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ABSTRACT

The structurally controlled gold belt of central Newfoundland is emerging as a significant exploration jurisdiction in
Canada. The gold district occurs within a northeast-trending structural corridor defined by crustal-scale faults extending from
southwestern to north-central Newfoundland. Silurian syn-orogenic polymict conglomerate (Rogerson Lake Conglomerate)
characterizes the structural corridor. The presence of conglomerate reflects preservation of syn-orogenic upper crustal clas-
tic sequences commonly associated with orogenic gold vein systems. The largest known gold resource along this corridor
occurs at Marathon Gold Corporation’s Valentine Lake property. Marathon’s most recent public news release on Valentine
Lake reports a measured and indicated gold resource of 2.69 Moz grading at 1.85 g/t and an inferred resource of 1.53 Moz
grading at 1.77 g/t. Recent exploration by Antler Gold Inc. on previously unexplored property in the Wilding Lake area, adja-
cent to the northeast corner of the Valentine Lake property, exposed a system of gold-bearing quartz veins hosted by syn-oro-
genic sedimentary rocks, felsic volcanic rocks and volcaniclastic rocks.

Detailed structural study of these gold-bearing zones on the Antler Gold Inc. property demonstrates that the main ~2-m-
wide gold-bearing quartz vein, which extends for ~230 m along strike, cuts the conglomerate host and occurs within an
oblique sinistral reverse shear zone that involved a component of north-northeast-directed thrusting. An early set of stacked,
moderately dipping extensional quartz veins, consistent with sinistral reverse shear, emanate outward into the country rock
from the main vein. Younger, more steeply dipping sets of extensional quartz veins cut the main vein and the earlier shallow-
dipping vein set, and are consistent with at least transient phases of horizontal extension and dextral transpression.
Chalcopyrite and secondary malachite occur locally in the early vein sets, but are more abundant overall within the later,
steeper, extensional vein sets. A nearly conjugate set of steeply dipping extension fractures cut the main vein and the exten-
sional vein sets. These fractures are typically filled with an assemblage of vuggy quartz–chalcopyrite–malachite ± tourmaline
± pyrite ± hematite ± goethite ± bismuth–tellurium sulphide(s). Regional correlations suggest that the quartz vein system expe-
rienced a progressive structural history during the Late Silurian and Early Devonian.

INTRODUCTION

Structurally controlled gold systems comprise the most

economically significant gold deposit type in Canada

(Hodgson, 1993). The largest gold district, the late Archean

Abitibi greenstone belt of the Canadian Shield (e.g., Poulson

et al., 2000; Robert, 2001; Bleeker, 2015) consists of miner-

alized vein systems disposed along polydeformed, crustal-

scale fault zones (Figure 1, inset; Hodgson, 1993; Kerrich

and Cassidy, 1994; Groves et al., 1998; Kerrich et al., 2000;

Goldfarb et al., 2001). In central Newfoundland, numerous

examples of epigenetic gold mineralization appear to be

associated spatially with crustal-scale fault zones that pre-

serve syn-orogenic clastic sedimentary rocks (Figure 1).

This first-order relationship suggests that gold-bearing

quartz veins throughout central Newfoundland are struc-

turally controlled (e.g., Evans, 1996), with broad similarities

to mineralization of the Abitibi greenstone belt (Figure 1;

Honsberger and Bleeker, 2018). However, the polymetallic

nature of many examples of gold mineralization in central

Newfoundland (e.g., Tallman, 1991; Tallman and Evans,

1994; Evans and Wilson, 1994; Dalton and Scott, 1995;

Evans, 1996; O’Driscoll and Wilton, 2005; Lake and

Wilton, 2006; Sandeman et al., 2013, 2017), may suggest

local intrusion-related hydrothermal fluid inputs (e.g.,
Sillitoe and Thompson, 1998; Hart, 2007).

