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SAFETY INFORMATION
General Information

The Geological Association of Canada (GAC) recognizes that its field trips may involve hazards to
the leaders and participants. It is the policy of the Geological Association of Canada to provide for the
safety of participants during field trips, and to take every precaution, reasonable in the circumstances, to
ensure that field trips are run with due regard for the safety of leaders and participants. GAC recommends
steel-toed safety boots when working around road cuts, cliffs, or other locations where there is a poten-
tial hazard from falling objects. GAC will not supply safety boots to participants. Some field trip stops
require sturdy hiking boots for safety. Field trip leaders are responsible for identifying any such stops,
making participants aware well in advance that such footwear is required for the stop, and ensuring that
participants do not go into areas for which their footwear is inadequate for safety. Field trip leaders

should notify participants if some stops will require waterproof footwear.

The weather in Newfoundland in May is unpredictable, and participants should be prepared for a
wide range of temperatures and conditions. Always take suitable clothing. A rain suit, sweater, and stur-
dy footwear are essential at almost any time of the year. Gloves and a warm hat could prove invaluable
if it is cold and wet, and a sunhat and sunscreen might be just as essential. It is not impossible for all such

clothing items to be needed on the same day.

Above all, field trip participants are responsible for acting in a manner that is safe for themselves and
their co-participants. This responsibility includes using personal protective equipment (PPE) when nec-
essary (when recommended by the field trip leader or upon personal identification of a hazard requiring
PPE use). It also includes informing the field trip leaders of any matters of which they have knowledge
that may affect their health and safety or that of co-participants. Field trip participants should pay close
attention to instructions from the trip leaders and GAC representatives at all field trip stops. Specific dan-

gers and precautions will be reiterated at individual localities.

Specific Hazards

Some of the stops on this field trip are in coastal localities. Access to the coastal sections may require
short hikes, in some cases over rough, stony or wet terrain. Participants should be in good physical con-
dition and accustomed to exercise. The coastal sections contain saltwater pools, seaweed, mud and other
wet areas; in some cases it may be necessary to cross brooks or rivers. There is a strong possibility that
participants will get their feet wet, and we recommend waterproof footwear. We also recommend

footwear that provides sturdy ankle support, as localities may also involve traversing across beach



boulders or uneven rock surfaces. On some of the coastal sections that have boulders or weed-covered

sections, participants may find a hiking stick a useful aid in walking safely.

Coastal localities present some specific hazards, and participants MUST behave appropriately for the
safety of all. High sea cliffs are extremely dangerous, and falls at such localities would almost certainly
be fatal. Participants must stay clear of the cliff edges at all times, stay with the field trip group, and fol-
low instructions from leaders. Coastal sections elsewhere may lie below cliff faces, and participants must
be aware of the constant danger from falling debris. Please stay away from any overhanging cliffs or
steep faces, and do not hammer any locations immediately beneath the cliffs. In all coastal localities, par-
ticipants must keep a safe distance from the ocean, and be aware of the magnitude and reach of ocean
waves. Participants should be aware that unusually large “freak™ waves present a very real hazard in
some areas. If you are swept off the rocks into the ocean, your chances of survival are negligible. If pos-
sible, stay on dry sections of outcrops that lack any seaweed or algal deposits, and stay well back from
the open water. Remember that wave-washed surfaces may be slippery and treacherous, and avoid any
area where there is even a slight possibility of falling into the water. If it is necessary to ascend from the
shoreline, avoid unconsolidated material, and be aware that other participants may be below you. Take

care descending to the shoreline from above.

Other field trip stops are located on or adjacent to roads. At these stops, participants should make sure
that they stay off the roads, and pay careful attention to traffic, which may be distracted by the field trip
group. Participants should be extremely cautious in crossing roads, and ensure that they are visible to any
drivers. Roadcut outcrops present hazards from loose material, and they should be treated with the same

caution as coastal cliffs; be extremely careful and avoid hammering beneath any overhanging surfaces.

The hammering of rock outcrops, which is in most cases completely unnecessary, represents a sig-
nificant “flying debris” hazard to the perpetrator and other participants. For this reason, we ask that out-
crops not be assaulted in this way; if you have a genuine reason to collect a sample, inform the leaders,
and then make sure that you do so safely and with concern for others. Many locations on trips contain
outcrops that have unusual features, and these should be preserved for future visitors. Frankly, our pref-

erence is that you leave hammers at home or in the field trip vans.

Subsequent sections of this guidebook contain the stop descriptions and outcrop information for the
field trip. In addition to the general precautions and hazards noted above, the introductions for specific
localities make note of specific safety concerns such as traffic, water, cliffs or loose ground. Field trip
participants must read these cautions carefully and take appropriate precautions for their own safety and

the safety of others.
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OVERVIEW OF FIELD TRIP

The Central Mobile Belt (CMB) of the Newfoundland Appalachians is host to numerous
past and present producing regions, and is an area that has remained an active exploration
environment, for volcanogenic massive sulphide (VMS) deposits from pre-confederation
times to the present day. The CMB is an ideal location to view a wide variety of VMS de-
posit styles and types, representing a geological and metallogenic cross-section of the Cam-
brian to Ordovician Iapetus Ocean’s geological components. The goal of this field trip is to
provide participants with a feel for the regional geological environment of the CMB and its
contained mineral deposits, with the hopes of providing information on the nature and styles
of deposit types, and their variation as a function of host rock assemblage, age, and tectonic
environment. The trip will involve stops to classic past-producing regions (e.g., Buchans),
active mines (e.g., Duck Pond and Ming), and new and exciting prospects (e.g., Lemarchant,
Little Deer). In addition, it will provide regional field trip stops to place these deposits in
regional context and illustrate their framework within an evolving orogen. We hope that

you enjoy the trip and please feel free to ask questions at any time.

