlocking
grains of quartz and plagioclase feldspar (sample BO-09-
17_107.0m). This rock yielded an assay of 3036 ppb Au.
Key: Qtz = quartz; Pl = plagioclase; Py = pyrite; ASPy =
arsenopyrite.
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ANALYTICAL METHODS

LITHOGEOCHEMISTRY

Five specimens of the porphyry along with 4 samples

each of diabase-basalt and gabbro-diorite of the Coy Pond

Complex were analyzed for their major, trace and rare-earth-

element contents. These samples are all variably altered and

mineralized. Samples were analyzed at the Department of

Natural Resources, Government of Newfoundland and

Labrador, Geochemical Laboratory (Howley Building, Hig-

gins Line) for their major and selected trace elements (Ag,

As, Be, Cd, Co, Cr, Cu, Li, Mo, Ni, Pb, Sc, V, Zn). Analyti-

cal methods for these elements are after Finch (1998). Fluo-

ride was determined by ion specific electrode at the Howley

Building geochemical laboratories. The samples were then

analyzed for REE and other selected elements (Ba, Bi, Cs,

Ga, Ge, Hf, Nb, Rb, REE, Sb, Sn, Sr, Ta, Th, Tl, U, W, Y, Zr)

by ICP-MS, total digestion methods at XRAL Laboratories

in Ancaster, Ontario using standard methods outlined on

their website (http://www.actlabs.com/). Gold (in ppb) rep-

resents the fire assay results for 1m length sections of the

core as reported in Evans (2010; 2011). Results are present-

ed in Table 1.

SHRIMP U–Pb GEOCHRONOLOGY

A sample of medium-grained, weakly mineralized, pla-

gioclase porphyritic trondhjemite was collected for U–Pb

geochronology from a section of NQ drillcore from the

trondhjemite (sample BO-09-017-123.1-123.3 m; z10414)

to provide the maximum possible age of the timing of that

gold mineralization. The sample is visually, petrographical-

ly and geochemically identical to trondhjemite immediately

above the sampled interval, which yielded ~3–4 g/t Au. 

SHRIMP II (Sensitive High Resolution Ion Micro-

Probe) analyses were conducted at the Geological Survey of

Canada (GSC) using analytical and data-reduction proce-

dures described by Stern (1997) and Stern and Amelin

(2003) and briefly summarized here. Zircons from the sam-

ples and fragments of the GSC laboratory zircon standard

(z6266 zircon, with 206Pb–238U age = 559 Ma ) were cast in

an epoxy grain mount (GSC mount IP587), polished with
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Plate 8. Electron microprobe backscattered electron image
of subhedral arsenopyrite and pyrite grains in a strongly
sericite + quartz + albite + Fe-carbonate + chlorite-altered
quartz-plagioclase porphyry matrix. Note the tiny gold
inclusion in pyrite (sample BO-09-17_107.0 m). Key: Au =
gold; Py = pyrite; ASPy = arsenopyrite.

Plate 9.  Fine-grained diabase dyke with thin quartz veins
crosscuts quartz-plagioclase porphyry in diamond-drill
hole BO-09-17 (sample BO-09-17_125.9 m). Canadian $1
coin is 25 mm in diameter. The diabase was not assayed.

Plate 10. Massive, medium- to coarse-grained gabbro near
the base of drillhole BO-09-22 (sample BO-09-22_168.2
m). Canadian $1 coin is 25 mm in diameter. This section of
core was not assayed.
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diamond compound to reveal the grain centres, and pho-

tographed in transmitted light. The mount was evaporative-

ly coated with 10 nm of high-purity Au, and the internal fea-

tures of the zircons were characterized with backscattered

electrons (BSE) utilizing a scanning electron microscope

(SEM). Analyses were conducted using an O- primary beam

projected onto the zircons with an elliptical spot size of 13 x

16 µm (K100). The count rates of ten isotopes of Zr+, U+,

Th+, and Pb+ in zircon were sequentially measured with a

single electron multiplier. Off-line data processing was

accomplished using customized in-house software. The

SHRIMP analytical data are presented in Table 2. Common-

Pb-corrected ratios and ages are reported with 1s analytical

errors, which incorporate an external uncertainty of 1.0% in

calibrating the standard zircon (see Stern and Amelin, 2003).