The slowly growing, largest proven gold resource in

Newfoundland (and among the top in Canada) is Marathon

Gold Corporation’s Valentine Lake gold property disposed
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along the Victoria Lake shear zone in central Newfoundland

(Figures 1 and 2A; Marathon Gold Corporation, press

release, October 30, 2018). Presently, this emerging gold

property is reporting a measured and indicated gold resource

of 2.69 Moz grading at 1.85 g/t and an inferred resource of

1.53 Moz grading at 1.77 g/t (Marathon Gold Corporation,

press release, October 30, 2018). These resources are based

on ore extracted from four open-pit resource shells, as well

as underground operations at the Leprechaun, Victory,

Sprite and Marathon deposits (Lycopodium Minerals

Canada Ltd., 2018). Structural examination of the

Leprechaun gold deposit of the Valentine Lake gold proper-

ty suggests that it is similar to the quartz–tourmaline vein

systems at Val-d’Or in the Abitibi (Marathon Gold

Corporation, Mountain Lake Resources Inc., press release,

November, 2012). The recent expansion of the Valentine

Lake gold property has stimulated renewed prospecting,

staking, exploration and study elsewhere along the major

encompassing structural corridor. The research reported

herein documents the lithological and structural setting of

recently discovered gold mineralization on a mineral explo-

ration industry property adjacent to the northeast corner of

the Valentine Lake property (Figure 2A, B). Antler Gold Inc.

has 100% interest in the claims on the property of the pres-

ent study. This is the first detailed non-industry geological

study of this prospective gold property.

GEOLOGICAL AND STRUCTURAL

SETTING OF EPIGENETIC GOLD

MINERALIZATION, CENTRAL

NEWFOUNDLAND

Numerous epigenetic gold deposits and showings occur

along crustal-scale faults within the Dunnage Zone of central

Newfoundland (Figure 1; Tuach et al., 1988; Evans, 1996,

1999). The eastern Dunnage Zone, (the Exploits Subzone), is

particularly well-endowed in gold deposits and showings

(Evans, 1996). The main gold-bearing structural belt in cen-

tral Newfoundland extends northeast from Cape Ray for
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~400 km to Fogo Island (Figure 1), and is characterized by

crustal-scale fault zones that locally preserve polymict con-

glomerate. The gold-bearing fault zones, from southwest to

northeast, are the Cape Ray fault, Red Indian Line and

Victoria Lake shear zone, and Dog Bay Line (Figure 1).

Marathon Gold Corporation’s Valentine Lake gold property

occurs along the Victoria Lake shear zone (Valverde-Vaquero

and van Staal, 2001) just northeast of Victoria Lake, where-

as the Antler Gold Inc. property in the Wilding Lake region

occurs farther northeast along the same structure (Figures 1

and 2A). Silurian Rogerson Lake Conglomerate occurs along

the major fault zone in both locations.

The geology of the gold-bearing corridor is character-

ized by accreted Neoproterozoic to Ordovician magmatic‒

sedimentary arc terranes of peri-Gondwanan affinity with

overlying Early Ordovician to Silurian sequences composed

of volcanic and sedimentary rocks (Williams, 1978;

Williams et al., 1988, 1993; Colman-Sadd et al., 1990;

Evans and Kean, 2002; O’Brien, 2003; Rogers et al., 2005,

2006; Valverde-Vaquero et al., 2005; van Staal et al., 2005).

The Valentine Lake pluton, a Neoproterozoic granitoid of

the Crippleback Intrusive Suite (Colman-Sadd et al., 1990;

Evans et al., 1990; van Staal et al., 2005) hosts gold miner-

alization at the Valentine Lake gold property (Figure 2A).

The gold resource at Valentine Lake occurs in the hanging

wall of the steeply northwest-dipping Valentine Lake thrust,

which places the Valentine Lake pluton over Rogerson Lake

Conglomerate (Marathon Gold Corporation, corporate pres-

entation, October 30, 2018). Rogerson Lake Conglomerate

is interpreted to represent the southwestern continuation of

the Silurian Botwood Group (Williams, 1972), which is

dominated farther northeast by red, green and grey-green

sandstones of the Wigwam Formation and magmatic rocks

of the Mount Peyton intrusive suite and Fogo Island

batholith (Colman-Sadd et al., 1990; O’Brien, 2003). An

Upper Ordovician to Devonian volcano-sedimentary

sequence containing polymict conglomerate occurs along

the gold-bearing Cape Ray fault (Dubé et al., 1996; van

Staal et al., 1996) in a structural position comparable to

Rogerson Lake Conglomerate.