GEOLOGY AND VOLCANOGENIC MASSIVE SULPHIDE
(VMS) DEPOSITS OF CENTRAL NEWFOUNDLAND

INTRODUCTION

The Dunnage Zone of central Newfoundland is host to numerous styles of volcanogenic
massive sulphide (VMS) mineralization that have been important contributors to the provin-
cial economy since pre-confederation times (Swinden and Kean, 1988). The “Central Mo-
bile Belt” VMS district has had important past production (e.g., Buchans), ongoing
production (e.g., Duck Pond, Ming), and numerous new discoveries (e.g., Lemarchant,
Boomerang), and will continue to be an important exploration target in the province for the
foreseeable future. Volcanogenic massive sulphide within the Central Mobile Belt occur in
a variety of settings, including arc, back-arc, and arc rift environments (e.g., Swinden et
al., 1988; Swinden, 1991, 1996; van Staal, 2007). The goals of this guidebook and field
trip are to provide an overview of the range of styles of deposits that occur in central New-
foundland, their host sequences, emplacement mechanisms, and their variations in time and
space. The field trip stops will include regional stops to place the deposits in regional con-
text, and specific VMS-related stops, including old mines, showings, and alteration types.

In addition, given that many deposits do not outcrop on surface, or are in areas that are dif-



ficult to reach with a large group, drill core will be utilized to illustrate host sequences and
mineralization styles. Two active mines will be visited to provide some participants with

the opportunity to view deposits in an active mining framework.

REGIONAL GEOLOGICAL AND TECTONIC SETTING OF VMS DEPOSITS IN
CENTRAL NEWFOUNDLAND

The Newfoundland Appalachians is divided into four tectonostratigraphic zones from
west to east (e.g., Williams, 1979): 1) Humber Zone; 2) Dunnage Zone; 3) Gander Zone;
and 4) Avalon Zone (Figure 1). The Humber Zone represents predominantly Cambrian and
Ordovician ancient passive margin rocks that were deposited upon the Laurentian craton
(Williams and Hiscott, 1987; Lavoie et al., 2003) (Figure 1). The Avalon and Gander zones
represent Gondwana-derived microcontinental blocks with Neoproterozoic to Ordovician
geological histories (O'Brien et al., 1991; van Staal, 1994, 2007; van Staal and Barr, in
press) (Figure 1). The Dunnage Zone, which is the focus of this trip, is the main host to
VMS mineralization in Newfoundland and throughout the Appalachians in other parts of
Canada and the United States (Swinden and Kean, 1988; Goodfellow et al., 2003; Good-
fellow, 2007). The Dunnage Zone is subdivided into two subzones: the Notre Dame and
Exploits subzones (Williams et al., 1988) (Figure 1). The Notre Dame subzone consists of
Cambrian to Ordovician arc and back-arc rocks that formed along the margin of Laurentia
(peri-Laurentian), whereas the Exploits subzone contains arc and back-arc rocks that formed
along the margin of Gondwana (peri-Gondwana) (O'Brien ef al., 1997; Swinden et al., 1997,
Zagorevski et al., 2006; van Staal, 2007; Zagorevski et al., 2007; Zagorevski et al., 2010;

van Staal and Barr, in press) (Figure 1).

The two subzones are associated with distinctive rock assemblages and associations.
The Notre Dame subzone contains rocks that range from Cambrian to Ordovician. The
Lushs Bight Group of the Lushs Bight Ocean Tract (LBOT) consists of Cambrian ophiolitic