Isoplot v. 3.00 (Ludwig, 2003) was used to generate the con-

cordia diagram, where the error ellipses are displayed at 2s.

Analyses of a secondary zircon standard (Temora 2) were

interspersed between the sample analyses to verify the accu-

racy of the U–Pb calibration. Using the calibration defined

by the z6266 standard, the weighted mean 206Pb–238U age of

the analyses of Temora 2 zircon on the grain mounts were

determined to be 415.2 ± 3.4 Ma (IP587). The accepted
206Pb–238U age of Temora 2 is 416.5 ± 0.22 Ma, based on 21

isotope dilution fractions (Black et al., 2005).

LITHOGEOCHEMICAL RESULTS

The quartz-plagioclase porphyry plots as a trondhjemite

transitional to tonalite in the normative classification

scheme of Barker (1979; Figure 4A) and exhibits Nb, Y and

other high-field strength abundances characteristic of vol-

canic arc granitoids (Figure 4B: Pearce et al., 1984). The

porphyry as well as the basalts, diabase and diorite of the

Coy Pond Complex all belong to the low-K2O arc tholeiite

suite (Figure 5A), and they have Zr/Y versus Zr relation-

ships typical of volcanic arc basalts (Figure 5B; Pearce and

Norry, 1979). These observations all suggest that the Coy

Pond Complex was formed in an intra-oceanic, depleted,

tholeiitic island-arc setting.  This conclusion is further sub-

stantiated by normal mid-ocean ridge basalt (NMORB; Sun

and McDonough, 1989) normalized plots (Figure 6). The

diorite–gabbro exhibits trace-element abundances lower

than MORB for all elements except P and Th (Figure 6A).

They have flat to weakly LREE-depleted rare-earth element

patterns with strongly elevated Th and prominent Nb

troughs. Three of 4 samples have Zr–Hf troughs whereas the

fourth, containing significantly elevated MgO, Cr and Ni, is

mafic to ultramafic and lacks a Zr–Hf trough. Basalt and

diabase exhibit multi-element patterns similar to those for

the diorite–gabbro where all element abundances are less

than NMORB with the exception of Th (Figure 6B). They

have flat to weakly depleted patterns with large negative Nb

anomalies, variably positive and negative P anomalies and

Zr–Hf troughs. The trondhjemite has multi-element patterns

essentially identical to those for the basalt–diabase with flat,

weakly LREE-depleted REE patterns, and prominent Nb, P,

Zr–Hf troughs (Figure 6C). The Eu exhibits both minor pos-

itive and negative anomalies. The porphyry hosting miner-

alization at the Reid gold deposit appears to represent a

siliceous, island-arc tholeiitic trondhjemite derived via frac-

tional crystallization of strongly depleted mafic rocks of the

Coy Pond Complex, perhaps comparable to gabbro sample

BO-09-17_168.2 m (Figure 6A). Although the database is

limited, gold appears to correlate best with Sb and W. Cad-

mium and As are typically elevated, but are not directly cor-

related with Au.

U–Pb RESULTS

A small number of poor-quality zircon grains were

retrieved from the trondhjemite sample (BO-09-017-123.1-

123.3 m, z10414), all of which have a high U content (Table

1). These zircon crystals display textures most likely result-

ing from alteration and radiation damage to the crystals

(Figure 7). Although all of the zircon grains retrieved from

the sample display these textures, most of these grains con-

tain unaltered, undamaged portions that could be analyzed

using in-situ analysis on the SHRIMP.