Gold mineralization on Antler Gold’s property at

Wilding Lake occurs along the northeastern extension of the

Valentine Lake thrust, and is hosted within footwall rocks

composed of Rogerson Lake Conglomerate and inferred

Ordovician volcanic and volcaniclastic rocks (Figures 2B

and 3). Grey, muscovitic, medium-grained quartz arenite

beds interlayered with Rogerson Lake Conglomerate (Plate

1A) in the Wilding Lake region preserve local younging-

direction reversals (Plate 1B) consistent with tight upright

folding and a synclinal structure for the Silurian rocks and

underlying Ordovician rocks (Figure 3). The syncline is trun-

cated on the northwest by the northeastern extension of the

Valentine Lake thrust, which places Neoproterozoic volcanic

rocks and Cambrian to Ordovician arc rocks toward the

southeast over the Silurian‒Ordovician sequence (Figure 3).

The contact between Silurian Rogerson Lake Conglomerate

and the Ordovician volcanic and volcaniclastic rocks is not

exposed in this area; however, the absence of Late

Ordovician to Early Silurian Badger Group implies that the

contact is a deformed unconformity (Figure 3). The overall

structure suggests preservation of Silurian conglomerates in

a broad, partially truncated “footwall syncline” identical to

panels of syn-orogenic conglomerates in the Abitibi green-

stone belt (Bleeker, 2015). The overall synclinal structure

may also help explain local outcrops of conglomerate pre-

served above Ordovician volcanic and volcaniclastic rocks

south of the gold showings (Figures 2B and 3).

In the Wilding Lake area, gold mineralization is hosted

by Silurian Rogerson Lake Conglomerate as well as

Ordovician volcanic and volcaniclastic rocks. The Red

Ochre Complex, a gold-bearing feldspar porphyry unit,

occurs within the inferred Ordovician volcanic-volcaniclas-

tic sequence (Figure 3 and Plate 1C), whereas smaller gold

showings (e.g., Birch Zone) occur near the Rogerson Lake

Conglomerate‒Ordovician felsic volcanic contact (Figure 3

and Plate 1D). In Rogerson Lake Conglomerate, gold min-

eralization is associated with laterally extensive quartz veins

(e.g., Elm Zone and Alder Zone) that dip moderately to the

southeast and preserve structural evidence for oblique sinis-

tral shear. Gold is associated with quartz, chalcopyrite,

Bi–Te sulphides, tourmaline, and secondary malachite.

EXPLORATION HISTORY OF

THE VALENTINE LAKE

AND WILDING LAKE AREAS

From the early 1960s to 1998, base-metal exploration in

the Valentine Lake region by Asarco, Hudson Bay Oil and

Gas, Abitibi-Price, BP Canada, and Noranda led to the dis-

covery of quartz veins containing gold (Marathon Gold

Corporation, Mountain Lake Resources Inc., press release,

November, 2012). In 2006, InnovExplo studied the structure

of the Valentine Lake gold system and compared it to

quartz‒tourmaline gold deposits at Val-d’Or in the Abitibi

(Marathon Gold Corporation, Mountain Lake Resources

Inc., press release, November, 2012). The main deposit,

Marathon, presently defines a resource pit shell down to a

depth of ~1 km, with 1.9 Moz of measured and indicated

gold at 1.765 g/t (Marathon Gold Corporation, corporate

presentation, October 30, 2018).

Gold exploration in the Wilding Lake area began in

2015, when prospectors discovered visible gold in quartz

boulders along new logging roads. Prospecting and soil

sampling by Altius Resources in the summer of 2016 led to
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the discovery of additional quartz–tourmaline boulders with

visible gold. In September 2016, Antler Gold Inc. (Antler)

optioned the Wilding Lake property from Altius Resources.

