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ABSTRACT

Investigations into the distribution and mineralogy of late Neoproterozoic epithermal alteration systems of the western
Avalon Zone, using visible/infrared spectroscopy (VIRS), provide new information that allows for better definition of spatial
zonation patterns at select occurrences. The alteration zones contain alunite, pyrophyllite, dickite, kaolinite and diaspore, and
the distribution of these minerals, coupled with compositional variations in alunite and the crystallinity of white micas, local-
ly suggests variations in fluid temperatures. However, systematic spatial zonation cannot be defined in all examples.

The U/Pb geochronological investigations reveal an age of 635 £ 2 Ma for a granitic intrusion on the southern Burin
Peninsula, representing a previously unrecognized magmatic episode in the western Avalon Zone. A sample from a unit pre-
viously mapped as part of the ca. 550 Ma Cross Hills Intrusive Suite instead gave an age of 581 = 1.5 Ma, indicating the pres-
ence of older plutonic rocks that are not fully defined by existing mapping. At the Stewart prospect, quartz diorite affected by
advanced argillic alteration and related mineralization gave an age of 577 = 1.4 Ma, and a nearby granodiorite (part of a
unit referred to as the Burin Knee granite) gave an age of 575.5 + 1 Ma; both of these ages are close (within error range) to
the 577 + 3 Ma age previously reported for the Swift Current Granite. Felsic volcanic rocks of the Marystown Group were
dated at 576.8 = 2.6 Ma on the southern Burin Peninsula, and at 576.2 + 2.8 Ma in the vicinity of Tower prospect at the north-
ern end of the Burin Peninsula. New analyses of the archived zircon, derived from a sample of felsic ash-flow tuff from the
Marystown Group that had previously given an age of ca. 608 Ma, suggest that the older result reflects inheritance, and the
revised crystallization age is 574.4 = 2.5 Ma. Collectively, these new geochronological data emphasize the importance of the
period from ca. 580 to 570 Ma for volcanic and plutonic activity throughout this region; further, it suggests that epithermal-
style alteration and mineralization were broadly synchronous with this activity.

INTRODUCTION

Newfoundland are located within the western Avalon Zone,
namely the Burin Peninsula region, and the exploration
potential of many of these examples remains largely untest-
ed in the subsurface.

The Avalon Zone of Newfoundland hosts well-pre-
served examples of high- and low-sulphidation epithermal
systems that are amongst some of the oldest known in the

world. These Neoproterozoic epithermal systems occur
throughout the Avalon Zone and related terrains, from the
Carolina Slate Belt in the south to the Avalon Peninsula of
Newfoundland in the north, where the Avalon Zone forms
the northeastern terminus of the eastern margin of the
Appalachian orogen (Williams, 1979; O’Brien ef al., 1996,
1998). Several past-producing epithermal gold deposits, and
their surrounding areas, are currently being reevaluated
through exploration (e.g., Hope Brook in Newfoundland and
Haile in the Carolina Slate Belt). The most extensive and
numerous examples of epithermal alteration systems in

The western Avalon Zone of Newfoundland has long
been known to host examples of high-sulphidation-style
epithermal alteration and related mineralization, which
locally contain significant gold mineralization variably
associated with silver, copper, arsenic, antimony and zinc
(e.g., Dubé et al., 1998; O’Brien et al., 1998, 1999). Indi-
vidual belts of advanced argillic alteration related to the for-
mation of these high-sulphidation systems can be traced
intermittently along strike for up to 16 km on the Burin
Peninsula. These alteration zones contain variably devel-
oped assemblages including pyrophyllite, alunite, mus-

99



CURRENT RESEARCH, REPORT 14-1

covite, illite and locally topaz, diaspore and lazulite. The
spatial distribution of the various alteration minerals
remains poorly understood, and such information is valuable
to establish the depth of erosion within these epithermal sys-
tems.

More recently, low-sulphidation-style chalcedonic sili-
ca veins and related breccias have been recognized within
the western Avalon Zone. Several of these zones are aurifer-
ous (Seymour, 2006; Evans and Vatcher, 2010; Sparkes,
2012 and references therein). In the northern portion of the
western Avalon Zone, exploration in the vicinity of the Big
Easy prospect has identified low-sulphidation gold mineral-
ization hosted within sedimentary rocks of the Musgrave-
town Group, potentially representing some of the youngest
mineralization in the region. The preservation of surface and
near-surface features, such as the deposition of silica gels
within a lacustrine environment (Silver Spruce website,
2013), illustrate the exceptional preservation of these Neo-
proterozoic epithermal systems.

This report highlights two aspects of epithermal miner-
alization in the region. The first focuses on the mineralogy
and distribution of the hydrothermal alteration assemblages
at several prospects, and is the first investigation of these
systems by the Geological Survey of Newfoundland and
Labrador using a portable visible infra-red reflectance spec-
trometer (VIRS; TerraSpec® Pro). This instrument has the
capability to identify the cryptic alteration minerals associ-
ated with various styles of epithermal systems and allows
them to be mapped in detail. The interpretation of the spec-
tra collected from field samples is provided by TSG™ Pro
software, which identifies the two most dominant minerals,
based on distinct spectral characteristics. Results from auto-
mated software are confirmed and augmented through man-
ual interpretation of the data using reference spectra for
known minerals. For a more detailed discussion of the meth-
ods and description of the portable reflectance spectrometer,
see Kerr et al. (2011).

Geochronological sampling carried out as part of this
study has produced several U/Pb zircon ages that provide
constraints on the development of these epithermal systems,
and are also relevant to the regional geology. The second
part of this report summarizes these results and their inter-
pretation.

REGIONAL GEOLOGY OF THE
WESTERN AVALON ZONE

The Avalon Zone is characterized by widespread mag-
matic activity ranging in age from ca. 760-550 Ma (O’Brien
et al., 1996) that occurred within arc, or arc-adjacent and
continental extensional settings (O’Brien et al., 1999). With-
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in the volcanic sequences, high-level intrusions generated
regional-scale magmatic—hydrothermal systems that were
locally accompanied by precious-metal deposition (O’Brien
et al., 1999). Most of the epithermal alteration and related
mineralization currently identified in the Avalon Zone is
hosted by subaerial felsic volcanic rocks ranging in age from
590-550 Ma. These volcanic rocks are intercalated with,
and overlain by, sequences of marine, deltaic and fluviatile
siliciclastic sedimentary rocks. The deposition of these sed-
imentary sequences can locally be demonstrated to have
played a vital role in the preservation of the underlying
epithermal systems through rapid burial (e.g., Sparkes et al.,
2005).

Late Neoproterozoic rocks are, in turn, overlain by a
Cambrian platformal sedimentary cover sequence that post-
dates the waning of volcanic activity and related epithermal
systems (O’Brien et al., 1996 and references therein). The
Neoproterozoic rocks, and Cambrian cover sequences, are
unconformably overlain by isolated outliers of Late Silurian
to Early Devonian terrestrial volcanic and sedimentary
rocks (O’Brien et al., 1995). The intensity of Paleozoic
deformation broadly increases from east to west toward the
Dover and Hermitage Bay faults, which mark the western
extent of Avalonian rocks and defines their tectonic contact
with the adjacent Gander Zone (Blackwood and Kennedy,
1975; Kennedy et al., 1982). Thus, epithermal systems in
the western Avalon Zone are generally more strongly
deformed than those farther to the east. Most of the defor-
mation is attributed to the Devonian Acadian orogeny
(Dallmeyer et al., 1983; Dunning et al., 1990; O’Brien et al.,
1991, 1999; van Staal, 2007); however, evidence for an
older, Precambrian deformational event, is also locally pre-
served (e.g., Anderson et al., 1975; O’Brien, 1993, 2002;
O’Brien et al., 1996).

Epithermal-style alteration and mineralization is most
abundant in volcanic rocks of the 590-570 Ma Marystown
Group (Strong et al., 1978a, b; O’Brien et al., 1999). This
sequence comprises greenschist-facies subaerial flows, and
related pyroclastic and volcaniclastic rocks. The volcanic
rocks range in composition from basalt, through andesite
and rhyodacite, to rhyolite and are of both calc-alkaline and
tholeiitic affinity (Hussey, 1979; O’Brien et al., 1990, 1996,
1999). The Marystown Group occupies the core of the Burin
Peninsula, forming a broad-scale anticlinorium, which is
flanked to the east by a shoaling-upward sequence of marine
to terrestrial sedimentary rocks of the Neoproterozoic Mus-
gravetown Group (O’Brien, ef al., 1999; Figure 1); volcanic
rocks at the base of the Musgravetown Group (Bull Arm
Formation) are dated at 570 +5/-3 Ma (O’Brien et al., 1989).