The U–Pb SHRIMP analyses result in a cluster of con-

cordant, overlapping data (Figure 8, Table 2). A weighted

average of the 206Pb/238U ages of these analyses is calculated

to be 510 ± 4 Ma (MSWD=0.80, probability of fit = 0.55,

n=6). Three analyses in the concordia diagram are younger

than ca. 510 Ma and are slightly discordant. These analyzed

zircons are interpreted to have undergone minor Pb loss and

the data are not included in the age calculation. Six addi-

tional analyses on zircon grains from this sample had U con-

tents greater than 2000 ppm. As these analyses are outside

of the calibration range of the BR266 standard on the

SHRIMP mount, they are also not included in the data table

or the age calculation. The resultant Cambrian age of 510 ±

4 Ma is considered the crystallization age of the trond-

hjemite.

IMPLICATIONS OF THE NEW DATA

One of the major roadblocks to a better understanding

of the geology of central Newfoundland is the lack of

exposed bedrock. Detailed aeromagnetic and induced polar-

ization studies, in conjunction with regional prospecting,

trenching and drillhole data reveal critical, new information

on the rock types, their gross orientations and their interre-

lationships in the area around the Reid gold deposit of the

Brady option exploration property. This is particularly

important as this prospect occurs near the contact zone

between the metasedimentary rocks of the Spruce Brook

Formation of the Mount Cormack Subzone and the ophi-
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Table 1: Representative lithogeochemical data for the quartz-plagioclase porphyry, diabase and basalt and diorite-gabbro of

the Coy Pond Complex

sample BO09-17_43.56 BO09-17_60.95 BO09-17_78.2 BO09-17_98.62 BO09-17_131.75 BO-09-17_7.13 BO-09-17_27.32
Lab Number 8940301 8940302 8940305 8940307 8940311 8940295 8940298
rock-type Trondhjemite Trondhjemite Trondhjemite Trondhjemite Trondhjemite Basalt Alt Basalt
UTM east 602382 602382 602382 602382 602382 602382 602382
UTM north 5369098 5369098 5369098 5369098 5369098 5369098 5369098
Prospect Reid Zone Reid Zone Reid Zone Reid Zone Reid Zone Reid Zone Reid Zone

SiO2 77.12 69.29 74.00 72.92 73.23 53.52 44.80
TiO2 0.22 0.24 0.25 0.23 0.27 0.84 0.73
Al2O3 11.72 11.51 11.63 11.66 11.00 14.66 12.03
FeOT 4.04 4.27 2.56 2.37 3.06 12.38 8.34
Fe2O3 0.51 n.a. 0.27 0.37 0.55 2.51 n.a.
FeO 3.59 n.a. 2.32 2.04 2.57 10.13 n.a.
MnO 0.06 0.07 0.05 0.05 0.04 0.17 0.20
MgO 0.73 0.59 0.60 0.61 0.46 4.85 3.93
CaO 0.24 2.62 2.39 2.92 2.76 1.93 8.30
Na2O 2.93 3.78 2.98 4.54 3.18 3.71 3.16
K2O 1.18 0.59 1.25 0.54 0.87 0.28 0.69
P2O5 0.04 0.05 0.05 0.05 0.06 0.05 0.04
LOI 1.92 3.29 3.22 3.38 3.61 5.26 10.65
Mg# 24.27 19.78 29.44 31.59 21.13 41.13 45.65