Figure 1 (opposite). Geological map of the Newfoundland Appalachians with tectonos-
tratigraphic zones, accretionary tracts, VMS deposits, their classifications and associated
belts. Map tectonostratigraphy modified from van Staal (2007) and van Staal and Barr (in
press). Volcanogenic massive sulphide (VMS) deposit classification from Piercey (2007c)
and Hinchey (2011). Abbreviations: BBL=Baie Verte Brompton Line; BOI=Bay of Islands,
BVOT=Baie Verte Oceanic Tract; CF=Cabot Fault; CP=Coy Pond Complex;, DBL=Dog
Bay Line; GBF=Green Bay Fault; GRUB=Gander River Ultramafic Belt; LBOT=Lushs
Bight Oceanic Tract; LCF=Lobster Cove Fault; LR=Long Range; LRF=Lloyds River
Fault; PP=Pipestone Pond Complex, RIL=Red Indian Line; SA=St. Anthony, TP=Tally
Pond Belt; TU=Tulks Volcanic Belt; VA=Victoria Arc; WB=Wild Bight Group.
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rocks that host Cu-rich VMS deposits in the Springdale area and are interpreted to have
formed within a primitive arc environment (Kean et al., 1995; Swinden et al., 1997; van
Staal, 2007; van Staal and Barr, in press) (Figure 1). The Lushs Bight Group rocks were
obducted onto the Dashwoods Block, a rifted continental fragment from the Laurentian
margin (Waldron and van Staal, 2001), in the early Ordovician (~500—490 Ma) (Szybinski,
1995; Swinden et al., 1997, van Staal, 2007; van Staal and Barr, in press). Obduction of
the LBOT was coincident with the closure of the Humber Seaway, the oceanic tract that
formed between the Dashwoods Block and the Laurentian margin (Waldron and van Staal,
2001), and the closure of this ocean resulted in the formation of the rocks of the Baie Verte
belt: the Baie Verte Oceanic Tract (BVOT) (Hibbard, 1983; Bedard ef al., 1999; van Staal,
2007; Skulski et al., 2009; Skulski et al., 2010; van Staal and Barr, in press). The BVOT
contains ophiolitic rocks (e.g., Pacquet Harbour Group) that are ~490-488 Ma (Dunning
and Krogh, 1985; Skulski et al., 2009; Skulski et al., 2010), and have primitive arc affinities,
including rhyolitic rocks (Piercey et al., 1997; Bedard et al., 1999; Bailey, 2002) (Figure
1). The ophiolitic rocks are host to both Cu-rich VMS deposits (e.g., Tilt Cove) and Au-
rich bimodal mafic deposits (e.g., Rambler-Ming; see below) (Figure 1). These ophiolitic
rocks formed the basement to younger ~487—470 Ma arc-back-arc rocks of the Snooks Arm
Group and equivalents (Skulski et al., 2009; Skulski et al., 2010). Obduction of the BVOT
in the Ordovician, coupled with extension, resulted in ophiolite emplacement onto the Hum-
ber Zone (van Staal, 2007; van Staal and Barr, in press), some of which host ophiolite-
hosted Cu-rich VMS deposits (e.g., York Harbour) (Duke and Hutchinson, 1974) (Figure
1). The Notre Dame subzone also contains later Ordovician rocks of the Anniepsquotch Ac-
cretionary Tract (AAT) that includes ~480—473 Ma ophiolitic rocks (e.g., Anniopsquotch
Ophiolite), and ~473—462 Ma arc and back-arc rocks of the Buchans—Roberts Arm belt that
host the deposits of the Buchans and Pilley’s Island districts (Dunning and Krogh, 1985;
Dunning et al., 1987, Lissenberg, 2005; Zagorevski et al., 2006) (Figure 1).

The Exploits subzone also contains abundant VMS deposits of Cambrian to Ordovician
age (Figure 1). The deposits of the Victoria Lake supergroup are some of the oldest deposits
within the Exploits subzone and formed within arc and arc-rift complexes associated with
the Penobscot and Popelogan—Victoria arc systems (Dunning et al., 1991; Evans and Kean,
2002; Rogers et al., 2006; van Staal, 2007; Zagorevski et al., 2007; van Staal and Barr, in
press) (Figure 1). The Tally Pond group (~514-509Ma) hosts some of the oldest VMS sys-
tems, including Duck Pond, Boundary, and Lemarchant, and consists of a bimodal assem-
blage of calc-alkalic to transitional rhyolitic and basaltic rocks with lesser carbonaceous

sedimentary rocks (Evans and Kean, 2002; Rogers and van Staal, 2002; Rogers ef al., 2006)



(Figure 1). The Tally Pond group contains inherited zircon of Neoproterozoic age, and is
underlain by Neoproterozoic (~563Ma) arc rocks of roughly similar age (e.g., Sandy Brook
Group; Figure 1) and are interpreted to have formed a peri-continental/continental arc that
developed upon a Neoproterozoic basement (Rogers et al., 2006; McNicoll et al., 2010).
The Tally Pond group is in thrust contact with the Long Lake group, which consists of bi-
modal volcanic rocks that are late Cambrian (~505 Ma) and host the Long Lake deposit
and other showings (Evans and Kean, 2002; Rogers and van Staal, 2002; Rogers ef al.,
2006) (Figure 1). The younger belts in the Victoria Lake supergroup include the Tulks group
(~498 Ma), the Pats Pond group (~488 Ma) (Rogers and van Staal, 2002; Rogers et al.,
2006), the Sutherlands Pond group (ca. 462 — 457 Ma; Zagorevski et al., 2008; Dunning et
al., 1987), and the Wigwam Brook group (~453 Ma; van Staal et al., 2005; Zagorevski et
al., 2007), which are parts of the classically described Tulks Volcanic Belt (TVB), a termi-
nology we use herein (McKenzie et al., 1993; Evans and Kean, 2002; Hinchey, 2011). The
TVB lies in fault contact with the Long Lake group (Figure 1). The TVB has varying styles
of mineralization ranging from shale- and rhyolitic volcaniclastic-rich deposits (i.e.,
Bathurst-like) in the south of the belt (e.g., Tulks East, Boomerang), ranging to hybrid VMS-
epithermal-type deposits in the north of the belt (e.g., Bobby’s Pond, Daniel’s Pond)
(Hinchey, 2011) (Figure 1). The northeastern portion of the Exploits Subzone also hosts
VMS mineralization within primitive arc rocks of the lowermost portion of the Wild Bight
Group (Swinden et al., 1990; MacLachlan and Dunning, 1998; MacLachlan et al., 2001)
(Figure 1). The Glovers Harbour Formation of the Wild Bight Group is the host to the VMS
mineralization in the group, and consists of a ~486 Ma mafic dominated, bimodal assem-
blage of boninite and low-Ti arc tholeiites (Swinden et al., 1990; MacLachlan and Dunning,
1998; MacLachlan et al., 2001). The Glovers Harbour Formation is host to the Point Leam-
ington and Lockport deposits (Walker and Collins, 1988) (Figure 1).

