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ABSTRACT

The Bull Arm Formation is one of the most areally extensive volcanic units in the Avalon Terrane of Newfoundland. His-
torically, the age has been interpreted from the single previous U–Pb zircon age (570 +5/-3 Ma) obtained from a rhyolite flow
on Wolf Island, where no contact relations are exposed. This rhyolite was later re-interpreted as the lower part of the overly-
ing Rocky Harbour Formation but the initial interpretation as Bull Arm Formation had by then become entrenched in the lit-
erature. New U–Pb zircon (CA-TIMS) geochronology results have been obtained for two rock samples from the volcanic-dom-
inated Bull Arm Formation, Musgravetown Group, on the Bonavista Peninsula (Plate Cove volcanic belt) of northeastern
Newfoundland, and one sample from the Isthmus that connects the Avalon Peninsula to the rest of the Island. A 40-cm-thick
crystal-ash tuff near the base of the Plate Cove volcanic belt, at the roadcut east of Summerville, yielded an age of 592 ± 2.2
Ma. A lapilli tuff, located approximately 1800 m to the east, at the eastern margin of the volcanic belt, yielded an age of 591.3
± 1.6 Ma. Quartz- and potassium feldspar-phyric, banded rhyolite from the Isthmus, approximately 95 km to the south-south-
west of the two Bonavista samples, yielded an age of 605 ± 1.2 Ma. 

These ages of volcanism, complemented by petrological studies, show that the Bull Arm Formation is older than 570 Ma
and that the volcanic rocks assigned to the Bull Arm Formation are considerably more complex than previously known. The
occurrence of similar-age pyroclastic rocks at both the western and eastern margins of the Plate Cove volcanic belt is con-
sistent with either rapid deposition of the sequence in a few million years or stratigraphic repetition, likely owing to tight
upright folding during Acadian deformation, as documented elsewhere on the Bonavista Peninsula. The 605-Ma banded rhy-
olite at the Isthmus is age-equivalent to tuffaceous rocks at the top of the Connecting Point Group at Bonavista Bay. The Isth-
mus rhyolite is overlain by diamictite, possibly correlative to the 579-Ma-glaciogenic Trinity facies and Gaskiers Formation,
indicating a substantial depositional hiatus, and/or faulting, that may be related to uplift during early Avalonian orogenesis.

Geochronological results, coupled with structural observations, help to constrain the Neoproterozoic evolution of the
Avalon Terrane exposed on the Bonavista Peninsula. Earliest deformation recognized in the area occurred between 605 and
600 Ma, when arc-adjacent turbidites of the Connecting Point Group underwent north-directed thrusting creating local
unconformities and imbricate thrust stacks. East-side down, normal faulting along the Indian Arm fault west of the Plate Cove
volcanic belt followed ca. 592 Ma transitional to weakly calc-alkaline volcanism, and culminated in deposition of a coarse,
clastic wedge (the conglomeratic Plate Cove facies). A tectonically quiescent period followed, during which the 579 Ma Gask-
iers-equivalent, glaciomarine Trinity diamictite and overlying grey siltstone of the Big Head Formation were deposited.
North-directed thrust faulting, likely part of Avalonian orogenesis, occurred again post-565 Ma. This terminal Neoproterozoic
event preceded deposition of the Early Cambrian Random Formation and possibly parts of the upper Crown Hill Formation.

INTRODUCTION

The single previous geochronological age constraint

for the mainly volcanic Bull Arm Formation (BAF), Mus-

gravetown Group (MG), came from a rhyolite flow on Wolf

Island, located in Bloody Reach, ~8 km north-northeast of

Traytown (NTS map sheet 2C/12; Figure 1). This flow

yielded a U–Pb (zircon) age of 570 +5/-3 Ma and was ini-

tially interpreted to represent the base of the MG (O’Brien

et al., 1989). It was later re-interpreted as the basal part of

the overlying Rocky Harbour Formation (O’Brien and

King, 2004), but by then its initial interpretation had
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become entrenched in the literature (e.g., Myrow, 1995;

O’Brien et al., 1996; Pisarevsky et al., 2012; Pollock et al.,
2009; Thompson et al., 2014). Certain stratigraphic corre-

lations have also led to the interpretation that the BAF rep-

resents a late phase of Avalonian Neoproterozoic arc mag-

matism. In his compilation of the bedrock geology of the

Avalon Peninsula, King (1988) correlates units of the (for-

mer) Hodgewater Group (Hutchinson, 1953; McCartney,

1967) to the St. John’s Group and lower Signal Hill Group.