F 62 54 76 45 197 141 109
Cr < 1 < 1 < 1 < 1 < 1 8 2
Ni < 1 < 1 < 1 < 1 < 1 8 2
Co 2 2 2 < 1 1 37 35
Sc 17.5 20.6 17.0 18.6 19.6 40.4 29.6
V 4 < 1 1 < 1 5 337 84
Cu 1 < 1 26 < 1 1 16 21
Pb < 1 < 1 < 5 < 1 < 1 < 5 < 5
Zn 68 55 23 26 21 41 38
Ag < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
Au (ppb) 47 <5 <5 13 13 <5 1694
As 59 7 8 10 15 15741 15170
Be 0.5 0.3 0.4 0.3 0.3 < 0.1 < 0.1
Bi < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
Cd 0.4 0.2 0.2 0.2 0.2 46.6 48.3
Cs 5.2 2.1 4.7 1.4 6.2 3.50 3.70
Ga 16 15 12 13 12 18 13
Ge 1.2 1.3 1 1 1.1 0.90 0.60
Li 17 22 13 14 12 36 16
Mo < 1 < 1 < 2 < 1 < 1 < 2 < 2
Sb 0.6 0.2 0.4 0.3 0.4 0.30 11.20
Sn < 1 < 1 < 1 < 1 < 1 < 1 < 1
Tl 0.16 0.05 0.14 < 0.05 0.11 < 0.05 0.12
W 1.1 0.6 < 0.5 1.4 1.9 1.40 7.00
Ba 53 39 56 36 33 44 33
Rb 33 12 32 11 24 19 18
Sr 45 125 97 145 83 152 157
Hf 1.6 0.7 1.3 1.3 1 0.90 0.70
Ta 0.01 < 0.01 0.01 0.01 < 0.01 < 0.01 < 0.01
Nb 0.6 0.4 0.6 0.6 0.5 0.30 0.20
Y 22.4 17.7 27.6 28.7 25.6 17.10 15.70
Zr 54 25 40 40 30 27 21
Th 0.69 0.30 0.55 0.55 0.44 0.43 0.25
U 0.37 0.22 0.33 0.19 0.20 0.24 0.17
La 3.39 2.40 3.58 3.43 3.73 2.24 1.86
Ce 7.82 5.65 9.16 8.48 9.34 5.92 4.85
Pr 1.02 0.82 1.34 1.24 1.37 0.84 0.69
Nd 4.96 4.36 6.99 6.44 6.92 4.34 3.69
Sm 1.86 1.68 2.44 2.34 2.36 1.62 1.50
Eu 0.37 0.93 1 0.70 1.06 0.40 0.61
Gd 2.82 2.52 4.14 4.04 4.04 2.35 2.19
Tb 0.56 0.49 0.73 0.74 0.67 0.44 0.43
Dy 3.78 3.12 4.9 4.94 4.49 2.85 2.79
Ho 0.85 0.68 1.07 1.08 0.97 0.63 0.60
Er 2.66 2.06 3.33 3.37 2.95 1.94 1.74
Tm 0.44 0.32 0.517 0.52 0.45 0.31 0.27
Yb 3.06 2.25 3.36 3.37 2.97 2.11 1.80
Lu 0.54 0.37 0.556 0.55 0.50 0.34 0.28

n.a. = not analyzed
All trace elements in ppm except Au in ppb.
Major elements are in wt. %.
Mg# = molecular (MgO/MgO+FeOT)*100
< = concentration at or lower than detection limit
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Table 1: (Continued)  Representative lithogeochemical data for the quartz-plagioclase porphyry, diabase and basalt and dior-

ite-gabbro of the Coy Pond Complex

sample BO-09-17_37.49 BO-09-17_125.90 BO-09-17_69.39 BO-09-17_74.10 BO-09-17_86.8 BO-09-22_168.2
Lab Number 8940299 8940309 8940303 8940304 8940306 8940313
rock-type Basalt Mafic Dyke Diorite Diorite Diorite Gabbro
UTM east 602382 602382 602382 602382 602382 602354
UTM north 5369098 5369098 5369098 5369098 5369098 5369037
Prospect Reid Zone Reid Zone Reid Zone Reid Zone Reid Zone Reid Zone

SiO2 42.82 49.16 60.82 61.23 60.64 40.78
TiO2 1.09 0.61 0.98 0.93 0.90 0.08
Al2O3 14.06 14.31 12.13 11.71 11.89 11.67
FeOT 12.14 12.81 10.49 10.35 11.09 9.12
Fe2O3 n.a. 2.26 1.76 1.71 1.57 0.74
FeO n.a. 10.77 8.91 8.82 9.67 8.46
MnO 0.17 0.17 0.14 0.20 0.19 0.18
MgO 4.06 3.18 2.10 1.88 2.97 12.36
CaO 5.62 5.68 1.50 2.62 1.83 8.91
Na2O 2.11 3.89 3.30 3.29 2.94 0.76
K2O 1.33 0.14 0.21 0.15 0.20 0.13
P2O5 0.03 0.06 0.30 0.25 0.27 0.00
LOI 11.19 7.19 3.44 4.22 4.10 13.14
Mg# 37.35 30.67 26.33 24.44 32.33 70.72