Subsequent trenching between September 2016 and

November 2016 by Antler Gold Inc. exposed five new gold

showings, including Alder, Taz, Elm, Cedar and Dogberry,

all hosted in Rogerson Lake Conglomerate (Antler Gold

Inc., press release, August 30, 2017). Prospecting also iden-

tified three additional showings near the boundary with

inferred Ordovician felsic volcanic rocks (Birch, Third Spot

and Bridge). In 2017, Antler discovered the Red Ochre

Complex within the volcaniclastic rock-dominated terrane

south of the contact with Rogerson Lake Conglomerate, and

they exposed and defined more completely the other recent-

ly discovered gold-bearing zones. A first phase of channel

sampling and drilling was completed by Antler in 2017,

including three drillholes in the Alder Zone and 13 drillholes

in the Elm Zone (Antler Gold Inc., press release, December

13, 2017). Gold values of 19.2 g/t over 0.9 m and 49.92 g/t

over 0.98 m were reported for the Alder and Elm zones,

respectively, with local gold values of 101.5 g/t at Elm

(Antler Gold Inc., press release, January 24, 2017).

STRUCTURAL GEOLOGY, ELM ZONE,

WILDING LAKE PROPERTY

The gold-bearing quartz vein system of the Elm Zone

(Figures 4 and 5 and Plate 2) is the focus of this report

because it is the most extensive vein system known on the

property1, and has yielded the highest gold assays. Gold val-

ues within the main quartz vein are higher in the southwest-

ern trench (Figure 4B) than in the northeastern trench

(Figure 4A). The main quartz vein cuts Rogerson Lake

Conglomerate (Plate 2A), dips moderately (35–65°) to the

27

Plate 1. Field photographs. A) Interlayered polymict conglomerate and sandstone, Rogerson Lake Conglomerate; B) Basal
scour in sandstone, Rogerson Lake Conglomerate; C) View toward the west of a gold-bearing quartz vein in feldspar por-
phyry, Red Ochre Complex; D) Altered conglomerate, Birch Zone.

1
Trenches were studied in the field prior to being backfilled in Fall 2018.
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Figure 3. Interpreted cross-sectional view along A-A′. Locations of mineralized zones are indicated
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Zone). White circle marks the location of field photographs of Rogerson Lake Conglomerate shown
in Figures 4A and 4B.

Figure 4A. (Figure on page 29) (Top) Orthorectified drone image of the northeastern portion of the Elm trench. The main
quartz vein (white lineament) cuts deformed and altered Rogerson Lake Conglomerate. Short black lines are the channel sam-
ples traced on accompanying geological maps. Outlined areas are enlarged as geological maps in the lower portion of fig-
ure. (Bottom) Geological maps of the northeastern portion of the Elm trench. The smaller map area covers the northeastern-
most portion of the drone image, whereas the larger map area covers the southwestern portion. Foliations (grey lines), exten-
sion veins (green lines), and fractures (purple lines) are superimposed. Different line thicknesses represent schematically vary-
ing thicknesses of veins and fractures.
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Figure 4A. Caption on page 28. 
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southeast (Figure 5A), is up to 2.5 m wide, and is exposed

for about 230 m along strike to the northeast (Figure 4). It is

composed of multiple generations of laminated and massive,

medium- to coarse-grained milky white quartz in its interior

and near the hanging-wall contact, but more laminated and

carbonate-altered vein material proximal to the footwall

contact. The latter is marked by a zone of strongly deformed

conglomerate, locally transformed into a fault breccia.

Disseminated chalcopyrite, secondary malachite, and dark

fibrous tourmaline occur sporadically in the main vein.

Preliminary X-ray diffraction and scanning electron micro-

scope (SEM) investigations also identified abundant Bi–Te

sulphides.