He also correlates grey siltstone of the upper Hodgewater

Group (McCartney, 1967) to the Big Head Formation of the

MG, so that the latter broadly overlies the Signal Hill

Group. Currently, there are no direct age constraints (U–Pb

geochronology) on the Signal Hill Group, but the Cuckold

Formation at Cape Spear contains detrital zircon possibly

as young as 555 Ma (±12 Ma, 2 sigma error reported; Pol-

lock et al., 2009). Based on stratigraphy, the Signal Hill

Group must be younger than the ca. 565 Ma Mistaken Point

Formation of the Conception Group (G. Dunning, unpub-

lished data; cited by Benus, 1988) and overlying St. John’s

Group (ca. 557 Ma; G. Dunning, unpublished data, 2007).

Correlations that put MG stratigraphically above Signal

Hill Group are inconsistent with new geochronological

constraints from the BAF.

REGIONAL GEOLOGY

The MG stratigraphically overlies, commonly with

angular discordance (e.g., O’Brien, 1993), Neoproterozoic,

arc-adjacent, marine basin rocks preserved as the Connect-

ing Point Group (CPG; Dec et al., 1992), and sits below the

Early Cambrian, marginal-marine, Random Formation and

overlying transgressive succession (Smith and Hiscott,

1984). The MG occurs mainly in the central part, but has

also been mapped in the western part of the Avalon Terrane

in Newfoundland (Figure 1) and extends eastward to the

northwest and southwest promontories of the Avalon Penin-

sula (King, 1988). On the Bonavista Peninsula, the MG has

been divided into (in ascending order): a basal conglomerat-

ic Cannings Cove Formation (not everywhere present), the

dominantly volcanic BAF, an unnamed middle unit, the

shallow-marine to fluvial Rocky Harbour Formation, and

the upper terrestrial red beds of the Crown Hill Formation

(Jenness, 1963). Farther south, in the Placentia Bay area, the

BAF is overlain by the Big Head Formation (McCartney,

1967), comprising basal conglomeratic to arkosic red beds

that pass upward into fine-grained, grey-green siliciclastic

rocks that are the dominant rock type of the Big Head For-

mation. At Big Head, near Long Harbour, red beds at the

base of the Big Head Formation interfinger with basalt flows

and breccias presumed to be part of the BAF (McCartney,

1967; Figure 1). The Big Head Formation is overlain by

dominantly red arkose of the Maturin Ponds Formation,

which pass upward into red and green, commonly channel-

ized conglomerate and coarse-grained sandstone of the Trin-

ny Formation. The latter is overlain by either the Crown Hill

Formation or the Random Formation, where the Crown Hill

is not recognized (McCartney, 1967). It is unclear whether

the different formations of the MG reflect varying strati-

graphic packages of different age, or time-equivalent lateral

facies changes in a tectonically active terrane of discontinu-

ous volcanic islands and adjacent marine basins.

Volcanic rocks traditionally assigned to the BAF

(Hayes, 1948; Jenness, 1963; McCartney, 1967; O’Brien,

1993, 1994; Normore, 2010, 2012) include rhyolitic flows

and ignimbrites, mafic volcanic rocks, and lesser intermedi-

ate volcanic rocks interfingered with, and overlain by, prox-

imally derived volcanogenic sedimentary rocks (Hughes

and Malpas, 1971). The BAF forms a discontinuous, north-

trending volcanic belt that extends from Plate Cove south-

ward through the Isthmus of Avalon to the southwestern part

of the Avalon Peninsula between Placentia and St. Mary’s

bays (Figure 1). The overlying stratigraphic successions

vary across the central Avalon Terrane in Newfoundland

(e.g., Big Head Formation in Placentia area vis-à-vis Rocky

Harbour Formation in Bonavista area). Whereas basal red

beds, which pass up into grey-green siltstone of the Big

Head Formation overlie the BAF in the Placentia Bay area,

BAF rocks of the Plate Cove volcanic belt (PCvb) on the

Bonavista Peninsula are overlain by coarse-grained, proxi-

mally derived siliciclastic rocks of the Rocky Harbour For-

mation. These include flattened, volcaniclastic pebble con-

glomerate (Plate Cove facies; O’Brien and King, 2005) and

medium- to coarse-grained, thick-bedded, light-grey sand-

stone having thin interbeds of maroon shale (Kings Cove

Lighthouse facies; Normore, 2010). Grey siltstone, shale

and fine-grained sandstone of the Kings Cove North facies

(O’Brien and King, 2002; Normore, 2010) overlie and

interfinger with rocks of the Kings Cove Lighthouse facies

(Normore, 2010). Rocks of the Kings Cove North facies are

lithologically similar to the Big Head Formation, but appar-

ently occur stratigraphically higher in the MG (O’Brien and

King, 2002; Normore, 2010).