F 118 53 100 104 126 37
Cr 11 16 < 1 < 1 < 1 263
Ni 2 5 < 1 < 1 < 1 97
Co 29 34 14 15 14 62
Sc 42.2 51.4 48.3 53.8 49.0 48.2
V 345 437 20 29 25 150
Cu 3 84 < 1 7 < 1 35
Pb 5 < 5 < 5 < 5 < 5 < 5
Zn 34 115 97 92 105 51
Ag < 0.1 < 0.1 < 0.1 < 0.1 0.20 < 0.1
Au (ppb) 1786 na 94 9 na na
As 27488 40 19 36 10 29
Be 0.5 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
Bi < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
Cd 131.7 0.7 0.5 0.6 0.4 0.5
Cs 8.80 1.80 0.90 1.00 1.20 3.60
Ga 18 17 14 13 14 6
Ge 0.80 0.70 1.20 1.00 1.40 1.40
Li 40 60 55 52 55 64
Mo < 2 < 2 < 2 < 2 < 2 < 2
Sb 20.40 1.00 0.90 0.60 1.00 1.20
Sn < 1 < 1 < 1 < 1 < 1 < 1
Tl 0.27 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
W 32.90 2.20 3.10 1.90 1.00 < 0.5
Ba 61 18 14 13 20 9
Rb 62 4 9 4 4 6
Sr 121 97 59 63 76 81
Hf 1.10 0.40 0.40 0.40 0.50 < 0.1
Ta 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Nb 0.40 0.02 0.02 0.02 0.30 0.02
Y 17.60 15.00 14.70 13.50 15.00 1.40
Zr 37 9 13 12 14 2
Th 0.48 0.16 0.25 0.24 0.32 0.04
U 0.30 0.17 0.27 0.33 0.24 < 0.01
La 2.44 1.33 1.31 1.58 1.58 0.07
Ce 6.65 3.08 3.50 4.19 3.80 0.20
Pr 0.96 0.45 0.54 0.62 0.54 0.04
Nd 5.04 2.45 2.91 3.44 2.90 0.20
Sm 1.79 0.97 1.25 1.37 1.11 0.10
Eu 0.80 0.52 0.52 0.54 0.57 0.04
Gd 2.54 1.91 1.96 2.10 2.16 0.18
Tb 0.48 0.33 0.40 0.40 0.37 0.04
Dy 3.18 2.35 2.54 2.45 2.51 0.25
Ho 0.70 0.54 0.55 0.51 0.54 0.05
Er 2.22 1.69 1.70 1.51 1.70 0.17
Tm 0.36 0.26 0.27 0.23 0.26 0.03
Yb 2.45 1.71 1.79 1.60 1.65 0.20
Lu 0.40 0.27 0.28 0.27 0.26 0.03

n.a. = not analyzed
All trace elements in ppm except Au in ppb.
Major elements are in wt. %.
Mg# = molecular (MgO/MgO+FeOT)*100
< = concentration at or lower than detection limit
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olitic rocks of the Coy Pond Complex of the eastern Exploits

Subzone (Colman-Sadd, 1985; Colman-Sadd et al., 1992).

The Reid deposit mineralization is hosted by ophiolitic

rocks including massive basalt, diabase, gabbro and trond-

hjemite. Drillholes intersect massive mafic volcanic rocks

and diabase dykes in their upper sections (~40 m), trond-

hjemite, diorite–gabbro and basaltic dykes in the middle

sections (~110 m) and coarse-grained gabbroic and ultra-

mafic rocks are typical in deeper parts of the holes. This sug-

gests that the ophiolite complex exposed at the Reid gold

deposit is right way up, inclined to the southeast and faces

to the east and south away from the Mount Cormack Com-

plex, as described by Colmann-Sadd (1985) for the main

part of the Coy Pond Complex to the west and southwest of

the Reid deposit. Mineralization consists of widespread dis-

seminated pyrite and arsenopyrite (up to 15%) that is

accompanied by minor quartz veining and chlorite + Fe car-

bonate + epidote alteration in mafic host rocks and quartz

veining with sericite + Fe carbonate + chlorite ± epidote

alteration in trondhjemite. Trondhjemite with remnant

quartz and plagioclase crystals and extensive replacement of

its matrix by arsenopyrite + pyrite + sericite + Fe carbonate

± chlorite, typically carries the highest gold assays. Gold

occurs as free (≤10 µm) grains enclosed in pyrite (Seymour,

2003; this study). 