The host conglomerate is typically purple-grey, clast-

supported and polymict, containing angular and subangular

to subrounded clasts up to ~15 cm in diameter consisting of

felsic to intermediate plutonic and volcanic rocks, clastic

sedimentary rocks, and jasper. The conglomerate is strongly

altered proximal (≤4 m) to the main vein (Plate 2B) and rel-

atively unaltered elsewhere (Plate 2C). Light to dark-brown

colouration of conglomerate is likely a result of ankerite
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Figure 4B. (Top) Drone image of the southwestern portion of the Elm trench showing the continuation of the main quartz vein
(white lineament). (Bottom) Geological map of the southwestern portion of the Elm trench. Map legend and symbols the same
as in (A).
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Figure 5. Lower hemisphere equal-area projections of relevant structures throughout the Elm Zone. A) Great circles showing
attitudes of main quartz vein. Red circles show attitudes of slip lineations on main quartz vein, which are consistent with
oblique thrusting; B) Poles to early foliation (Sn) and late foliation (Sn+1) in the hanging wall and footwall of the main quartz
vein. Poles to bedding and the main quartz vein are plotted for reference. Representative attitude of axial plane and fold axis
for reclined folds are shown respectively as a great circle and pole; C) Great circles showing attitudes of early (V1) and late
(V2) extensional quartz vein sets. The late vein set is richer in chalcopyrite, tourmaline, and secondary malachite; D) Great
circles showing attitudes of conjugate extension fracture sets and, as well, a nearby mafic dyke. The attitude of the mafic dyke
(black line) is subparallel to the northwest-dipping fracture set (bold purple lines), which is rich in vuggy quartz, chalcopy-
rite, and secondary malachite, goethite and bismuth–tellurium sulphide(s). 
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Plate 2. Field photographs, Elm Zone. A) View toward the northeast of the main quartz vein cutting deformed Rogerson Lake
Conglomerate; B) Strongly altered conglomerate with quartz veinlets; C) Moderately to weakly altered conglomerate dis-
playing local carbonate alteration of clasts; D) View toward the east of early, moderately dipping extensional quartz veins;
E) View toward the south of late, steeply dipping extensional quartz vein with chalcopyrite and secondary malachite. Vein cuts
deformed conglomerate. Hand magnet above vein for scale; F) Vuggy quartz, tourmaline, chalcopyrite, and secondary mala-
chite in late extension fracture. Red pen is pointing north.
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and/or siderite alteration, whereas fine-grained muscovite

(sericite) is likely responsible for the waxy luster in altered

conglomerate.

Primary bedding is locally preserved as sub-metre-scale

sandy layers in the conglomerate that typically strike subpar-

allel to foliation (Figure 5B). At least two generations of foli-

ations are preserved in the conglomerate. The older genera-

tion is well-preserved in the hanging wall of the main vein,

and typically strikes to the east-southeast and dips steeply

toward the south-southwest (Figure 5B). Deflection and shal-

lowing of this foliation into the main vein is consistent with

oblique sinistral shear and a component of thrusting toward

the north-northeast. The younger, crosscutting foliation

defines a spaced cleavage in the conglomerate that typically

dips shallowly to the northeast and southeast, and is locally

well-developed in the altered footwall of the main vein.

Where both foliations are present, the two form an intersec-

tion lineation that plunges shallowly to the southeast.

The deformed conglomerate is cut by the main vein,

which defines the main shear plane. Along the sheared con-

tact with hanging-wall conglomerate, the main vein displays

slickenlines  plunging moderately toward the south-south-

west (Figure 5A). These linear features are also compatible

with oblique thrust motion toward the north-northeast

(Figure 5A). Stacked, deformed extensional quartz veins

(V1) consistent with sinistral shearing occur within strongly

altered conglomerate surrounding the main vein (Figure 4).

These extension veins dip moderately to shallowly to the

southeast and east-northeast (Plate 2D and Figure 5C), and

are locally folded into open to tight reclined folds that

plunge moderately to the southeast (Figure 5B). The axial

planes of such folds are subparallel to the main quartz vein

(Figure 5B), and the fold geometries are consistent with

drag folding during progressive oblique reverse shearing. A

late, steeply dipping set of extensional quartz veins (V2) cuts

the moderately dipping extensional vein set and also the

main quartz vein (Figures 4 and 5C and Plate 2E). This

younger vein set is richer in chalcopyrite, tourmaline, and

secondary malachite than the older vein set, with chalcopy-

rite filling vuggy spaces in the centre of the veins (Plate 2E).