Early studies of the BAF at the Isthmus of Avalon

describe the formation there as a felsic-dominated, bimodal

suite deposited in a subaerial environment (Malpas, 1971).

Despite alteration of the primary chemical composition by

varying degrees of metasomatism (Hughes and Malpas,

1971), Malpas (1971) suggests an original calc-alkaline

affinity for the rocks based on Zr values and whole-rock

analyses. These early lithogeochemical results comprise

abundances for major elements and four trace elements

only; no modern lithogeochemical analyses (including key

elements for petrological studies, such as rare-earth ele-

ments and high-field-strength elements) have been carried

out, until recently.
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On the Bonavista Peninsula, Mills and Sandeman

(2015) delineate three spatially and lithogeochemically dis-

tinct suites of mafic volcanic rocks in the area. Calc-alka-

line, glomerocrystic basalt is exposed along three separate

promontories on the north shore of western Bonavista

Peninsula, west of the PCvb (HB, Figure 1). The Headland

basalt (HB) is interbedded with mainly red pebble to cobble

conglomerate, lesser sandstone and minor pyroclastic rocks.

Although contacts with adjacent rocks of the CPG are gen-

erally faulted, the original contacts may have been uncon-

formable, as preserved at Southward Head (O’Brien, 1994;

Mills, 2014). The angular unconformity at Southward Head

(between steeply dipping CPG rocks and overlying, shal-

lowly dipping basal MG) has been constrained to between

605 and 600 Ma (Mills et al., 2016b). Thick HB flows occur

about 1 m above a 600 ± 3 Ma crystal lithic tuff (Mills et al.,
2016b), providing an approximate age for the HB. The

north-trending, ~2-km-wide, PCvb comprises basalt, rhyo-

lite flows and breccias, and lesser intermediate volcanic and

sedimentary rocks, and occurs on the west side of the

Bonavista Peninsula, east of the CPG (Figure 1). The vol-

canic belt is faulted on both sides and shows evidence for

syn-depositional extension (Plate 1A), and at least two com-

pressional deformation events (Plate 1B; Mills et al.,
2016a). Basalts of the PCvb are transitional, weakly calc-

alkaline to E-MORB-like basalts (Mills and Sandeman,

2015). The OIB-like, alkaline basalts occur only locally on

the eastern part of the Peninsula (Figure 1, DP–Dam Pond

basalt; Mills and Sandeman, 2015).

The chemical diversity within volcanic rocks assigned

to the BAF highlights the need for targeted, detailed strati-

graphic, lithogeochemical and geochronological studies of

the BAF and overlying sedimentary successions to better

understand changes in tectonic setting throughout the latest

Neoproterozoic. This paper provides the first documentation

of precise U–Pb zircon (CA-ID-TIMS) constraints on the

BAF within a lithological and petrological context.

SAMPLE DESCRIPTIONS

AND PETROGRAPHY

15AM125 – CRYSTAL ASH TUFF (SUMMERVILLE

ROADCUT; WEST SIDE OF PLATE COVE

VOLCANIC BELT)

A 2 by 3 km area of the PCvb was mapped in detail

(1:4000), and a cross-section through the roadcut east of

Summerville was constructed as part of a B.Sc. (Hons.) the-

sis (Wilson, 2015; Figure 2A, B). No U–Pb age was deter-

mined during the study due to abundant common lead in

poor-quality zircon, which nullified the analytical results. A

greenish-yellow, fine-grained, tuffaceous rock near the base

of the BAF in the Summerville area was subsequently

selected as an alternate geochronological target. The 30- to

40-cm-thick tuff layer occurs within a 100-m-thick package

of maroon and grey-green shale that overlies basalt near the

base of the roadcut exposure. It is overlain by a >100-m-

thick basalt succession, which, in turn, is overlain by >10-

m-thick quartz- and potassium-feldspar-phyric rhyolite

flows, including the geochronology target of Wilson’s

(2015) thesis.