To the west and north, the Marystown Group is overlain
by the ca. 570 to 550 Ma Long Harbour Group. The Long
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Figure 1. Regional geology map of the western Avalon Zone outlining the distribution of known epithermal prospects (modi-
fied from O’Brien et al., 1998; coordinates are listed in NAD 27, Zone 21).
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Harbour Group is dominated by subaerial felsic volcanic
rocks of alkaline to peralkaline affinity along with lesser
mafic volcanic rocks and siliciclastic sedimentary rocks,
which pass conformably upward into fossiliferous Cambri-
an sedimentary rocks related to the development of a plat-
formal cover sequence (Williams, 1971; O’Brien, et al.,
1984; 1995). The Long Harbour Group is divisible into a
lower volcanic sequence (Belle Bay Formation) and an
upper volcanic sequence (Mooring Cove Formation), which
are separated by a clastic sedimentary unit known as the
Anderson’s Cove Formation (O’Brien et al., 1984). Rhyo-
lites from both the Belle Bay and Mooring Cove formations
have been dated at 568 + 5 and 552 + 3, respectively
(O’Brien et al., 1994).

Several high-level granitoid plutons intrude along the
western margin of the Avalon Zone in Newfoundland. On
the Burin Peninsula these form a broad, semi-continuous,
north-northeast-trending belt consisting of hornblende—
biotite granite, diorite and gabbro (Figure 1). The largest of
these bodies, the Swift Current Granite (Figure 1) is locally
dated at 577 + 3 Ma (O’Brien et al., 1998), and others,
including the Cape Roger granite and the ‘Burin Knee gran-
ite’, are inferred to be coeval Precambrian intrusions
(O’Brien and Taylor, 1983; O’Brien ef al., 1984). North of
Fortune Bay, the Long Harbour Group is intruded by the
Cross Hills Intrusive Suite, which has a preliminary age of
547 +3/-6 Ma and hosts Zr—Nb—REE mineralization (Tuach,
1991). This intrusion represents one of the youngest mag-
matic events prior to the cessation of hydrothermal activity
within the region. The youngest plutonic rocks in the area
are Devonian (Ackley and St. Lawrence granites), and
other small plutonic units of undeformed character are
inferred to be of this age.

MAPPING OF SELECTED
ALTERATION ZONES

The spectral features of individual minerals can be used
as potential vectors within zones of epithermal alteration.
For instance, VIRS can be used to distinguish between
potassic- and sodic-dominated alunite (Thompson et al.,
1999). The latter is typically associated with higher temper-
atures of the hydrothermal system that potentially host ore-
grade mineralization (e.g., Chang et al., 2011; Stoffregen
and Cygan, 1990).

Spectral variations within white micas can also be used
in a similar fashion to identify areas of higher temperatures
within the hydrothermal system. The parameter of interest is
termed white-mica crystallinity (WMC). The classification
of the white mica composition is largely based on the posi-
tion of the AIOH absorption feature at ~2200 nm; paragonite
generally displays values around 2184 nm, whereas mus-
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Figure 2. Spectra for select white mica phases showing the
characteristic shift in the AIOH feature, located at ~2200
nm (modified from AusSpec, 2008a). Also shown is the loca-
tion of the water feature used in the calculation of the white
mica crystallinity. Note highly crystalline white micas (i.e.,
2M white micas) can be referred to by their mineral names
muscovite, phengite or paragonite. The illitic white micas
also display compositional substitution and can be referred
to as illite, phengitic illite or paragonitic illite (AusSpec,
2008a).

covite has values around 2190 nm and phengite has values
around 2225 nm (AusSpec, 2008a; Figure 2). The WMC for
a particular white mica phase is defined as the depth of the
AIOH feature at ~2200 nm divided by the depth of the water
feature at 1900 nm on a hull quotient spectrum (AusSpec,
2008b; Figure 2); however, some caution must be used in
applying this technique, because if the sample being ana-
lyzed contains a large amount of chalcedonic quartz, which
contains a water feature within its spectra, in addition to
white mica, this will result in a larger H,O feature in the
spectra, which will, in turn, result in a lower calculated
WMC value for the sample. Generally, a WMC value of <1
implies a low crystallinity and a value >1 records a higher
crystallinity (AusSpec, 2008b), which implies a higher tem-
perature of formation; however, such values need to be
checked against individual datasets. Observations from
areas investigated during this study indicate that white mica
alteration associated with high-temperature hydrothermal
alteration produce WMC values ranging from >2 (e.g.,
Monkstown Road Belt and Tower prospect) to >3 (e.g.,
Gold Hammer prospect), and values below this are inferred
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Figure 3. Regional geology map of the high-sulphidation related alteration in the vicinity of Monkstown Road and Hickey s
Pond prospects (from Huard and O’Driscoll, 1986, modified from O Brien et al., 1999).

to represent background regional alteration. These, and
other mineralogical parameters, are applied below to test
whether or not any zonation can be identified within the
hydrothermal alteration in the study area. These zones lack
diamond drilling and the study is limited to surface sam-
pling; however, sufficient local topography provides some
insight into the vertical distribution of the alteration.

MONKSTOWN ROAD BELT

The Monkstown Road prospect (Huard and O’Driscoll,
1985, 1986; Huard, 1990) is the main prospect within the

Monkstown Road alteration belt (Figure 3), which was first
noted by Tuach (1984). The Monkstown Road prospect is
well-known for the presence of the bright blue phosphate
mineral lazulite (MgAlL(PO,),(OH),; Plate 1). Lazulite
occurs within quartz—specularite veins that are developed
within an extensive northeast—southwest-trending zone of
advanced argillic alteration containing alunite, pyrophyllite,
specularite and lesser dickite. The host rocks to the alter-
ation belong to the Marystown Group, and are locally
strongly foliated. Similarly, the zones of advanced argillic
alteration display an intense penetrative fabric outside of
areas that have been strongly silicified.
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Plate 1. Blue lazulite occurring within quartz—specular-
ite—pyrophyllite—alunite—dickite alteration; Monkstown
Road prospect.

The Monkstown Road area has been the focus of inter-
mittent mineral exploration and scientific studies (e.g.,
Saunders and Reusch, 1984; Degagne and Robertson, 1985;
Huard and O’Driscoll, 1985, 1986; Dimmell and
MacGillivray, 1989; Huard, 1990; Sexton et al., 2003;
Dyke, 2007, 2009; Dyke and Pratt, 2008; Labonte, 2010),
partly due to the fact that the alteration zone resembles the
auriferous advanced argillic alteration at the Hickey’s Pond
prospect to the northeast (Saunders and Reusch, 1984;
Huard and O’Driscoll, 1985; O’Brien et al., 1999, Figure 3).
The Hickey’s Pond prospect is locally host to grab samples
assaying up to 31 g/t Au, 110 g/t Ag along with anomalous
As, Bi, Cu, Sb, Se, Te, and Hg (Table 1) in association with
vuggy silica zones within more extensive sodic-alunite
alteration (O’Brien et al, 1999; this study). Advanced
argillic alteration at Monkstown Road is largely barren, with
only localized anomalous gold values of up to 1.18 g/t
(Saunders and Reusch, 1984). Higher grade mineralization
assaying up to 8.16 g/t Au (Degagne and Robertson, 1985)
has been reported for the muscovite—pyrite alteration devel-
oped adjacent to the alunite—pyrophyllite—specularite alter-
ation at the Monkstown Road prospect; however subsequent
attempts to duplicate this result have failed to produce sim-
ilar values.

Spectrometer studies of the alteration throughout the
Monkstown Road Belt show the dominance of alunite alter-
ation and lesser zones of pyrophyllite at the Monkstown
Road, Monkstown Road South and Ridge prospects (Figure
4). Spectral data collected from the main Monkstown Road
prospect show the alteration is dominated by pyrophyllite
and lesser alunite and dickite, despite the abundance of a
pinkish alteration mineral throughout the outcrop, which
elsewhere in the region has previously been used as an indi-
cation of alunite. From the limited data, it appears that areas
of lower elevation (e.g., Little Pond and Paradise River
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prospects; <87 m elevation) are dominated by potassic alu-
nite, whereas the remainder of the alteration zone exposed at
higher elevations (>125 m) is dominated by sodic alunite.
Earlier work using a different type of spectrometer identi-
fied topaz, indicating high temperatures of formation (>260°
C, Reyes, 1990) at the Little Pond prospect (Figure 4); how-
ever, in contrast to the sampling carried out the exploration
data classify the alunite at that location as natroalunite
(sodic alunite; Sexton et al., 2003) as opposed to potassic
alunite.