Locally, another late set of steep extensional quartz veins

(V3) displaying asymmetry consistent with dextral motion

cuts the main quartz vein and early foliation. Steeply dip-

ping sets of nearly conjugate extension fractures cut the

main vein and both generations of extension veins (Figures

4 and 5D). The fracture set that dips moderately toward the

northwest (Plate 2F) is very tightly spaced in portions of the

main vein and usually contains vuggy quartz, chalcopyrite,

malachite ± tourmaline ± pyrite ± hematite ± goethite ± bis-

muth–tellurium sulphide(s), based on reconnaissance X-ray

diffraction and SEM studies. These particular fracture

planes form local intersection lineations on the main quartz

vein that are subparallel to slightly oblique to the displace-

ment vectors (slickenlines). A ~1.8-m-wide, carbonate-

altered mafic dyke that occurs ~200 m northwest of the Elm

Zone (Figure 2B) also displays a moderately northwest-dip-

ping orientation (Figure 5D). The youngest planar structures

observed in the Elm Zone are very late, weakly developed

fracture sets that parallel both the early foliation and lami-

nations in the main quartz vein.

KINEMATICS−ELM ZONE

The overall coherent geometry of the quartz vein sys-

tem and relatively consistent mineralogy of the different

vein sets is compatible with one progressive deformation

cycle. The conglomerate-hosted quartz vein system of the

Elm Zone defines an oblique sinistral contractional shear

zone that accommodated north to north-northeast-directed

shearing of the hanging wall relative to the footwall (Figure

6). Brittle overprint of earlier ductile shear structures sug-

gests that progressive deformation may have occurred in

the upper crust during exhumation of the conglomerate

across the brittle‒ductile transition, a depth of ~10 km

based on experimentally derived flow laws (e.g., Gleason

and Tullis, 1995).

The main gold-bearing quartz vein and associated

extensional structures cut sheared conglomerate, implying

that shearing was initiated prior to emplacement of the main

vein. Thickness variations in the main vein are compatible

with deposition of silica-rich fluids in semi-brittle dilata-

tional jogs that formed during sinistral, reverse shearing.

Folding of stacked extension veins (V1) where the main vein

is thinnest in the northeast of the trench supports progressive

compressional semi-ductile deformation. The late, brittle,

steep crosscutting vein set (V2) and late, shallow foliation

suggest rotation of the maximum principal stress (σ1) to sub-

vertical, potentially reflecting vertical shortening related to

structural collapse or a transient phase of syn-orogenic

extension. The local occurrences of late, steep veins with

dextral asymmetry (V3) may reflect a late episode of local-

ized transpression. Although the late sets of extension frac-

tures crosscut most veins, their geometries suggest that they

may have formed under a similar state of stress as the late

vein sets. The abundance of chalcopyrite, malachite, and

ankerite‒siderite in the extensional veins and fractures sug-

gests that Cu2+ and CO2, and likely Au, were mobilized mul-

tiple times during deformation of the main vein system.

GEOCHRONOLOGICAL IMPLICATIONS

Considering the Silurian tectonic evolution of the

Exploits Subzone (Dunning et al., 1990; Williams et al.,
1993; O’Brien, 2003; van Staal et al., 2014), deformation in

the Elm Zone may have spanned Late Silurian to Early
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Devonian times. Regionally, deformed sedimentary rocks

and locally deformed magmatic rocks of the Botwood

Group disconformably overlie ca. 433 Ma and older sedi-

mentary rocks of the Badger Group, which were first

deformed during the earliest phase of Salinic deformation

(van der Pluijm et al., 1993; O’Brien, 2003). The

Badger‒Botwood Group unconformity is interpreted to rep-

resent a time gap of at least 7 m. y (433–426), and is inferred

to correspond to the main phase of Salinic deformation (van

Staal et al., 2014). On this basis, folding of Rogerson Lake

Conglomerate, the apparent stratigraphic base unit of the

Botwood Group at Wilding Lake soon after deposition may

have been initiated in the Ludlovian (late Salinic) by ca. 425

Ma, and progressed during emplacement of the Stony Lake

volcanic rocks (Figure 2A) at ca. 423 Ma (Dunning et al.,
1990; McNicoll et al., 2008) and the granitoid rocks of the