In thin section, the tuff is evidently weakly layered,

contains very fine-grained, sub- to anhedral crystals of

quartz, plagioclase, K-feldspar, and clinopyroxene (~200‒

400 µm), and <200 µm angular crystals and/or fragments of

epidote. Locally, epidote appears to pseudomorph glass

shards (Figure 2C, D).

4

Plate 1. Views of the Plate Cove volcanic belt. A) Half-
graben fill (approximately 1 m thick at the thin neck adja-
cent to the graben) in a red interflow bed, indicative of syn-
depositional extension (view to the southeast); B) A possi-
ble pop-up structure in mafic volcanics and red sandstone
interbeds, consistent with north- to northwest-directed
thrust faulting. Marker bed, outlined in red (dashed where
confidence is low), is approximately 40‒50 cm thick; view
to the southeast.
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15AM201 – CRYSTAL LITHIC LAPILLI TUFF (EAST

SIDE OF PLATE COVE VOLCANIC BELT)

Crystal lithic lapilli tuff crops out near the eastern mar-

gin of the PCvb, approximately 1800 m east of the site of

geochronology sample 15AM125 (Figure 1). The outcrop

was exposed, in a wooded area, through mechanical strip-

ping when the site was cleared for cabin construction. No

contact relations were observed, but mapping indicates that

the lapilli tuff overlies a thick succession of rhyolite flows to

the west and is overlain by volcanic-clast-dominated

polymictic conglomerate previously assigned to the Plate

Cove facies (O’Brien and King, 2005) of the Rocky Harbour

Formation. The lapilli tuff was therefore thought to occur

near the top of the volcanic sequence and was sampled to

provide an upper constraint on the timing of magmatism

within the PCvb.

At the northernmost exposure of this site, rounded,

white-weathering fragments are included within red-weath-

ering, banded volcanic rock (Plate 2A), whereas approxi-

mately 15 m to the south, angular, red, feldspar-phyric rhy-

olite fragments are included within a white-weathering,

tuffaceous matrix (Plate 2B). These observations are consis-

tent with the presence of multiple eruptive units within this

outcrop area.

In thin section, larger grains are identified as quartz

phenocrysts, altered and rounded, brownish feldspar phe-

nocrysts, relatively coarse crystalline volcanic rock frag-
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Figure 2. Geological context for geochronology sample 15AM125. A) Cross-section of the roadcut exposure near Sum-
merville, modified after Wilson (2015), showing location of the dated crystal tuff near the base of the section; B) Field pho-
tograph of the 30- to 40-cm-thick crystal ash tuff layer sampled for geochronological analysis (hand sample shown in inset)
within a 100-m-thick shale sequence between basaltic rocks near the base of the roadcut exposure detailed in A; C) Pho-
tomicrograph of crystal ash tuff, sample 15AM125, containing possible glass shards and other crystals in a fine-grained
matrix composed mainly of quartz, feldspar and white mica, shown in plane-polarized light; D) Sample 15AM125 shown in
cross-polarized light; ep ‒ epidote.
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ments having cuspate margins and embayments, and glassy

fragments, locally feathery textured. The feldspars either

lack twins or exhibit simple twinning, contain thin, distinc-

tive and resorbed rims, and common thermal cracks. Irregu-

lar (locally cuspate-lobate) margins (Plate 2C) and embay-

ments up to 200 µm deep in quartz porphyritic volcanic

clasts (Plate 2D) indicate that the fragments were likely hot

when they were incorporated within the rock. It is therefore

likely that eruption of the red, rhyolitic flow was coeval with

ejection of the white-weathering tuffaceous rock.

15AM401 – BANDED RHYOLITE FLOW (FROM

THE ROADCUT AT THE ISTHMUS OF AVALON)