The alteration zone was mapped as far north as the
Ridge prospect, where a prominent north—south-trending
linear suggests that it may be truncated. The alteration zone
is inferred to extend to the southwest beyond the current
limit of mapping toward the area of the Strange prospect
(Figure 3). These occurrences combine to give an overall
strike length of up to 5 km, along which anomalous gold
mineralization is locally identified (Huard and O’Driscoll,
1986; Huard, 1990; Sexton et al., 2003). However, sam-
pling of the Monkstown Road Belt failed to identify any sig-
nificant enrichment of gold or silver (Table 1).

Outside of the main advanced argillic alteration zone,
the host rocks primarily consist of mafic to intermediate and
felsic crystal tuffs. Figure 4 displays the regional geology of
the area as portrayed by Huard and O’Driscoll (1986). It
should be noted however that more detailed property-scale
mapping, such as that conducted by Hayes (2000), demon-
strates an increased abundance of felsic volcanic rocks in the
area compared to what is shown on regional scale maps.
Spectral results from the surrounding country rock suggest
iron—magnesium chlorite in the mafic units, and phengite in
felsic units (Figure 4); these minerals are inferred to be part
of the regional metamorphic assemblage, as similar results
were obtained elsewhere in the Burin Peninsula region. The
zone of advanced argillic alteration, which can locally be
inferred to be up to 200 m wide, occurs within a moderate
magnetic low flanked to the east and west by magnetic highs
(Hayes, 2000). It is bounded to the east and west by mus-
covite—pyrite-bearing shear zones displaying local evidence
for a reverse sense of motion, with thrusting toward the east
(O’Brien et al., 1999). These shear zones have a WMC of
>2, indicating high temperatures of formation, and are com-
monly strongly foliated and highly friable (Plate 2). Similar
values are obtained for analogous alteration along strike to
the northwest in the vicinity of the Ridge prospect, which
may represent the strike extension of this structure.

TOWER PROSPECT

Approximately 4 km to the east-southeast of the
Monkstown Road Belt is a second subparallel belt of
advanced argillic alteration, referred to as the Tower
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G.W. SPARKES AND G.R. DUNNING
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Legend Alteration Minerals
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Figure 4. Regional geology map outlining the distribution of the advanced argillic alteration along the Monkstown Road Belt
as well as the location of the various prospects. Also shown are the sample locations with their corresponding dominant min-
eral phase as determined by VIRS, along with the white mica crystallinity of the various white mica phases, red dots denote
high temperature phases based on WMC indexing. Labelled samples correspond to geochemical analyses in Table 1. Note the
alteration zone extends beyond the limits of the map to the southwest toward the Strange prospect.
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Plate 2. Strongly foliated and crenulated muscovite alter-
ation exposed along Monkstown Road, located immediately
west of the Monkstown Road prospect. Samples of the alter-
ation have WMC index of 3.5, indicating a high temperature
of formation. This style of alteration is often accompanied
by abundant pyrite and is generally barren with respect to
gold mineralization.

prospect (Huard and O’Driscoll, 1986). The Tower prospect
occurs approximately 11 km to the southwest of, and rough-
ly along strike from the Hickey’s Pond prospect, which is
host to high-grade gold mineralization in association with
vuggy silica and advanced argillic alteration (O’Brien et al.,
1999; Figure 3). The Tower prospect was first discovered by
Huard and O’Driscoll (1986) and, like the Monkstown Road
Belt, the alteration zone has been the subject of intermittent
mineral exploration (e.g., Reusch, 1985; McBride, 1987,
Hayes, 2000; Dimmell, 2003; Dyke and Pratt, 2008). Assay
results from this exploration have identified weakly anom-
alous gold and molybdenum values in association with the
advanced argillic alteration (up to 179 ppb Au and up to 203
ppm Mo; Dimmell, 2003). Exploration trenching in the area
by Cornerstone Resources in 2007 indicates that the alter-
ation zone is up to 150-200 m wide, and hosts weak zones
of hydrothermal brecciation. The best assay value reported
from channel sampling of the alteration zone was 62.4 ppb
Au over 3.0 m (Dyke and Pratt, 2008).

Spectroscopic investigations of alteration by Dyke and
Pratt (2008) noted the presence of alunite, pyrophyllite,
muscovite and illite with lesser topaz. Large lenses of boud-
inaged silica alteration were also noted and mapped in the
zone during trenching (Plate 3). Locally, some of these lens-
es display a vuggy texture, but they do not contain gold min-
eralization. Sampling conducted as part of this study con-
firmed the presence of topaz, which is locally developed
with silica alteration similar to that observed within the
boudinaged lenses; the presence of topaz indicates relative-
ly high temperatures of formation (>260° C, Reyes, 1990).
Spectral results of alunite alteration from the area confirm
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Plate 3. Boudinaged lens of silica alteration (arrow) hosted
within alunite—specularite alteration demonstrating the
high degree of deformation developed within the advanced
argillic alteration.

Plate 4. Photograph showing the pale purple alunite—spec-
ularite—pyrophyllite alteration being overprinted by a sec-
ondary alunite-pyrite assemblage, Tower prospect; inset
shows a cut sample of the contact showing the location of
the respective VIRS analyses.

the presence of sodic alunite throughout the alteration zone.
The trenching also exposed evidence of at least two stages
of fluid alteration associated with the advanced argillic alter-
ation. Pervasive sodic alunite—specularite—pyrophyllite
alteration is locally overprinted by a secondary patchy alter-
ation consisting of sodic alunite—pyrite (Plate 4). This latter
alteration is associated with anomalous Au, Cu, Mo and Se
relative to the sodic alunite—specularite—pyrophyllite alter-
ation (GS-11-138A and B, Table 1). During mapping of the
alteration, large angular blocks containing sodic
alunite—pyrite alteration were found along strike of the main
Tower prospect along the shoreline of a pond, and are inter-
preted as subcrop. These blocks are similarly anomalous in
Au, Cu, Mo and Se (GS-12-89, Table 1).
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The advanced argillic alteration zone is inferred to be
bounded both to the east and west by fault structures. These
structures are apparent as two roughly subparallel linear
conductive zones near the central portion of a VLF survey
conducted by Hayes (2000). The western structural contact
is locally exposed along the western shoreline of a pond to
the southwest of the alteration zone (Figure 5). Here, strong-
ly foliated and folded muscovite—pyrite alteration (Plate 5)
marks the western limit of the hydrothermal alteration. Sam-
ples having a strong muscovite alteration are structurally
controlled, aside from some samples adjacent to an intrusion
located to the immediate northwest of the alteration, which
are related to contact metamorphism (Figure 5). The mus-
covite alteration is characterized by a WMC of >2. Outside
of the main alteration zone, the felsic volcanic rocks are
dominated by phengite alteration, which also displays a
WMC of >2, but is interpreted to be a regional signature. It
does not appear that WMC alone is useful in defining zones
of hydrothermal alteration at the Tower prospect.

Northwest of the Tower prospect, an intrusion of gran-
odiorite is exposed, which corresponds with magnetic highs
as defined by a geophysical survey conducted by Hayes
(2000), and the outline of the unit is drawn in Figure 5 to
correspond with the magnetic highs in this area. Detailed
mapping suggests that the intrusive rocks are less extensive
than suggested by the regional map of Huard and O’Driscoll
(1986). A sample of felsic volcanic rock collected in this
area for geochronological study (GS-11-428; Figure 5; see
below), from within a sequence locally exhibiting a frag-
mental texture (Plate 6) provides supporting evidence for an
extrusive origin of the volcanic rocks.

GOLD HAMMER PROSPECT

Pyrophyllite—diaspore advanced argillic alteration asso-
ciated with the Gold Hammer prospect (Figure 1; Hussey,
2009), represents the first example of this style of alteration
identified within the volcanic rocks of the Long Harbour
Group. The alteration zone is developed on the southeastern
limb of the southwest-plunging Femme Syncline of O’Brien
et al. (1984). The alteration is developed close to the contact
between the ca. 570 Ma Belle Bay Formation and the over-
lying ca. 550 Ma Mooring Cove Formation (O’Brien ef al.,
1984, 1994).