VOLCANOGENIC MASSIVE SULPHIDE (VMS) DEPOSIT CLASSIFICATION
AND SETTING

Volcanogenic massive sulphide (VMS) deposits form as a result of the syngenetic ex-
halation of metalliferous hydrothermal fluids upon or near the sea floor. These deposits are
classified in numerous manners (e.g., metal content, type locality), but the most robust and
widely accepted classification involves the utilization of host lithostratigraphy and geody-
namic setting (Barrie and Hannington, 1999; Franklin ef al., 2005; Galley et al., 2007).
Under the lithostratigraphic classification deposits are classified into six groups, including

(Figure 2): 1) mafic; 2) mafic—siliciclastic (or pelitic-mafic); 3) bimodal-mafic; 4) bimodal



BACK-ARC
MAFIC

Canadian grade
and tonnage

Average 1.3 Mt

BIMODAL-MAFI C

Canadian grade
and tonnage
Average 6.3 Mt

Median 113.9 Mt

Median 2.3Mt ) i : 1.7% Cu
3.2% Cu - - Lobe-hyaloclastite - 5.1% Zn
1.9% Zn . Liirthyoliter Troiil °
Chlgrjte—serivcift"ﬁ,aIteration 0.0°/Z S R EEEEEEEEERERERE | RN R gsﬁg/jtit;
jasper infilling 15 g/t Ag \1'4,\1'4,\1’4,\1’4,‘1’4,‘1’4,\1' J,Q’J,\"\L\_"erJff‘Jf\f'Jf\f@W\L 14 g/t Au
2.5 g/t Au Peahdhhd o ¥y Pillowed mafic ’
’ PR A A 4 flows L LY LYy 200 m
—
¢¢¢¢¢J’d¢d¢ d«¢¢d¢¢d¢¢d¢¢d¢¢¢

(O Sericite-chlorite @) Massive magnetite- @ Sulphidic tuffite/exhalite

.Banded jasper- O Sphalerite-chalcoppyrite O Pyrite-quartz in situ breccia pyrrhotite-chalcopyrite Macsive pyrite-ephateriie

chert-sulphide -rich margin )
@ Pyrite-quartz breccia Q Quartz-pyrite stockwork O Quartz-chlorite @ Pyrhotite-pyrite- -'\(;Ihakfopyme.t
@D Massive pyrite (D chilorite-pyrite stockwork | @D Chlorite-sulphide ™ chalcopyrite stockwork ) JHERSE PYIEE o e
BIMODAL-FELSIC —_ = = = = = = =
Flows or volcaniclastic strata 100 m — shalefargilite _—_— _— — _— BIMOSXERFIELSIC
Canadian grade e R R .- R

and tonnage

Average 5.5 Mt
Median 14.2 Mt

UL 1.3% Cu Rt
PN . Felsic
Doy 6-1Z§°Z” ! clastic © 200m
.......... 1.8% Pb K
+\] LLLLniiinnn 123 g/t Ag
Tty + 4 Felsicflowcomplex --::  22g/tAu
P+ o+ * sorrIIIIIIIIIIIINNN
+ + + + +
icite- ; Pyrite-sphalerite-galena i
() Sericite-quartz  Detritall hrahouitoAg AL ) Barite (Au)
. Chlorite-sericite " N . Carbonate/ Quartz-sericie- O Realgar-cinnabar-stibnite Infilling and
O Quartz-chiort %( ) Pyrite-sphalerite-galena gypsum ( )Aldsmcated " Arsegopyrite»stibnite- replacgement
uartz-chiorite a @ Pyrite-sphalerite-chalcopyrite (Saer\'??ecz :r;glplc:'te () tetrahedrite-Pb sulphosalts
Chalcopyrite- = ite- ite-pyri icite-quartz-pyri Quartz-pyrite-arsenopyrite-
pyrite elns @ chalcopyrite-pyrthotite-pyrite O (argillic) O sphalerﬁe—galena—tetrahedrite veins
——————————— Argillite-shale — — — — = FELSIC - B s——————7—————=—=" PELITIC-
Alkaline basalt SILICICLASTIC || ———————=— MAFIC

- Laminated argillite '
andshale _—_| Canadian grade
and tonnage
Average 34.3 Mt

Felsic epiclastic ~———— Canadian grade
and tonnage

Average 9.2 Mt

| Median 64.4 Mt Median 148 Mt
e m - - - - - - - .| 0.98%Cu 1.6% Cu
Felsic volcaniclastic 4.7% Zn 2.6% Zn
o7 Tendepicastic * " " " "\ 50%Ppp 0.36% Pb
T *| 53 gitAg 29 gt Ag
i/ = Basement sediments = 0.93 g/t Au <09 gitAu
Iron formation facies @ Carbonaceous shale @ Crﬁlcﬁrite-pﬁrrr}oAtit)e-pyrite
~ Massive fine-grained and -chalcopyrte-(Au Pyrrhotite-pyrite-magnetite ]
() Hematite layored pyriteg O Siiosous stockwork (@) Anation Pone () Chert-carbonate-sulphide

Q Magnetite O Layered pyrite-sphalerite- @ Pyrrhotite-pyrite-chalcopyrite zone () Pyrite-sphalerite zone

@ Carbonate galena-Ag-Au (transitional ore) P ) ) .
N . - 'yrrhotite-chalcopyrite-pyrite- . .