Approximately 450 m of uninterrupted bedrock is

exposed along the Trans-Canada Highway at the Isthmus of

Avalon, 21.5 km south of Bull Arm, affording excellent

access to rhyolite flows and breccias of the BAF and over-

lying siliciclastic rocks (Figure 3A). Pink and black, quartz-

and potassium feldspar-phyric, banded rhyolite near the

base of the section was sampled for geochronological analy-

sis (Figure 3A–C). The closest roadside outcrop west of the

Isthmus roadcut is a felsic to intermediate tuff, exposed in a

roadcut nearly 2 km to the west. The banded rhyolite is fold-

ed about a gently south-southwest-plunging axis and is

overlain to the east by grey-green siltstone and lesser tuffa-

ceous sandstone followed by two sequences of conglomer-

ate-dominated siliciclastic rocks (Figure 3A, B). The lower

conglomeratic sequence is a green, clast-rich to clast-poor,

intermediate diamictite that is mainly structureless, but

locally contains rare dropstones in a finely laminated

(varve-like) matrix (Figure 3D). It is overlain by pistachio

6

Plate 2. Field photographs and photomicrographs of sample 15AM201. A) White, elongate clasts interpreted as lapilli incor-
porated in red, rhyolite flow; B) Clasts of red, feldspar-phyric rhyolite in white tuffaceous rock; C) Photomicrograph (in
plane-polarized light) showing irregular, locally cuspate and lobate rims of rhyolite clasts (highlighted in red); D) Photomi-
crograph (in plane-polarized light) showing diffuse outer margin and deep embayment (red arrow) along the rim of a feldspar-
phyric clast, consistent with incorporation of fragments into the rock while still hot.
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green mudstone and variegated (red to green) siltstone.

These pass up into cross-stratified, granule to pebble con-

glomerate disposed in thick, fining-upward beds containing

abundant felsic and mafic volcanic clasts and mm-scale

black laminations comprising detrital magnetite.

In thin section, the banding in the dated rhyolite is char-

acterized by clear, ultra-fine-grained, feldspathic bands

alternating with fine-grained, quartz-dominated bands hav-

ing minor, very fine-grained magnetite and amphibole dis-

seminated throughout (Figure 3E). The feldspathic bands

are K-rich and are interpreted as devitrified glass. Reflected

light microscopy reveals the presence of minor, relict mag-

netite, locally surrounded by hematite. Quartz crystals are

rounded and embayed, indicating that they have been par-

tially dissolved, possibly due to magma mixing. Mineral lib-

eration analysis and back-scattered electron microscope

images show that zircon is commonly spatially associated

with other accessory phases, including titanite, apatite, mag-

netite, annite, thorite and monazite (Plate 3).

ANALYTICAL METHODS

Samples were processed using standard methods of

crushing and mineral separation under clean conditions, and

representative fractions of small numbers of the highest-

quality euhedral zircon prisms were selected from each rock

for analysis (Plate 4). Representative zircon crystals from

samples 15AM125 and 15AM401 were imaged by cathodo-

luminescence (CL) on the scanning electron microscope

prior to U–Pb isotopic analysis by CA-TIMS at the

Geochronology Laboratory at Memorial University of New-

foundland. Sample 15AM201 was not imaged due to the

very low yield of zircon crystals. Analytical procedures are
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described in Krogh (1982). The chemical abrasion technique

of Mattinson (2005) was used for single grain to small

multi-grain analyses (up to 7 crystals) of zircon. Data are

presented in Table 1 and Figure 4, with errors reported at the

2σ level. Data were plotted using unpublished in-house soft-

ware. Weighted average 206Pb/238U ages and uncertainties at

the 95% confidence interval were calculated using ISO-

PLOT (Ludwig, 2008). The 206Pb/238U age is used rather than

the 207Pb/206Pb age because the latter depends on the preci-

sion of radiogenic 207Pb measurements, which is present in

very low abundances in rocks less than about 1.2 Ga

(Gehrels, 2014) and its measurement is therefore less accu-

rate and precise than the measurement of the more abundant
206Pb isotope.

ZIRCON MORPHOLOGY AND

GEOCHRONOLOGY RESULTS

Sample 15AM125 yielded a population of small, clear

euhedral zircon prisms, as well as some rounded grains,

likely a detrital component, which were not analyzed (Plate

4). The CL imagery reveals distinct cores in two of the zir-

cons imaged (Figure 4A). One zircon crystal exhibits two

corroded surfaces of pre-existing zircon, marked by a high-

ly luminescent (REE-rich) margin, surrounded by new zir-

con growth (Figure 4A). Oscillatory zoning is evident in all

imaged zircons, consistent with igneous growth. Three

analyses were carried out, after chemical abrasion, on frac-

tions containing 2, 3 and 7 grains. Two fractions give over-

lapping concordant points, whereas Z3, a 7-grain fraction,

yields a discordant point with a 207Pb/206Pb age of 686 Ma.

Z1 and Z2 yield a weighted average 206Pb/238U age of 592 ±

2.2 Ma at the 95% confidence interval (CI; Mean Square of

Weighted Deviates, MSWD = 0.48; Figure 4). 