The Gold Hammer prospect contains up to 61 g/t Au
(Hussey, 2006) associated with stockwork-style chalcedonic
silica veins and marginal phengite alteration of the wall
rock. Sampling of the area identified anomalous gold (113
ppb), and a zone of pyritic alteration immediately adjacent
to the main zone of chalcedonic silica veining has highly
anomalous As and Se, and weakly anomalous Cu, Mo and
Zn (GS-11-446; Table 1).

Approximately 850 m to the southwest of the Gold
Hammer prospect, field mapping outlined a zone of pyro-
phyllite—diaspore-rich advanced argillic alteration that can
be traced intermittently for more than of 1.5 km along strike
(Figure 6). Such alteration is indicative of paleotempera-
tures >200°C (Reyes, 1990). This alteration is developed
within flow-banded rhyolite and related volcaniclastic sedi-
mentary rocks. Locally, what is inferred to have been a frag-
mental volcanic unit contains 10- to 15-cm-scale relic frag-
ments (now altered to diaspore) supported within a pyro-
phyllite-rich matrix (Plate 7). A prominent northeast-trend-
ing linear containing variably developed muscovite alter-
ation, characterized by a WMC of >3, links the zone of
advanced argillic alteration to the Gold Hammer prospect
and may have been a fluid conduit. From the main occur-
rence of pyrophyllite—diaspore alteration the advanced
argillic alteration extends westward and is largely stratiform
in its distribution. The eastern portion of the advanced
argillic alteration is stratigraphically overlain by a mus-
covite—pyrite-altered tuff-breccia, which is locally host to
angular fragments of silica alteration of a possible
hydrothermal origin (Plate 8). This clast may provide evi-
dence for erosion of the underlying hydrothermal system.

Farther west, the alteration is developed subparallel to
the contact between the host felsic volcanic rocks and the
overlying siliciclastic sedimentary rocks and related mafic
flows. These latter rocks are unaffected by the underlying
advanced argillic alteration, which suggests one of two pos-
sibilities: either 1) the overlying rocks were impermeable to
the hydrothermal fluids or, 2) the siliciclastic sedimentary
rocks and related mafic flows postdate the development of
the underlying hydrothermal alteration. The local develop-
ment of muscovite alteration, within what appear to be rela-
tively unaltered siliciclastic sedimentary rocks, is inferred to
be related to contact metamorphism as indicated by the local
development of hornfels close to the contact with the over-
lying mafic flows, rather than being related to the underly-
ing advanced argillic alteration (Figure 6). Localized zones
of intense silica + pyrite alteration hosting anomalous values
of As, Se, Cu and Mo (GS-12-242; Table 1) are developed
within a volcaniclastic unit to the north of the main alter-
ation zone. The silica alteration again displays a largely
stratiform distribution formed proximal to a prominent
northeast-trending structure (Figure 6).

Outside the advanced argillic alteration zone, country
rocks are dominated by purple flow-banded rhyolite, which
displays regional phengite and muscovite alteration charac-
terized by a WMC of <3. To the northeast of the map area,
the Long Harbour Group is intruded by a composite suite of
alkaline gabbro, granodiorite and biotite granite along with
lesser peralkaline granite and syenite, known as the Cross
Hills Intrusive Suite (Tuach, 1991; Figure 1). The intrusion
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Figure 5. Regional geology map outlining the distribution of the advanced argillic alteration at the Tower prospect (base-map
geology modified from Huard and O Driscoll, 1986). Also shown are the sample locations with their corresponding dominant
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Plate 5. Strongly foliated and crenulated muscovite—pyrite
alteration that marks the western limit of the hydrothermal
alteration developed at the Tower prospect.

of the Cross Hills Intrusive Suite is associated with the
development of extensive zones of pyritic alteration
(O’Brien et al., 1984), and represents a potential heat source
for the development of the advanced argillic alteration with-
in the Long Harbour Group. On a regional scale, a sample of
the Cross Hills Intrusive Suite was collected to try and bet-
ter constrain its age, relative to that of the volcanic rocks
hosting the advanced argillic alteration (see below).

DISCOVERIES OF NEW EPITHERMAL
ALTERATION ZONES

This study has identified several new alteration zones,
some of which contain associated geochemical anomalies
suggestive of an epithermal origin. Other alteration zones,
which were previously known but poorly documented, have
been confirmed to represent zones of advanced argillic alter-
ation. The following section of the report provides a brief
summary these zones.

RATTLE BROOK

The Rattle Brook occurrence represents a previously
known zone of advanced argillic alteration that has received
cursory exploration work in the form of trenching; however,
this work has not been reported. The Rattle Brook occur-
rence is located immediately northwest of the Burin High-
way near its intersection with Rattle Brook (Figure 1). The
prospect has several exploration trenches spread over a
strike length of approximately | km. These trenches expose
intense silicification, locally displaying well-developed cat-
aclastic brecciation, along with associated advanced argillic
alteration hosted within felsic volcanic rocks of the Marys-
town Group. The roughly east-west-trending alteration can
be traced, intermittently, along Rattle Brook both upstream
and downstream from the Burin Highway, with known alter-

Plate 6. Locally preserved fragmental volcanic rock that is
interbedded with the fine-grained felsic tuff sampled for
geochronological study.

ation extending, intermittently, along strike for upward of
2.3 km. The alteration appears to be structurally truncated at
both its eastern and western limits. Throughout its strike
length, the alteration is characterized by pyrophyllite, dick-
ite, alunite, muscovite and pyrite assemblages, associated
with intense silicification. Geochemical sampling at the
eastern extent of the alteration zone identified weakly anom-
alous gold values (27 ppb) in association with strong pyritic
alteration (GS-12-150; Table 2). Along strike to the north-
east of the inferred eastern end of the advanced argillic alter-
ation, locally developed, deformed quartz veins contain
anomalous Mo (294 ppm) and Se (9.3 ppm) in association
with muscovite alteration (GS-12-159A; Table 2). This zone
of anomalous alteration may represent a continuation of the
Rattle Brook alteration zone.

WHITE MOUNTAIN POND

The White Mountain Pond occurrence is a zone of
white mica alteration, consisting of muscovite and parago-
nite, associated with anomalous Au, As, Mo and Se. The
zone is exposed along an ATV trail and consists of a 4- to 5-
m-wide zone of bleached, white mica + pyrite alteration,
hosted within variably deformed felsic volcanic rocks of the
Marystown Group, close to the intrusive margin of the Burin
Knee granite. The zone has a northeast trend and can be
traced intermittently along strike for 800 m before it
becomes obscured by glacial cover. At the southwestern end
of the exposed alteration, metre-scale rusty-weathering,
vuggy-textured white crystalline quartz veins are exposed
(Plate 9). Sampling failed to identify any significant gold
values, but to the immediate southwest and upstream of the
alteration, a regional lake-sediment sample is anomalous
with respect to gold (5 ppb). Near the northeastern end of
the defined alteration zone, weakly anomalous Au, As, Mo
and Se values are associated with muscovite—pyrite alter-
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Figure 6. Regional geology map outlining the distribution of the advanced argillic alteration at the Gold Hammer prospect
(base-map geology modified from O Brien et al., 1984). Also shown are the sample locations with their corresponding domi-
nant mineral phase as determined by VIRS, along with the white mica crystallinity of the various white mica phases, red dots
denote high-temperature phases. Labelled samples correspond to geochemical analyses in Table 1.