@D Manganese-iron@) Massive pyrrhotite-pyrite- e—200m @ sphalerite stockwork zone @ Massive pyrite zone
chalcopyrite-(Au)

Figure 2. Lithostratigraphic classification of volcanogenic massive sulphide (VMS) deposits, with
emphasis on Canadian deposits. Classification based on Barrie and Hannington (1999), Franklin
et al. (2005), and Galley et al. (2007). Diagram modified from Galley et al. (2007).

felsic; 5) felsic siliciclastic; and 6) hybrid bimodal felsic. With minor exception, all of these
various sub-types of the VMS clan are found in Newfoundland. The details of each of these

deposit classifications are as follows (op. cit.):

1) Mafic — these are VMS deposits hosted by mafic/ophiolitic rocks where the deposits
are typically Cu—(Zn)-rich and hosted within basaltic flows or sheeted dykes. These
are the Cyprus-type deposits and the deposits of the Springdale Peninsula, Betts



Cove Complex, and the ophiolitic rocks of the Bay of Islands are Newfoundland
examples (Figures 1 and 2).

2) Mafic Siliciclastic — these are VMS deposits hosted in sequences rich in sedimentary
rocks, often carbonaceous or turbiditic in nature, and interlayered with abundant
basaltic intrusive and extrusive rocks, with or without ultramafic rocks. These de-
posits are the Besshi-type deposits, are typically Cu—Co—Au-enriched, and there are
no bona fide examples of this deposit type in the Newfoundland Appalachians (Fig-
ure 2).

3) Bimodal Mafic — these are VMS deposits hosted in belts that are mafic dominated,
but where the deposits are often hosted by felsic rocks. Often these environments
are primitive arc terranes, they are often polymetallic, but with abundant Zn and
Cu. These are the VMS deposits that are common to the Noranda and Flin Flon dis-
tricts, and Newfoundland Appalachian examples include deposits such as Ming,
Rambler, and Point Leamington (Figures 1 and 2).

4) Bimodal Felsic — these are VMS deposits hosted in belts that are bimodal, but felsic
dominated, and in which the deposits are typically hosted by felsic volcanic and
volcaniclastic rocks. They are the polymetallic (Zn—Pb—Cu—Au—Ag—Ba) Kuroko-
type deposits. The Buchans, Duck Pond, and Lemarchant deposits are examples of
this type of deposit in the Newfoundland Appalachians (Figures 1 and 2).

5) Felsic Siliciclastic — these are VMS deposits that are hosted within volcanic and
sediment-rich belts, where there are abundant siliciclastic sedimentary rocks, often
graphitic, iron formation, and the volcanic rocks are often volcaniclastic. This de-
posit type is typical of the Brunswick-type deposits in the Bathurst Mining Camp,
they are polymetallic, and the Tulks East and Boomerang deposits of the Newfound-
land Appalachians are examples of this sub-group (Figures 1 and 2).

6) Hybrid Bimodal Felsic — these deposits are those that are like bimodal felsic de-
posits, but they contain additional features, including aluminous alteration attributes,
precious metal enrichments, and enrichments in epithermal suite elements (e.g., Bi—
Te—Hg—Sb—As). They are interpreted to be shallow water VMS systems with fea-
tures hybrid between epithermal and VMS deposits. They are similar to the deposits
at Eskay Creek and in the Bousquet-LaRonde camp; the Daniel’s Pond deposit rep-

resents an example of this sub-type (Figure 2).

The various deposits types above are found in different VMS belts within Newfound-

land. In the Exploits subzone, the belts include (Figure 1):



1)

2)

3)

4)

Tally Pond Belt — this belt is hosted by the ~514-509 Ma Tally Pond group, and
contains the bimodal felsic Duck Pond, Lemarchant, and Boundary deposits;
Long Lake Belt — this belt is hosted by the bimodal, yet felsic dominated ~505 Ma
Long Lake group, and it contains the bimodal felsic Long Lake deposit;

Tulks Belt — this belt hosted by the bimodal, yet felsic volcaniclastic-dominated
~498-453 Ma Tulks Volcanic Belt. The belt has highly variable deposits, ranging
from felsic siliciclastic deposits (Boomerang, Tulks East), bimodal felsic deposits
(Tulks Hill, Victoria Mine), and hybrid bimodal felsic deposits (Bobby’s Pond,
Daniel’s Pond).

Point Leamington Belt — this belt is hosted by the ~486 Ma primitive arc rocks of
the Glovers Harbour Formation of the Wild Bight Group in the northeastern Notre
Dame Bay area. The belt contains bimodal mafic deposits, including Point Leam-

ington and Lockport.

In the Notre Dame subzone the belts include (Figure 2):

1)

2)

3)

Springdale Belt — this belt is hosted by the ~505 Ma ophiolitic rocks of the Lushs
Bight group and consists of mafic-type deposits, including Little Deer, Whalesback,
Little Bay, and Colchester.

Baie Verte Belt — this belt consists of deposits hosted by ~489 Ma ophiolitic rocks
of the Betts Cove ophiolite complex and ~487 Ma rocks of the Pacquet Harbour
Group. In both sequences the deposits are hosted by primitive arc rocks, with mafic-
type deposits hosted within boninitic and tholeiitic pillow lavas in the Betts Cove
complex, whereas precious metal-rich bimodal mafic deposits are hosted by rhyolitic
rocks within the Rambler Camp, including the Ming, Rambler Main, East, and Big
Rambler Pond mines.