Sample 15AM201 yielded a population of small, euhe-

dral, clear prisms, having minor cracks and inclusions (Plate

4). Three analyses, of 1 or 3 grains each, were carried out

after chemical abrasion, and resulted in overlapping concor-

dant analyses with 206Pb/238U ages from 590.9 ± 2.4 to 591.6

± 3.8 Ma (Figure 4). The weighted average 206Pb/238U age is

591.3 ± 1.6 Ma (95% CI, MSWD = 0.072).

Sample 15AM401, from the Isthmus of Avalon, yielded

a population of abundant uniform, small, euhedral zircon

prisms (Plate 4). Six analyses were carried out on small frac-

tions of 1 to 5 prisms after chemical abrasion (Table 1).

Some have higher common lead in the analysis, but all are

8

Plate 3. A) Colour-coded image generated by mineral liberation analysis (MLA) showing mineralogy and textures in sample
15AM401; B) Back-scatter electron image showing zircon (zr) and spatially associated magnetite (mt) and monazite (mz) in
groundmass of quartz (qtz) and potassic glass (K-glass). The fine laths in the centre of the photomicrograph are iron oxide,
and the bright web-like lines in the bottom right are REE-rich.
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concordant and overlapping, with 206Pb/238U ages ranging

from 602.8 ± 3 to 607.4 ± 3.2 Ma. Together, all six analyses

yield a weighted average 206Pb/238U age of 605.1 ± 1.2 Ma

(95% CI, MSWD = 1.0; Figure 4).

INTERPRETATION

Two tuffaceous rocks from the west and east sides of

the PCvb on the Bonavista Peninsula yielded similar
206Pb/238U ages of 592 ± 2.2 Ma and 591.3 ± 1.6 Ma, respec-

tively. Syndepositional extension within the PCvb (Plate

1A) is inferred to have occurred at about the same time. The

easternmost of the two samples was collected to provide a

younger constraint on volcanism in the PCvb, but unex-

pectedly yielded a similar crystallization age to that of the

sample from the western margin. Most of the rocks within

the PCvb dip moderately to steeply to the east, but young-

ing direction is difficult to determine within the mainly vol-

canic succession and the effect of Neoproterozoic Avalon-

ian folding is not yet clearly understood (Mills et al.,

2016a). Coeval volcanism at the western and eastern mar-

gins of the PCvb is consistent with either rapid deposition

of the volcanic sequence or moderate to tight, upright fold-

ing during Acadian deformation, as documented elsewhere

on the Bonavista Peninsula (Mills et al., 2016a). The age of

volcanism within the PCvb, therefore, remains to be more

tightly constrained but should await more detailed (1:5000

or better) structural and stratigraphic mapping comple-

mented by petrological studies of the volcanic belt and

adjacent rocks.

The stratigraphic succession at the Isthmus of Avalon

(Isthmus sequence), approximately 95 km south of the dated

tuffs from the PCvb, differs substantially from the stratigra-

phy of the PCvb. The nearest outcrop to the west of the Isth-

mus roadcut is a tuff located 1990 m to the northwest of the

Isthmus sequence, and is presumed to be older than the

banded rhyolite at the base of the measured section (Figure

3). Possible correlatives on the Avalon Peninsula include

units formerly known as the Harbour Main Group: the

9

Plate 4. Photomicrographs of zircon populations isolated from geochronology samples analysed for this study.
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Hawke Hills tuff (729 ± 7 Ma; Israel, 1998), the Triangle

Andesite (>640 Ma; O’Brien et al., 2001), and the Peak Tuff

(ca. 622–606 Ma; O’Brien et al., 2001). The 605 ± 1.2 Ma

banded rhyolite at the Isthmus could itself be correlative to

the Peak Tuff, or to another tuffaceous unit formerly

assigned to the Harbour Main Group and previously dated at

606 +3.7/-2.9 Ma (Krogh et al., 1988). 