112



G.W. SPARKES AND G.R. DUNNING

Ly | - |0z0 90€E 8T € 80 €ETE 6L 9T0 | - | 6¥S OE0 - | 60L | 9T 70 0T | vT 62  0Z %0 | - 211A025NIN‘23101YDBIN2S uonesayje ajuAd-ajuolyd IltH uooeag 8610775 718619 | v1Z-Z1-59
z - 0z0 6166 TS 8T 60 SST € ¥00 [ z - AT - - rT €0 | T € - - a3n0dsnIn ‘2 IAydoAd uonesaye ayAd-edyyis IltH uooeag 9000725 €7L029 | TTZ-T1-SD
v - 0S6T ¥9T €€ 6T LZ0 S YEO 6 010 - |vZ0 ¥ - - 6T TO0 L 6 - - ajunjy ) ‘auljoey uoneJaje edjis AS3nA IItH uodeag €71022S 0TL0Z9 | OTZ-TT-59
4 - - TIT SST 6€ 90 LS50 ¥ 0S50 € 6 070 - 870 [ - - 6T 10 06 T - - apunjy uoneJa|e a3Ad-eal)s IItH uodeag ¥20022S |SEL0Z9 | LOT-TT-SO
z - - 6552 6T TO 60 100 - - - 2 - - 610 v - - 4T - Ty SE | - - uoneJaje a)Ad-ealr 1! uodeag 1200225 04029 90T-Z1-59
9 - | V/N 9S€v V/N | - 90 V/N TI 0£Z - |86 V/N V/N 0Tt vZ V/N V/N V/N| TI [0l 9z - - ayuijoey uonesdyfe Aej> 98134 1583 JAAIY INOGIRH PIY |8LLEVTS (TEITSY | 8S-TT-SO
ST - - Svy S0 ST | - 70T | Lz 90T - | 0COT TTO - 8€EV L - vz - ¥ | (e 9T TO | - 311103SNIA‘B)uljoR)| uonesayje a1iAd-edl|is| 15e3 J3AIY INOGIBH PaY 8LLEVTS (TEITSY | LS-TI-SO
1€ S TSET VN - €0 V/N v STO L  vS V/N V/N €9E 6 - WN - TO Ot - VN - a1||AydoiAd‘aun0sniv uonesayje a3uAd-edlw dYM Ise3 JaAl INogieH pay €/0EYZS 98TZS9  ZOE-TT-SO
O T 960 TIST V/N - 80 V/N S OUT - 66V V/N V/N 8T T - VN - ST ¥t6 6 VN - a110]yD?4'a)18uayd uoNe.)|e BDIW BUYM-3LI0|Y PUO UIRIUNOW dYM |£LP9STS LS6LYY | TLT-TI-SO
99 | 9 | 6€0 €6z 60 (09T SE€ TET 96T 10 8€ 9Tz SgZ - (TT | ¥T - ZO | TO TI | T9E S8 €0 85 a)nosnN uonesa)je 23LAd-BJIW 2YM  puOd UIBIUNOA dNYM  $989STS TTS9¥9 | 0LT-TT-SO
6€ T 990 60ty V/N | - 60 V/N 9T T£0 T | €T V/N V/N 8%v ST - V/N - | 8T (65 S V/N| L ayuodeled 13eJa)je )1Ad-BOIW AYM  PUOd UIRIUNOIN SUYM  S/895TS TTISIV9 | 69Z-TT-SD
€ 1 - v8vy W/N | - 90 V/N| 9 00T - | /[ZS VY/N V/N 90€ L - VYN - 0T 88 - (VN - AUA0ISNIN uope.ayje 33Ad- U2 puod UIBIUNOW dUYM 9/8957S 0ESIV9 | 89Z-TT-SD
€ | - - OWT V¥/N | - | ¥0 V/N OT 0ST - | 9S€ V/N V/N 80T € - WN - | ¥T €8 6 VN - ay8uayqd uones)|e 2311Ad-eII|IS| U0 UIBIUNOIN PUYM  9809STS |90Z9Y9 | SIT-TT-SD
- - (861 - S0 €T $00 9 S5O - | Oz |1€0 - €T S - - 7o 8T [vOIT ST - a)uoseleq uoie.a)|e 21Ad-BIIL AYM | PUOd UIEIUNON UYM  0v¥9STS (95859 | ¥9Z-TT-5D
21 | € | Tv0 760z - 7O 90 €U0 € €0 I | L 0TO - SOT [ - 7o - €0 /89T § Bunsnu Jouul yIm ulUIaA 23LI0JYd-Z3END BYIYM PUO UIRIUNON UM 7SYISTS L98SY9 | E9T-TT-SO
€8 | ¢ 870 ¢S9S - L0 0T 00 TT €60 L | 9IS [ZO - EEE S - €0 €0 6T 89Tl [ 93I01YDBINDA'DUN0ISNIN| TIZ-TT-SD 3|dUIES Ut UIaA Z1eNb 03 3004 [|eM {UoleIR)[e 33LIAA-3I0|Yd| PUOJ UIBIUNOIN 3UYM  ¥SYISTS L98SY9 | Z9Z-TT-SD
€ € 980 ¥9T - | 7O €0 100 ¥ - - S €00 - | 9€0 £ - vo - - st s 8uisnJ Jouw yum BuulaA 23140jyd-z1ienb a)ym ASBNA| puOd UIBIUNOIN BUYM  ¥S9STS LZ8SY9 | T9Z-TT-SO
0S |z Or0 (60T zO | - | TT 190 §ST v0Z ¢ | TLT STT - 990 | T TO L0 | TO ST 90T S a)nodsNN uones)|e 2311Ad-BII|IS| PuOd UIBIUNOIN PUYM  Z089STS (ZSEIV9 | BET-TT-SO
[ - 6¥6 -  ¥0 S0 000 T 650 - € vz0 - 80 - - - - 80 |0 € - 21|uo||LIoWIUOI ‘3)1u0Beled uoneI3}[e BJIW 2YM PUOd UIBIUNOA SUYM S899STS 8809Y9 | LET-TT-SO
¥I_ T - 9S€Z W/N - 90 V/N U 09T S  00v V/N V/N YTT S - VN - 9T /26 9T V/N - au8uayd uoneJa)je eIIW AIYM _puod UIBIUNOW dUYM _£98952S T¥SSY9  9ET-TI-SO
€5 | - 070 SvvT 8T €6  vT ¢vT 09T LT'0 | v6Z | SOT |9T0 - | 9ST 6 - 00 0T 60 Tr 8 O I 21110]YDBIN2421N0ISNIN WNU3PGAJoW 2041 Y)IM UIaA Z3Jenb pauiiojap %0049 ey 988957 |S96¢99 | V6ST-CI-SO
6 - 070 pIze TO & - - 100 - vv0 - | S6 TE0| - 690 TZ - (60 - | L0 |8 - - - 21A02SNIN oA BJIW AHYM }001g aey Ly£95TS (761799 | SST-TT-SO
ST T - 04T VN | - | TT V¥/N 0S - | IT [ T0T V/N V/N 00TT| IT V/N V/N - - g€ - 80 L2 aullAydoiAd‘aunosnin 2113Ad %0€-0¢ 03 dn yum uoneJalje 3uAd- j001g apey Ly£95TS (261299 | 0ST-ZT-S9
99 | - |0€0 9085 SO 60 - €Ty 8 €5 - | &L 10 - 009 | L L0 |TT L0 TI 61 ¥ - - 210p1d3‘a)n02snig uonesaye a3iAd- j001g apey T1£95TS (121299 | Ly1-T1-59
z - s¥8Z TO | - 6T 000 - 100 - 9 - - 800 TT - | - | - - eET - - - uonesaye j001g 3pey SOVLSTS |6L€099 | S8-T1-S9
z 68 10 - | ¥E€ 200 - 00| - |1z | - [ - - 1o - ot - - - SUUN|Y BN DUA0ISNI uoneua)|e edjis Aau3 o001g apey 9Y9£5TS (969099 | 0Z-T1-59
4 98T L0 €0 - €0T € 680 - v o - v - - so - € ¥ - - apunjy uonela|e ajun|e-zyenb o001g apey 879/5TS [¥2£099 | 61-T1-59
6 9.9 - | S0 - €0 6z 800 6 | S98 SO0 - OUET 0S - TO TO 60 15 TIT - - 21401y734 93Ap Jjew pawiogap 001 3pey TEELSTS (08YT99 | 9T-TT-SO
T - 62 TO - S0 000 - 700 - 6 00 - 900 6 - - To - u T - - aunosnN uonesaye edljis A3 0014 3pney ¥8TLSTS [T9T99 | TT-T1-59
¢ 0z - ¥8¥S TO | TO S¥L 000 -  v00 - L 800 - 110 - - - 90 - | sz - - - a)n0dsNIN uonesayje edljis 2813 Jooug apey 197£5TS [¥29199 | T1-T1-59
3 Il 00 L L0 L0 L0 W0 L 100 L L0000 L OO L L0 00 LO LO Z T0 G Mwiuonddleq
wdd wdd wdd wdd wdd wdd wdd ¢, wdd o, wdd ¢ 9 wdd ¢ wddwdd ¢, wdd wdd wdd wdd wdd qdd
uz M IL 1L 8L 9 d9S S qd BN ON UAN M BH e4 nD pD eD 1g g eg sy By ny ABojeisuiy uonessyy uonduasaq oadsoud NWLN I WLN didwes

1T 9U0Z ‘,ZAVN Ul PAISI| 28 SOJBUIPIOOD
9IWI] UOT)OIIP MOTOq = - PIZATRUR 10U = /N :9)JON "UONRId)[E JI[[ISIB PIOUBAPE JO SAUOZ }09[3s Jo Jurddewr 0} uorjear ur pa3os[[oo sojdures [eoruayooan) g d[qeL,

Sampling of exposed alteration zones along the main

a volcaniclastic unit at the eastern end of the advanced
Burin Highway identified a previously unrecognized zone

argillic alteration near the Gold Hammer prospect.

ation developed within a fragmental volcanic unit (GS-11-
of pyrophyllite alteration in a roadcut, about 3.2 km north of
the Red Harbour exit (Figure 1). The alteration is hosted
within a relatively narrow zone that appears to be localized
along a north-northeast-trending linear that crosscuts the
road at an oblique angle. Within the roadcut, dark purple
crystal tuff is bleached to pale beige, representing the loss of
primary hematite within the protolith, which is accompanied
by the development of pyrophyllite alteration. Follow-up
investigations along the Red Harbour River East, north of

Hammer prospect. Note the finely laminated nature of the
270; Table 2).

clastic unit overlying the advanced argillic alteration, Gold
silica alteration shown in the inset.