Mount Peyton intrusive suite between 425 and 418 Ma

(Sandeman et al., 2017). Constraining the crystallization age

34
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Figure 6. Structural cross-section interpretation of the main quartz vein of the Elm Zone, with structural data superimposed.
Black arrow describes sense of oblique sinistral thrust motion. The vuggy quartz–chalcopyrite-rich extension fracture set
(bold purple lines in Figure 5D) is not shown because these fracture planes are subparallel to the cross-sectional slice.



I.W. HONSBERGER, W. BLEEKER, H.A.I. SANDEMAN AND D.T.W. EVANS

of a presently undated, largely undeformed, locally brecciat-

ed monzonite body at Paradise Lake (Figure 2A) may help

to define a minimum age of Late Silurian–Early Devonian

deformation in central Newfoundland.

The oblique sinistral north-northeast-directed contrac-

tional shear component of deformation in the Elm Zone is

compatible with Late Silurian–Early Devonian oblique

sinistral transpression documented elsewhere along north-

east-trending shear zones within the central Newfoundland

gold district (e.g., O’Brien, 1993, 2003; Dubé et al., 1996).

Such movement along the Cape Ray fault zone (Figure 1)

occurred at ca. 415 Ma based on a metamorphic monazite

age (Dubé et al., 1996), whereas intrusive relationships

along the Bay d’Est and Cinq Cerf fault zones (Hope Brook

gold deposit, Figure 1) constrain such motion to ca. 420 Ma

(O’Brien et al., 1991). Northeast-trending shear zones in

central Newfoundland similar to the Elm Zone are interpret-

ed to have accommodated sinistral transpression during

early Acadian north‒south shortening (Currie and Piasecki,

1989; Hibbard, 1994). The onset of subsequent brittle over-

print, including late-stage subhorizontal extension, and

coeval vein formation in the Elm Zone may have roughly

coincided with deformation in Late Silurian–Early

Devonian sedimentary rocks near the Dog Bay Line

(415–410 Ma, McNicoll et al., 2006), with minor compo-

nents of dextral transpression potentially late Early

Devonian or younger in age (e.g., Currie and Piasecki, 1989;

Dubé et al., 1996). Considering the abundance of unaltered

and altered sulphide minerals in the late brittle vein and frac-

ture sets of the Elm Zone, the age of gold mineralization

may be Early Devonian or younger. This is compatible with

a preliminary 411 Ma age of hydrothermal rutile from a

gold-bearing extensional quartz vein at Valentine Lake

(Dunsworth and Walford, 2018).

CONCLUSIONS

The field data documented herein confirm that Antler

Gold Inc.’s Elm Zone mineralization and related veins rep-

resents a structurally controlled gold-bearing quartz vein

system that is likely an extension of the well-endowed

Valentine Lake structure to the southwest. However, where-

as mineralization at Valentine Lake occurs in the structural

hanging wall of the Valentine Lake thrust zone, mineraliza-

tion at Wilding Lake occurs in the structural footwall of the

thrust zone. Footwall gold mineralization in association with

syn-orogenic clastic sedimentary rocks bears close resem-

blance to the major gold-bearing structures of the Abitibi

greenstone belt (see Bleeker, 2015). Deeper drillholes into

Rogerson Lake Conglomerate on the Antler property will be

important for determining its full economic potential, as

rigid plutonic rocks, which are rheologically favourable for

gold-bearing fluid entrapment, have been observed in drill-

core to structurally underlie the conglomerate at Wilding

Lake (Antler Gold Inc., press release, December 13, 2017).

Future exploration and drilling in the Wilding Lake region

might target both hanging wall and footwall rocks, particu-

larly in rheologically competent, chemically reactive host

rocks, both at depth on site and farther northeast along the

extension of the Valentine Lake thrust.
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