The new U–Pb SHRIMP geochronological data for the

mineralized trondhjemite exposed at the Reid gold deposit

establishes that the ophiolitic Coy Pond Complex is Middle

Cambrian, yielding a U–Pb SHRIMP zircon crystallization

age of 510 ± 4 Ma.  The Coy Pond Complex was originally

correlated with the Pipestone Pond Complex (494 +3/-2 Ma;
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Figure 4: Chemical classification of the porphyry exposed
at the Reid gold deposit. A) CIPW normative classification
diagram of Barker (1979) and; B) Nb vs Y tectonic discrim-
ination plot after Pearce et al. (1984). Samples of the dia-
base, basalt and gabbro-diorite are shown for comparison
only. 

Figure 5: Classification of the basaltic and gabbroic rocks
of the Reid deposit. A) K2O vs SiO2 plot after Peccerillo and
Taylor (1976) and; B) Zr/Y vs Zr plot after Pearce and
Norry (1979). Samples of the Reid porphyry are shown for
comparison only.
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viz., Dunning and Krogh, 1985) but the new data establish-

es it as significantly older, in fact the oldest known ophiolite

in the Appalachian–Caledonide orogen. Figure 9 depicts

available precise U–Pb dates for ophiolites of the

Appalachian–Caledonide orogen. Most of the ophiolites of

the Appalachians cluster between 490 and 480 Ma (Bluck et
al., 1980; Dunning and Krogh, 1985; Dunning et al., 1987;

Dunning and Pederson, 1988; Spray and Dunning, 1991;

Whitehead et al., 2000), with the Pipestone Pond Complex

of eastern Exploits Subzone being somewhat older and com-

parable in age to the Shetland Islands ophiolite of Britain

(Spray and Dunning, 1991) and the Karmoy and Leka ophi-

olites of Norway (Dunning and Pederson, 1988). The Coy

Pond Complex of the eastern Exploits Subzone is clearly

significantly older and does not overlap in age, within 2σ

error, with any of the other ophiolites.

The porphyry occurring at the Reid deposit is trond-

hjemitic to tonalitic in composition, exhibits trace-element

abundances characteristic of volcanic arc granites and is a

sodic, highly fractionated, island-arc tholeiitic granitoid

intrusion. The trondhjemite cuts and is crosscut by cogenet-

ic, strongly depleted, island-arc tholeiite gabbro, diorite,

basalt and basaltic dykes that form the major constituents of

the ophiolitic Coy Pond Complex.

The maximum age of the mineralization at the Reid

gold deposit is now constrained at < 510 Ma, but its mini-
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Figure 6: Normal mid-ocean ridge basalt (NMORB: Sun
and McDonough, 1989) normalized multi-element plots for
rocks of the Reid gold deposit. A) diorite-gabbro; B) diaba-
se-basalt and; C) Reid porphyry. See Figure 5 for key.

Figure 7: BSE-SEM images of representative zircons from
the Reid deposit trondhjemite.

Figure 8: Pb–U concordia diagram of SHRIMP zircon
analyses from the Reid deposit trondhjemite.
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mum age is unconstrained. The 40Ar–39Ar thermochronology

on randomly oriented, fine-grained sericite deposited with

pyrite, arsenopyrite and gold in the Reid deposit will con-

strain the minimum age of that mineralization. The Sm–Nd

analyses of the ophiolitic rocks will aid in their petrological

interpretation and may further refine the antiquity of their

magmatic sources and provide new data to better constrain

tectonic interpretations of the eastern Exploits Subzone. 
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