Buchans—Roberts Arm Belt — this belt is hosted by ~471-465 Ma calc-alkalic to
much lesser tholeiitic rocks of the Anniopsquotch Accretionary Tract. Deposits of
the Buchans area are bimodal felsic deposits hosted by the Buchans Group. Deposits
in the Roberts Arm/Pilley’s Island area are bimodal felsic deposits hosted by the
Roberts Arm Group. The Skidder Formation of the Red Indian Lake Group hosts
the mafic dominated Skidder deposit.



FIELD TRIP STOP DESCRIPTIONS

Where available, all stops are given in universal transverse mercator (UTM) coordinates
using North American Datum 1927 (NAD27). All are in UTM zone 21.

DAY 1 - MAY 30"



The first part of May 30" will involve departure from St. John's and travel to central New-
foundland. Participants will be staying at the Mount Peyton Hotel in Grand Falls-Windsor
(214 Lincoln Road, Grand Falls-Windsor, NL, A2A 1P8, Ph. - 1-800-563-4894 or 709-489-
2251). There will be a few stops to outline regional geology and we will visit the historic
Buchans district. The number of stops on this day will be limited to ensure that people can

check in to their hotel at a reasonable hour:

STOP 1.1: Caradoc Shale and Chert — Red Cliff Section (Easting: 588850, Northing:
5421900)
(Modified from Thurlow et al., 1988)

This stop is located just past the Red Cliff overpass heading west from Grand Falls on
the Trans-Canada Highway. Vehicles should be parked on the north side of the Trans-Canada
Highway. Care must be taken to ensure that people are safe as this area is often very busy

with abundant traffic. Participants must also be careful of falling rocks from the road cuts.

The outcrop consists of highly folded and faulted sections of mid-Ordovician (Caradoc)
chert and shale along two road cuts. The outcrop contains Caradoc shales and cherts that
are conformably overlain by Sansom Greywacke. The rocks are laminated to bedded with
thin shale and chert beds that contain variable amounts of phosphatic materials and pyrite
of both fracture-filling and framboidal varieties; the latter is often weathered leading to sul-
phide staining on many exposures. The shales are often graptolite bearing. They are inter-
preted to have been deposited in the Caradoc upon rocks of the Victoria Lake supergroup
after arc-arc collision between peri-Gondwanan and peri-Laurentian terranes along the Red

Indian Line.

Participants will drive from Stop 1.1 to the core storage facility in the town of Buchans.
First drive to Badger along the Trans-Canada Highway, turn left at Badger, and then drive
along the Buchans Highway to the town of Buchans to the Buchans core storage facility.

STOP 1.2: Ski Hill Buchans (Easting: ~509824, Northing: ~5048260)
This stop is located behind the core storage facility and the vehicles should be parked
either at this facility or along the Sandy Lake Road (location GB-5 on Figure 3). Participants

should follow field trip leaders and walk to the top of Ski Hill. Please be careful walking

on the trail up the ski hill and the general area and terrane around the core storage facility.
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Figure 3. Field trip stops for the Buchans region. Diagram from Thurlow et al. (1988).

This area contains an outstanding regional view of the Buchans and surrounding area. Ski
Hill itself contains basaltic to andesitic volcanic and volcaniclastic rocks of the Ski Hill
Formation, the deeper footwall basaltic rocks to the Buchans deposits. Towards the southeast
and in the distance south of Red Indian Lake , one can see Harpoon Hill and Hungry Hill
which are intrusions into the rocks of the Victoria Lake supergroup. Red Indian Lake and
rocks in the foreground represent the Red Indian Line and peri-Laurentian rocks. Also pres-
ent in the immediate Buchans area one can see the relict pits from old mine operations, in-
cluding the glory hole from the Lucky Strike pit. Towards the north, west, and east are the
rocks of the younger Silurian Topsails Igneous Suite.

STOP 1.3: Discovery Outcrop from the Buchans Orebodies (Easting: 510886, Nor-
thing: 5408118)

No hammering please!
This stop is located near the Buchans River and easily accessible just off the main street
of Buchans (location B-10 on Figure 3). Park vehicles near the building just off of Main

Street and walk towards the Buchans River. Be careful of slippery rocks and ensure your
footing.
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This is the location of the original prospector’s discovery and what became the Old
Buchans Orebodies (Thurlow et al., 1988). The outcrops consist of barite breccias with sul-
phide clasts, and grey to white rhyolitic clasts that are angular with interstitial pyrite. The
outcrop contains a fault, Buchans River Thrust of Thurlow ez al. (1988), with some of the
rhyolitic fragmental rocks being potentially rounded by the fault. At the west end of the
outcrop are granitic cobbles potentially representing the Feeder Graniodiorite with basalt,

rhyolite/dacite, and sulphides.

STOP 1.4 (optional): Arkose of the Sandy Lake Formation (Easting: 511399, Northing:
5407944)
(Modified from Thurlow et al., 1988)

This stop is within walking distance from the previous stop and consists of thick sections
of arkose that are typical of the Buchans Group (location GP-9 on Figure 3). The rocks con-
tain varying amounts of quartz, plagioclase, and rhyolitic clasts, and under the bridge there
are matrix-supported conglomerates with rhyolitic clasts and large quartz phenocrysts. These
likely represent the weathering products of rhyolitic rocks of the Buchans Group and the

hosts to mineralization.

Participants will drive from STOP 1.4 and return to Grand Falls-Windsor to accommoda-
tions at the Mount Peyton Hotel.