Plate 8. Angular fragment of silica alteration (arrow) of an
inferred hydrothermal origin, contained within a volcani-

Plate 7. Pyrophyllite—diaspore alteration developed within

RED HARBOUR
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Plate 9. Locally developed rusty-weathering, vuggy, white
crystalline quartz veins located at the southwestern end of
the White Mountain Pond alteration zone.

the Burin highway, identified minor kaolinite alteration
along strike approximately 800 m to the northeast, but no
significant precious metal values were identified in associa-
tion with the alteration (Table 2).

BEACON HILL

This area represents another previously known zone of
alteration for which little information is available, aside
from a brief mention by Marsden and Bradford (2005). The
alteration is exposed at the top of a prominent hill with little
outcrop exposure where the zone is defined over a maxi-
mum width of approximately 200 m. The advanced argillic
alteration includes variably developed pyrophyllite, dickite,
potassic alunite and kaolinite assemblages, in addition to
pervasive silicification. The host rocks are inferred to be fel-
sic volcanic rocks of the Marystown Group. Locally, vuggy-
textured silica is developed in association with alunite (Plate
10); but no visible sulphide minerals are developed within
the vugs. Limited sampling of the alteration failed to identi-
fy any significant precious-metal values, but the alteration is
locally anomalous in Te, relative to other prospects in the
region (GS-12-210; Table 2). Prospecting in the area has
reported anomalous Mo and Zn values of up to 109 and 278
ppm, respectively (Marsden and Bradford, 2005); however
evidence of the reported stockwork-style mineralization
occurring marginal to the advanced argillic alteration was
not observed.

GEOCHRONOLOGICAL SAMPLING AND
RESULTS

Samples were collected in 2011 and 2012 to determine
the ages of key units to constrain the formation of epither-
mal systems. In part, the sampling targeted plutonic rocks
that might represent potential heat sources for the hydrother-
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Plate 10. Photograph of the typical vuggy-textured silica in
association with alunite—kaolinite alteration from the Bea-
con Hill prospect.

mal systems. The locations and final U/Pb ages are summa-
rized in Figure 7, and UTM’s are provided in Table 3. In
total, six samples were investigated, all of which yielded
small prismatic zircons that, in each case, appear to repre-
sent a single-age igneous population displaying fine-scale
growth zoning (Plate 11). This interpretation is confirmed
by the isotopic data that are concordant and overlapping.
New analyses of archived zircon (Sample TK77-23), previ-
ously reported by Krogh et al. (1988) to have an age of 608
+20/-7 Ma, were carried out to test this older age limit for
rocks of the Marystown Group. A new sample was also col-
lected from the reported sample site for TK77-23 (Krogh et
al., 1988) as the original location for this sample was
thought to have been erroneously reported (S.J. O’Brien,
personal communication, 2013).

U/Pb ZIRCON CA-TIMS ANALYTICAL PROCE-
DURE

The zircon grains analyzed were selected from mineral
concentrates, using tweezers, under the microscope accord-
ing to criteria of clarity, euhedral crystal form and lack of
inclusions. All grains were chemically abraded using the
Mattinson (2005) chemical abrasion thermal ionization
mass spectrometry (CA-TIMS) technique. The selected zir-
con crystals were annealed at 900°C for 36 hours prior to
etching in concentrated hydrofluoric acid in a pressure
bomb at 200°C for a few hours. This procedure is designed
to remove any altered domains throughout the crystal that
may have undergone Pb loss. This effective and simple pro-
cedure has now largely replaced physical abrasion (Krogh,
1982) for zircon analysis.

For each sample, a small number of zircon grains were
grouped into fractions of like morphology, and analyzed by
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Undivided - Fluviatile and shallow marine siliciclastic sedimentary

|:| Gander Zone - Quartzite, psammite, semipelite and pelite, including rocks, including minor unseparated bimodal volcanic rocks

minor black slate, congolmerate, limestone, mafic and felsic

volcanic rocks, and unseparated migmatitic rocks |:| Marystown and Love Cove groups undivided - Bimodal,
" - . . . Lo mainly subaerial felsic volcanic rocks, including minor
:l Migmatitic schist, gneiss and minor amphibolite unseparated siliciclastic sedimentary rocks
NEOPROTEROZOIC TO EARLY ORDOVICIAN [] connecting Point Group - Sandstone and shale turbidites
|:| Shallow marine siliciclastic sedimentary rocks - Burin Group - Pillow basalt, mafic volcaniclastic rocks,

siliciclastic sedimentary rocks

Figure 7. Regional geology map of the western Avalon Zone showing geochronological sample locations collected as part of
this study and their corresponding ages (modified from O Brien et al., 1998, coordinates are listed in NAD 27, Zone 21).
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590

574

575
574
589

0.05791 634 575

0.05955 170 572
0.05921 144 574

0.05963 26
0.05919 160 575

0.05930 46
0.06057 382 577
0.05922 36

0.7629 68
0.7817 532
0.7451 880
0.7625 228
0.7609 62
0.7599 202
0.7872 44
0.7608 226

108
106

0.09330 54
0.09361

0.09332 96
0.09286 70
0.09318 62
0.09308

0.09575 52
0.09323 68

0.4041
0.3651
0.3368
0.4770
0.3810
0.4185
0.3701
0.3933

73
86
465
589
187
1620
124

77

8.3
8.2
22

32
8.0
4.0
1.8
14

14.8
3.7
6.2
5.1
20.2
4.5
7.5
10.0

126
32
56
41
174
38
63
86

0.004
0.003
0.004
0.006
0.004
0.003
0.007

Ash-flow tuff (623504E, 5228215N)*
0.003

Z1 3 sml euh prm

72 2 sml euh prm
All zircon was chemically abraded (Mattinson, 2005) prior to dissolution. Z—zircon; 2,4 number of grains in analysis; prm, prism; sml, small; euh,

euhedral; frag, fragments; clr, clear; equ, equant.
a. Weights of grains were estimated, with potential uncertainties of 25-50% for these small samples.

b. Radiogenic lead

Atomic ratios corrected for fractionation, spike, laboratory blank of 0.6-2 picograms (pg) common lead, and initial common lead at the age of the sample cal-
culated from the model of Stacey and Kramers (1975), and 0.3 pg U blank. Two sigma uncertainties are reported after the ratios and refer to the final digits.

: UTM’s determined from description of original sample location of TK77-23, 4.8 km east of western exit to Garnish on the Burin highway.

75 4 clr sml equ
76 3 clr sml prm
Z7 4 clr sml equ
78 6 clr sml equ
TK77-23

Z3 5 sml euh prm
Z4 2 sml best prm
Notes:

c.

% .

100um

Plate 11. Cathodoluminescence images of zircon crystals
with igneous growth-zoning and representative of the type
analyzed from each sample. A. GS12-63, B. GS12-384, C.
GS11-169, D. GS11-168, E. GS12-335, F. GS11-428, G
TK77-23. Scale bar applies to all samples.

TIMS. At an age of ca. 570 Ma, for clear, high-quality zir-
con, this amounts to 2 to 5 grains of zircon per fraction.
These etched zircon fractions were washed in distilled nitric
acid, then double-distilled water, prior to loading in Krogh-
type TEFLON dissolution bombs. A mixed **Pb/**U tracer
was added in proportion to the sample weight, along with
ca. 15 drops of distilled hydrofluoric acid, then the bomb
was sealed and placed in an oven at 210°C for 5 days. Ion
exchange was carried out according to the procedure of
Krogh (1973), with modified columns and reagent volumes
scaled down to one tenth of those reported in 1973. The
purified Pb and U were collected in a clean beaker in a sin-
gle drop of ultrapure phosphoric acid.