Well-preserved igneous flow textures, and the presence

of ignimbrites and red beds at the Isthmus of Avalon, are

consistent with subaerial deposition of the Isthmus rhyolite

(see Malpas, 1971). Overlying the Isthmus rhyolite, thin-

bedded, fine-grained, green-grey sandstone and siltstone,

and a ~50-m-thick diamictite, were likely deposited in a

marine setting. Minor laminated facies within the diamictite

contains rare dropstones, indicative of a glaciomarine origin

(Figure 3D). Pistachio-green mudstone and variegated (red

to green) siltstone that overlie the diamictite resemble rocks

that overlie the Trinity diamictite on the Bonavista Peninsu-

la (Normore, 2011; Pu et al., 2016). A provisional correla-

tion can therefore be made between the 579 Ma Gask-

iers–Trinity diamictites (Pu et al., 2016) and the diamictite

on the Isthmus of Avalon. These new age constraints indi-

cate a significant depositional hiatus between 605 Ma and

579 Ma, and imply either an unconformity related to (or fol-

lowed by) a marine transgression, a fault relationship, or a

combination of both.

On the Bonavista Peninsula, glaciogenic diamictite of

the Trinity facies (Normore, 2011) overlies a thick succes-

sion of Plate Cove conglomerate. The latter is folded about

open, shallowly north-northeast–south-southwest-plunging

axes and is intermittently exposed over 4.1 km, across

strike, along Highway 230 between the eastern edge of the

PCvb and the first exposure of the Trinity diamictite to the

east (see Normore, 2011; Mills, 2014). This thick conglom-

eratic sequence is apparently missing in the roadcut section

exposed at the Isthmus of Avalon.

In the Sweet Bay area of western Bonavista Bay, a

lithic tuff, deposited in a shallow-marine setting near the

top of the CPG, yielded an age of 605 ± 2.2 Ma (Mills et
al., 2016b). There, the CPG is unconformably overlain by

ca. 600 Ma interbedded red pebble conglomerate and

basalt flows, characteristic of basal MG units described

elsewhere on the Bonavista Peninsula (e.g., Jenness, 1963;

O’Brien, 1993, 1994). The >300-m-thick, 605 ± 1.2 Ma

felsic volcanic succession at the Isthmus of Avalon likely

formed proximal to a major felsic volcanic centre and may

represent a source for zircon and volcanic detritus in shal-

low-marine tuffs near the top of the CPG in the Bonavista

Bay area.
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Figure 4. Concordia plots for samples discussed in the text.
A) Crystal ash tuff, sample 15AM125, from Summerville
roadcut; B) Crystal lithic lapilli tuff, sample 15AM201, from
eastern margin of the Plate Cove volcanic belt; C) Quartz-
and potassium feldspar-phyric, banded rhyolite, sample
15AM401 from the Isthmus of Avalon.
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IMPLICATIONS FOR THE EVOLUTION

OF THE BONAVISTA AREA

Geochronological results, combined with structural

observations and petrogenetic studies, help to constrain the

Neoproterozoic evolution of the Avalon Terrane exposed

on the Bonavista Peninsula (Figure 5). The CPG is the

remnant of an arc-adjacent marine basin that accumulated

between ca. 620 (O’Brien et al., 1989; Dec et al., 1992)

and ca. 605 Ma (Mills et al., 2016b). Between 605 and 600

Ma, turbidite deposits of the CPG underwent north-direct-

ed thrusting that resulted in local unconformities and

imbricate stacking of a fold and thrust belt (Mills et al.,
2016a, b; Stage 2, Figure 5). East-side down, normal fault-

ing along the Indian Arm fault west of the PCvb (Stage 3,

Figure 5) likely followed ca. 592 Ma transitional volcan-

ism (weakly calc-alkaline basalts derived from a shallow,

lithosphere-contaminated, enriched mid-ocean ridge basalt

source; Mills and Sandeman, 2015), and culminated in

deposition of the coarse, clastic wedge known as the Plate

Cove conglomerate (O’Brien and King, 2005). A tectoni-

cally quiescent period followed (Stage 4, Figure 5), during

which the 579 Ma Gaskiers-equivalent, glaciomarine Trin-

ity diamictite (Pu et al., 2016) and overlying grey siltstone

of the Big Head Formation were deposited. North-directed

thrust-faulting, likely the Avalonian orogenic event

described by Anderson et al. (1975), occurred again at

some time post-565 Ma, affecting rocks correlative to the

ca. 565 Ma Mistaken Point Formation near the communi-

ty of Trinity (Stage 5, Figure 5; Mills et al., 2016a). This

terminal Neoproterozoic event preceded deposition of the

Early Cambrian Random Formation and possibly parts of

the Crown Hill Formation.