12



DAY 2 - MAY 31*

TALLY POND BELT DEPOSITS
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Participants will drive from Grand Falls-Windsor to the Duck Pond minesite. Drive west
from Grand Falls-Windsor to Badger, take a left onto the Buchans Highway, drive to
Buchans Junction and take a left at the turn off to Millertown. Drive from through Miller-
town onto a dirt road at the end of Millertown. This dirt road is the road to the Duck Pond
mine. Drive ~27 km to the Duck Pond minesite, follow all signage and obey speed limits
along this road. During Day 2 we will visit the Duck Pond and Lemarchant VMS deposits
in the Tally Pond Belt (Figure 4).

STOP 2.1: Duck Pond Mine Site

This stop will include an underground visit of the Duck Pond deposit for some visitors
and examination of drill core from the Duck Pond and Boundary deposits. Participants must
adhere to all safety regulations of Teck Duck Pond Operations, including wearing proper

personal protective equipment, where appropriate.

The Duck Pond deposit is one of Newfoundland’s producing VMS deposits and com-
bined with the Boundary deposit has a geological tonnage of 4.078 Mt @3.29% Cu, 5.68%
Zn, 0.9% Pb, 59.3g/t Ag and 0.9g/t Au (Aur Resources Ltd., 2007, Company Brochure).
The Duck Pond deposit contains two blocks: a Mineralized Block, which hosts the deposit,
and an Upper Block, which is weakly mineralized, and these are offset along the Duck Pond
Thrust (Figures 5 to 7) (Squires ef al., 1991, 2001; Piercey, 2007a). Uranium—Pb zircon
ages from the Mineralized Block are ~509 Ma, whereas the ages from the Upper Block are
~513-512 Ma (McNicoll et al., 2010). The Mineralized Block consists of polygonally
jointed, block rhyolite flows and tuff breccias that host the mineralization at Duck Pond
(Figures 5 to 7). The mineralization occurs as multiple lenses which occur in permeable
zones within the volcanic and volcaniclastic rocks, often occurring within polygonal joints
in the rhyolite flows or replacing volcaniclastic rocks; these textural associations have been
interpreted to represent replacement-style mineralization (Squires ef al., 1991, 2001). The
mineralization occurs in numerous “lenses”, with the bulk of the mineralization hosted
within the Upper Duck Lens and the Sleeper Lens. Additional resources occur deeper in
the stratigraphy within the Lower Duck Lens, likely representing a faulted offset of the
upper lenses in the mine (Squires ef al., 1991, 2001) (Figures 5 to 7). The mineralization in
the Upper Duck and Sleeper lenses are often zoned with an outer zone of pyritic massive
sulphide that is partially recrystallized and grades inwards towards more Zn-rich mineral-
ization, and ultimately to more Cu-rich mineralization in the centre of the lenses (Squires

etal.,1991,2001; Piercey, 2007a). Footwall alteration within the deposit ranges from distal

14
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Legend

Host Rocks

I:l Upper Block - bimodal sequence
of lobe and breccia facies
rhyolite, pillow lava, pyrite-
pyrrhotite-bearing mudstone, cut
by gabbro and mafic dykes. U-Pb

9500N—] ages of ~512 Ma.

Mineralized Block - dominated
by blocky, aphyric rhyolite flows
and domes, associated jigsaw-fit
brecciates, tuff and lapilli tuff, cut
by QFP and lesser mafic dykes.
Graphitic sedimentary rocks. U-P
b ages of ~509 Ma.

9600N—]

MINERALIZED
BLOCK

wd Thruse

Mineralization

- Mostly pyritic massive
sulfide with <2%Cu+Zn

- Polymetallic massive
sulfide with 2%Cu+Zn
I'" 77 Projection of the Sleeper zone

- —— sulfides.
- Potential sulfide mineralization

>
>

MINERALIZED
BLOCK

— — — = Faults

Figure 5. Shadow plot of the Duck Pond massive sulphide lenses and the associated geo-
logical host units. The diagram projects the geology from ~200-450 m depth onto a hori-
zontal surface. Diagram from Squires et al. (2001).

sericite and quartz alteration, to strong chlorite—quartz and locally “chaotic carbonate” al-
teration that consists of dendrites and balls of dolomite proximal to Cu-rich mineralization
(Squires et al., 1991, 2001; Piercey, 2007a).

The Upper Block has contrasting lithofacies with the Mineralized Block and contains a
bimodal assemblage of interlayered basaltic and rhyolitic rocks (Figures 5 to 7). The basaltic
rocks are predominantly pillow lavas and massive flows with lesser hyaloclastite and vol-
caniclastic rocks (Squires et al., 1991, 2001; Piercey, 2007a). These rocks are interlayered
with rhyolitic rocks distinctive from the Mineralized Block, consisting of flow banded, lo-
cally glassy, lobe and breccia facies rhyolites (Squires et al., 1991, 2001; Piercey, 2007a).
Locally the rhyolitic rocks form distinctive breccias that are matrix supported and consist
of variably altered rhyolite clasts in a “marker unit” (Squires et al., 1991, 2001; Piercey,
2007a). Both the mafic lavas and rhyolitic rocks are interlayered with pyrrhotite- to pyrite-
bearing hydrothermal mudstone units (Piercey et al., 2012). These units are interpreted to

be distal hydrothermal sedimentary rocks (Piercey et al., 2012).