Lead and uranium are loaded together on outgassed sin-
gle Re filaments with silica gel and dilute phosphoric acid.
Mass spectrometry is carried out using a multi-collector
MAT 262. The faraday cups are calibrated with NBS 981
lead standard and the ion-counting secondary electron mul-
tiplier (SEM) detector is calibrated against the faraday cups
by measurement of known Pb isotopic ratios. The small
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amounts of Pb were measured by peak jumping on the SEM,
with measurement times weighted according to the amounts
of each mass present. The U was measured by peak jumping
on the SEM. A series of sets of data are measured in the tem-
perature range 1400 to 1550°C for Pb and 1550 to 1640°C
for U, and the best sets are combined to produce a mean
value for each ratio. The measured ratios are corrected for
Pb and U fractionation of 0.1%/ amu and 0.03%/ amu,
respectively, as determined from repeat measurements of
NBS standards. The ratios are also corrected for laboratory
procedure blanks (1 to 2 picograms - Pb, 0.3 picogram - U)
and for common Pb above the laboratory blank with Pb of
the composition predicted by the two- stage model of Stacey
and Kramers (1975) for the age of the sample. Ages are cal-
culated using the decay constants recommended by Jaffey et
al. (1971). The uncertainties on the isotopic ratios are calcu-
lated and are reported as two sigma (Table 3). The age of
each rock is reported as the weighted average of the
*“Pb/>*U ages calculated using ISOPLOT, with the uncer-
tainty reported at the 95% confidence interval.

As a check on the accuracy of the entire laboratory pro-
cedure, results of nine U/Pb analyses of the TEMORA zir-
con standard (Black et al., 2003), carried out during the time
of measurement of these samples using the same detector
and measurement conditions, are shown in Figure 8. Eight
of nine analyses overlap and yield a weighted average
2Ph/2U age of 416.84 Ma (MSWD=0.18), which is in
close agreement with the published value of 416.75 Ma
(Black et al., 2003). The one lower analysis is interpreted to
display minor Pb-loss.

NEOPROTEROZOIC INTRUSIVE ROCKS
Host Rock to the Peter Brook Prospect

The Peter Brook prospect is one of the first reported
occurrences of low-sulphidation-style epithermal veining on
the Burin Peninsula (Evans and Vatcher, 2010). Well-devel-
oped colloform—crustiform chalcedonic silica veins and
related breccias, assaying up to 1.2 g/t Au and 130.4 g/t Ag
(Evans and Vatcher, 2010), are hosted within a medium-
grained granite that is grouped with late Proterozoic intru-
sions on regional geological maps of the area (O’Brien et
al., 1977). The low-sulphidation epithermal veining at the
prospect is developed as a northeast—southwest-trending 10-
to 15-m-wide zone exposed within a stream bed and is else-
where obscured by extensive surficial cover. The medium-
grained granite displays localized zones of brecciation and
has muscovite—illite alteration in wall rock immediately
adjacent to the veins (Plate 12). The granite intrusion is
flanked to the southwest by thinly bedded, red and green,
fine-grained sandstone, but the nature of this contact
remains undefined.
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Plate 12. A representative sample of the altered granite
hosting well-developed colloform—crustiform-banded chal-
cedonic silica veins associated with the low-sulphidation
related mineralization at the Peter Brook prospect.

Sample GS12-63 was collected from the medium-
grained host granite. Three fractions of 2 to 5 grains are con-
cordant, overlapping and they yield a weighted average
2°Pb/>*U age of 635 £2 Ma (MSWD = 0.49; Figure 9A).
One fraction (of 10 grains) is discordant and displaced to an
older age. It either contains an older grain, or an older core
in one or more grains.

Granite North of Fortune Bay (Previously grouped with
the Cross Hills Intrusive Suite)

This sample was collected to provide a better age con-
straint on the Cross Hills Intrusive Suite, which is close to
the advanced argillic alteration at the Gold Hammer
prospect (see above), and is a possible heat source for the
formation of the alteration. Previous attempts to date the
Cross Hills Intrusive Suite produced a preliminary U/Pb age
of 547 +3/-6 Ma (Tuach, 1991), however, were hampered by
the high uranium content and poor quality of the zircon crys-
tals. Sample GS12-384 was collected along the road
between Terrenceville and Grand le Pierre and was chosen
on the basis of its low radioactivity as determined using a
handheld scintillometer. The sample was a medium-grained
granodiorite from which five analyses consisting of frac-
tions containing 2 to 6 prisms were carried out; all are con-
cordant and overlap. These yield a weighted average
2°Pb/>*U age of 581 = 1.5 Ma (MSWD = 0.15; Figure 9B).
This age is demonstrably older than previous results from
granites of the Cross Hills Intrusive Suite, indicating that
revision of map units in the area is needed.

Stewart Prospect

Previous mapping in the area of the Stewart prospect
(cf- Sparkes, 2012 and references therein) defined an altered

quartz diorite unit that has a close spatial relationship with
the development of advanced argillic alteration and related
mineralization. Sample GS11-169 was collected from an
outcrop of the altered quartz diorite exposed within an
exploration trench at the Stewart prospect. This sample was
collected to test the age of this intensely altered intrusion
relative to the generally unaltered intrusions of the Burin
Knee granite (GS11-168; see below). Five analyses, each
using between 2 to 5 zircon prisms are concordant and over-
lap, however, analysis Z1 is noticeably younger than the
others with an age of 574 Ma. The age determined from
analyses Z2 to Z5 is 577 £ 1.4 Ma (MSWD=0.2; Figure 9C).

A sample from a fine-grained granodiorite phase of the
Burin Knee granite (Figure 2) was collected from the west-
ern end of the same exploration trench as the sample of the
altered quartz diorite. This sample was collected to test its
age relative to the altered quartz diorite, and to test the idea
that these intrusions correlate with the Swift Current Gran-
ite. Sample GS11-168 produced three concordant overlap-
ping analyses that provide a weighted average **Pb/**U age
of 575.5 £ 1 Ma (MSWD=0.15; Figure 9D). The ages from
the two samples at the Stewart prospect are indistinguish-
able within analytical error.

NEOPROTEROZOIC VOLCANIC ROCKS
Marystown Group (Southwestern Burin Peninsula)

The volcanic sequence at the Lord’s Cove area was
sampled to test the previously reported age of 608 +20/-7
Ma (Krogh et al., 1988; Figure 7). However, unpublished
field information (S.J. O’Brien, personal communication,
2013) suggests that this sample (TK77-23) actually came
from a different location than that reported; some 40 km to
the northeast in the area of Garnish. Sample GS12-335 was
collected along the road in Lord’s Cove, and is a fine-
grained felsic lapilli tuff from which two analyses consisting
of 3 to 4 zircon prisms are concordant and overlap and pro-
duce a weighted average **Pb/>*U age of 576.8 + 2.6 Ma
(MSWD=0.62; Figure 9E).

Marystown Group (Monkstown Road)

Sample GS11-428 was collected from a quarry on
Monkstown Road, approximately 1 km southwest of the
Tower prospect (Figure 5). The sample, which consists of
pale purple fine-grained felsic tuff of the Marystown Group,
was collected to compare its age with the ca. 572 Ma age
obtained from the host rock of the Hickey’s Pond prospect
farther to the north (O’Brien et al., 1999). Of the eight
analyses carried out, two are discordant whereas the other
six are concordant and overlap. Several analyses have large
uncertainties on the *’Pb/*°U ratio (and age), due to the very
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Figure 9. Concordia diagrams of U/Pb results of zircon analyses from samples from the Burin Peninsula. Error ellipses are
at the 20 level. Refer to Table 3 for sample locations and descriptions.
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small amounts of *’Pb in the crystals, which is less than one
picogram in some analyses. Analyses Z3 to Z8 yield a
weighted average *“Pb/**U age of 576.2 + 2.8 Ma
(MSWD=1.6; Figure 9F).

Marystown Group (Archived Sample TK77-23 from
Krogh et al., 1988)

As discussed above, the Krogh et al. (1988) sample,
TK77-23, is located some 40 km northeast of its originally
reported location, and comes from a roadcut approximately
4.8 km east of the western Garnish exit (Figure 7). To
resolve questions about this older age, four new analyses
from the archived sample were completed. These analyses
demonstrate the presence of older crystals in this rock, and
this is the likely explanation for the previously published
age of 608 Ma. Analysis Z3 likely has an older crystal or an
older core in one or more crystals, possibly derived from an
older volcanic sequence. Three analyses, of 2 or 3 zircon
prisms each, are concordant and overlap and yield an age of
574.4 £ 2.5 Ma (MSWD= 0.03; Figure 9G). This is essen-
tially indistinguishable from the ages determined for other
samples from the Marystown Group.