IMPLICATIONS FOR AVALONIAN

CORRELATIONS

The new age constraints facilitate correlation with

tectonostratigraphic divisions from other Avalonian ter-

ranes (e.g., Thompson et al., 2014; Figure 6). Thompson et
al. (op. cit.) correlate the conglomeratic Cannings Cove

Formation and overlying BAF to Roxbury Conglomerate

and 585 to 584 Ma Brighton Igneous Suite of the Boston

Basin (based on former stratigraphic interpretation of the

570 +3/-2 Ma rhyolite as part of BAF). However, the new

age data are more consistent with correlation of at least the

592 to 591 Ma PCvb component of BAF and overlying

Plate Cove conglomerate to the 597‒593 Ma Lynn-Matta-

pan Volcanics and overlying <595 Ma Roxbury Conglom-

erate (Thompson et al., 2014). Deposition of the Roxbury

Conglomerate is interpreted to be syndepositional with

respect to Ediacaran normal faulting (Thompson, 1993).

The Plate Cove conglomerate on the Bonavista Peninsula is

12

Figure 5. Summary sketch of the evolution of the Bonavista
area. CPG – Connecting Point Group; LCG – Love Cove
Group; CCF – Cannings Cove Formation; HB – Headland
basalt; PCvb – Plate Cove volcanic belt; PC cgl – Plate
Cove conglomerate; Trinity – Gaskiers equivalent Trinity
diamictite; BH – Big Head Formation; MPF – Mistaken
Point Formation; STJ – St. John’s Group. Geochronological
constraints are from O’Brien et al. (1989) (620 Ma LCG);
Pu et al. (2016) (579 Ma Gaskiers Formation and Trinity
diamictite); Mills et al. (2016b) and this study.

Stage 5

post 565 Ma

Stage 4

ca. 570 Ma

Stage 3

ca. 590 Ma

Stage 2

ca. 600 Ma

Stage 1

ca. 605 Ma
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are from Mills et al. (2016b) and Pu et al. (2016).



CURRENT RESEARCH, REPORT 17-1

similarly inferred to have been deposited during extension-

al or transtensional movements.

No arc-related rocks have been identified on the Bonav-

ista Peninsula as possible correlatives to the 585 to 584 Ma

Brighton Igneous Suite from the Boston area (Thompson et
al., 2014). Volcanic rocks on the Bonavista Peninsula that

are considered to be younger than the 592 to 591 Ma PCvb

include: 1) the alkaline Dam Pond basalt (Mills and Sande-

man, 2015); 2) transitional, weakly calc-alkaline to

EMORB-like mafic flows and possibly correlative intrusive

rocks (Series 1 of the PCvb and Type-3 dykes of Mills and

Sandeman, this volume); and 3) the weakly alkaline mafic

volcanic and intrusive rocks recently identified in the British

Harbour area, southwestern Bonavista Peninsula (Figure 1;

Mills and Sandeman, this volume). The youngest, clearly

arc-related volcanic rocks identified on the Bonavista Penin-

sula are the ca. 600 Ma HB (Mills and Sandeman, 2015;

Mills et al., 2016b). Series 2 basalts of the 592 to 591 Ma

PCvb exhibit a transitional to weakly calc-alkaline affinity,

and are likely derived from a shallow mantle, E-MORB

source (Mills and Sandeman, 2015). Thus, on the Bonavista

Peninsula, rocks of the PCvb appear to herald a transition

from ca. 600 Ma subduction-dominated tectonic processes

to ca. 592 Ma extensional processes, with younger rocks

showing more alkaline affinity. A ca. 590‒570 Ma arc to

platform transition (e.g., Thompson, 1993; Nance and Mur-

phy, 1996; Pollock et al., 2009; Thompson et al., 2014) has

been recognized in many parts of the Avalon Terrane (see
Figure 5), but its timing remains unclear and may be

diachronous across disparate parts of the Avalon Terrane

(e.g., Murphy et al., 1999).

SUMMARY

As currently defined, the BAF on the Bonavista and

Avalon peninsulas is clearly composite, comprising rocks of

different chemistries and ages. The PCvb is younger than,

and therefore overlies, the CPG on the Bonavista Peninsula.

In contrast, the Isthmus sequence is age-equivalent to the

upper CPG and may be the source of volcanic detritus in the

latter’s ash layers. The original dated rhyolite sample from

Wolf Island (O’Brien et al., 1989) is perhaps most appropri-

ately assigned to the Big Head Formation, which may rest

unconformably on all of the above units (CPG, PCvb, and

the Isthmus sequence). In light of this data, an updated for-

mal definition of the BAF is required.
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