DISCUSSION

ALTERATION SIGNATURES

The alunite-dominated alteration of the Monkstown
Road Belt is locally accompanied by pyrophyllite and dick-
ite, indicative of high-temperature-formation (200-350° C)
acidic conditions at relatively shallow crustal levels (Meyer
and Hemley, 1967; Arribas, 1995; Hedenquist and Taran,
2013). The predominance of alunite throughout the belt,
with little variation in the mineralogy of the alteration along
the exposed strike length of the zone, suggests a similar
level of exposure throughout the hydrothermal system, with
no evidence of the tilting inferred for some other areas of the
Burin Peninsula (e.g., Stewart prospect, Sparkes, 2012).
However, preliminary data from samples obtained at lower
elevations (present-day) appear to be dominated by more
potassic alunite, whereas higher elevations are dominated by
more sodic alunite. Data from epithermal systems elsewhere
suggest that the higher temperature portion of the epithermal
systems are dominated by sodic alunite (e.g., Chang et al.,
2011), and therefore implies that the higher topographic lev-
els of the Monkstown Road Belt represent areas of higher
paleotemperatures. Further work is required to confirm the
development of potassic alunite at lower elevations, and
evaluate the significance of this pattern.

The Tower prospect has a similar style of alteration to
the adjacent Monkstown Road Belt, with sodic alunite dom-

inating in most areas. Limited sampling of the advanced
argillic alteration, exposed to the northeast at Chimney Falls
and Hickey’s Pond prospects (Figure 3), suggests that these
areas are also dominated by sodic alunite. The Tower
prospect seems to have at least two stages of hydrothermal
alteration, and it is the second stage, dominated by alu-
nite—pyrite, that is linked to metal enrichment. There is as
yet no obvious explanation for the differences in gold abun-
dance amongst the Monkstown Road, Tower and Hickey’s
Pond prospects, as the alteration signatures of each are sim-
ilar.

The advanced argillic alteration, proximal to the Gold
Hammer prospect, is the first example of this style of alter-
ation identified within the volcanic rocks of the Long Har-
bour Group. Mapping of the alteration suggests that the two
zones identified in Figure 6 may be linked, with the alter-
ation in the area of the Gold Hammer prospect perhaps rep-
resenting a lower temperature, more neutral pH environ-
ment. The apparent stratiform distribution of the advanced
argillic alteration, within the volcanic sequence, displays
similarities with that associated with the development of a
lithocap, which is generally defined as being a horizontal to
subhorizontal blanket of residual quartz and advanced
argillic alteration above an intrusion (Sillitoe, 1995). But the
development of pyrophyllite—diaspore alteration is general-
ly indicative of higher temperatures within the deeper roots
of a hydrothermal system (e.g., Hedenquist and Taran,
2013). Nearby intrusions grouped as part of the Cross Hills
Intrusive Suite are associated with extensive zones of pyrit-
ic alteration (e.g., O’Brien et al., 1984), and could represent
a potential heat source for the alteration and mineralization.
However, geochronological data suggest that rocks assigned
to the Cross Hills Intrusive Suite may not all be of the same
age. The upper contact of this alteration with overlying sili-
ciclastic sediments and related mafic flows and sills remains
enigmatic, but if the clast of silica alteration identified in
outcrop relates to the underlying epithermal system, an
unconformable contact with overlying units is likely.

Several new zones of hydrothermal alteration in the
Burin Peninsula area were identified through field work and
follow-up of previous exploration sites, with some only evi-
dent through VIRS analysis. These are mostly barren, but
anomalous values of As, Mo, Se and Te imply a broadly
epithermal affinity (White and Hedenquist, 1995). The
observed alteration within the area of White Mountain Pond
is closely similar to that developed adjacent to the Forty
Creek prospect (cf. Sparkes, 2012), which locally contains
up to 59 g/t Au and 2290 g/t Ag (TerraX Minerals Inc., Press
Release, December 20, 2010; Sparkes, 2012); however no
such mineralization has yet been identified in the area of the
White Mountain Pond alteration zone.
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Miquelon. Also shown is the regional age bracket for the development of the Marystown Group. Numbers at the bottom of the
plot refer to publications containing the relevant U/Pb zircon ages: 1) Tuach, 1991, 2) Dec et al., 1992, 3) O Brien et al., 1994,
4) Dunning et al., 1995, 5) Rabu et al., 1996, 6) O Brien et al., 1998, 7) McNamara et al., 2001, 8) Hinchey, 2001, 9) Clarke,

2012, 10) this study.
GEOCHRONOLGICAL RESULTS

The geochronological data presented generally support
existing data, which are summarized in Figure 10, but also
provide some new insights. The 635 + 2 Ma intrusive rock
from the Peter Brook prospect represents the first rock of
this age identified on the Burin Peninsula. This is one of the
oldest ages obtained from the entire region aside from those
of the ca. 760 Ma Burin Group (Krogh et al., 1988; O’Brien
et al., 1996). These results also provide a maximum age
limit for the formation of the low-sulphidation veins at the
Peter Brook prospect.
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The 581 + 1.5 Ma age from the granite obtained from
the area west of Terrenceville indicates that rocks of similar
age to the Swift Current Granite are present within areas
currently included in the Cross Hills Intrusive Suite. The
Swift Current Granite and correlatives are older than the ca.
570 Ma age for the base of the Long Harbour Group
(O’Brien et al., 1994), and therefore are unrelated to the for-
mation of the advanced argillic alteration and related miner-
alization at the Gold Hammer prospect. Further work is
required to better constrain the age of the Cross Hills Intru-
sive Suite and also to establish the relative extent of granitic
units of different ages in this area.
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The Stewart prospect is locally hosted by an altered
quartz diorite dated at 577 = 1.4 Ma, and now provides a
maximum age limit on the formation of the advanced
argillic alteration at the prospect. The alteration and related
mineralization was interpreted as a collapsed porphyry sys-
tem in which the advanced argillic alteration was superim-
posed on underlying porphyry-related mineralization (Dyke
and Pratt, 2008). Dating of the altered quartz diorite and the
adjacent Burin Knee granite demonstrates the two units are
of essentially identical age, and both are correlative with the
Swift Current Granite. The Burin Knee granite was previ-
ously correlated with the ca. 577 Ma Swift Current Granite
by O’Brien and Taylor (1983), and the new data support this
link.

Dating of the volcanic rocks at Lord’s Cove, in the
southern Burin Peninsula area, resolves some issues relating
to the age of the Marystown Group. The age of 576.8 £ 2.6
Ma resembles those obtained from elsewhere within the
region (Figure 10). The re-analysis of archived zircon from
the sample TK77-23, originally described by Krogh et al.
(1988), suggests that older inherited material was present in
the earlier results, which account for the older age determi-
nation. New analyses from the sample using newer tech-
niques now demonstrate the actual age of the sample to be
574.4 +£2.5 Ma, which matches other reported ages from the
Marystown Group. Investigation into the original sampling
site for TK77-23 confirms the sample was actually collect-
ed 4.8 km east of the western Garnish exit (Figure 7; S.J.
O’Brien, personal communication, 2013).

Finally, the age of 576.2 = 2.8 for the volcanic rocks
adjacent to the Tower prospect, indicates that these rocks are
essentially of the same age as the ca. 572 Ma host rock to
the Hickey’s Pond prospect. Collectively, these results pro-
vide a maximum age limit on the formation of the advanced
argillic alteration in the area. Unfortunately no units suitable
for U/Pb age determinations are known to crosscut the alter-
ation to provide a minimum age limit on its formation. The
data are consistent with the original interpretation of
O’Brien et al. (1999), in which the formation of the
advanced argillic alteration in the area was suggested to be
coeval with the intrusion of the 577 + 3 Ma Swift Current
Granite.

These new ages emphasize the period from 580 to 570
Ma as a period of active magmatism, which was probably
accompanied by the formation of regionally extensive zones
of advanced argillic alteration associated with the develop-
ment of high-sulphidation systems. This period is closely
similar to that suggested for the formation of the Hope
Brook deposit (578-574 Ma; Dubé et al., 1998), and pro-
vides supporting evidence for an active period of hydrother-
mal activity throughout the Avalon Zone and related peri-
Gondwanan arc terrains at that time.
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