The Boundary deposit is located 4 km to the northeast of the Duck Pond deposit (Figure

4). The deposit bears some similarities to the Duck Pond deposit, with deeper footwall rocks
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having very similar features to the blocky rhyolite flows in the mineralized block at Duck
Pond (Squires ef al., 1991; Wagner, 1993; Piercey, 2007b; Piercey et al., in prep.). The im-
mediate hosts to mineralization, however, are fundamentally different than Duck Pond and
consists of a flat lying assemblage of rhyolite lapillistone with abundant, clast-supported
lapillistone with rounded rhyolitic clasts and interstitial variably altered rhyolite shards and
ash (Figures 8 to 11). The mineralization is overlain and occurs at the contact between these
lapillistones and an overlying variably altered lobe and breccia facies, quartz-bearing, flow

banded rhyolite (Figures 8 to 11). The mineralization is dominated by pyrite, chalcopyrite,

w N N - = o o = = N
8 3 3 3 ] 3 o 3 ] 3 ]
A3 = s = S s S m m m m
\ Section 2+25
. 3
Section 1+50N Section 0+50W|
to 2+00N
[ ]
[}
° o Yo o W 14
® o o
North | [—— Legend
egen
Zone ®  Drillhole
Stratigraphic section fence
: Hanging wall quartz-phyric rhyolite flows
and breccias
- Massive Cu-Zn sulfides
i : Massive Cu sulfides
BL 000 ® - Massive pyritic sulfides
’ |—
- Stringer Cu-Zn sulfides
Footwall lapillistone, lapilli tuff,
[ ] D rhyolite flows, and felsic intrusions
®
Southeast

Zone

metres

Figure 8. Boundary deposit surface geology plan map with distribution of sulphide miner-
alization types, and locations of sections in Figures 9-11. Diagram modified from Squires
etal. (2001).
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and lesser sphalerite that occurs in three zones: the south, southeast, and north zones that
have similar stratigraphic, alteration, and mineralization associations (Squires et al., 1991;
Wagner, 1993; Piercey, 2007b; Piercey et al., in prep.); Wagner (1993) proposed that the
north zone was fault offset from the south and southeast zones, and recent stratigraphic and
geophysical data are in support of this interpretation (Squires, pers. comm., 2012) (Figure
8). The mineralization occurs as roughly bedding parallel lenses that consist of pyrite and
chalcopyrite, with lesser sphalerite and pyrrhotite (Figures 8 to 11). The sulphides also con-
tain abundant clasts of host rhyolite that is variably altered to quartz, sericite, and chlorite.
The footwall alteration consists of chlorite proximal to mineralization that grades into
sericite and quartz distal from mineralization; alteration also parallels the stratigraphy and
sulphide lenses in a horizonal manner (Figures 8 to 11). The alteration also continues into
the hanging wall rhyolitic rocks, where present, and consists of quartz and sericite alteration
(Figures 8 to 11). The collective relationships above, and sulphide textures, are consistent
with the Boundary deposit having formed via subseafloor replacement mechanisms (Squires

et al., 1991; Wagner, 1993; Piercey, 2007b; Piercey et al., in prep.).

STOP 2.2: Paragon Minerals Core Shack

This stop will examine drill core from the Lemarchant deposit (Figures 4 and 12). The
drill core facility is located at Buchans Junction and all participants must adhere to all safety
regulations of Paragon Minerals, including wearing proper personal protective equipment,

where appropriate.

The Lemarchant VMS deposit is located approximately 10km to the southwest of the
Duck Pond deposit and is also hosted by the Tally Pond group (Figures 4 and 12). A recent
NI-43-101 resource was completed and yielded an indicated resource of 1.24 million tonnes
@ 5.38% Zn, 0.58% Cu, 1.19% Pb, 1.01 g/t Au and 59.17 g/t Ag and an inferred resource
of 1.34 million tonnes @ 3.70% Zn, 0.41% Cu, 0.86% Pb, 1.00 g/t Au and 50.41 g/t Ag
(Paragon Minerals Corp., press release, March 8, 2012 and Fraser et al., 2012). The deposit
is hosted within a bimodal assemblage of basalts and rhyolitic rocks that have been variably
dissected by thrust faults (Copeland et al., 2008; Copeland et al., 2009; Fraser et al., 2012)
(Figures 11 to 13). The deposit’s hanging wall is dominated by pillowed and massive basalt
flows with lesser interflow chert and hydrothermal sedimentary rocks (Figures 12 and 13).
The footwall and the host rocks to the mineralization contain blocky rhyolitic flows and as-
sociated volcaniclastic rocks very similar to those present in the Mineralized Block at Duck

Pond. However, mineralization at the Lemarchant deposit is dominated by massive sulphide
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Figure 13. Schematic cross section and long section through the Lemarchant VMS deposit. From
www.paragonminerals.com.

25



intergrown with barite, interpreted to have formed on the seafloor rather than by subseafloor
replacement (Copeland et al., 2008, 2009; Fraser et al., 2012) (Figures 12 and 13). The
mineralization is dominated by Zn—Pb rich sulphides with abundant galena, sphalerite, tetra-
hedrite and much lesser pyrite, chalcopyrite, bornite, covellite, digneite, cubanite, and trace
amounts gold and stromeryite; all of which is associated with barite (Copeland et al., 2009).
The deposit is been interpreted to represent a classic Kuroko-type VMS system that formed

from low temperature fluids.

Participants will drive from Stop 2.2 and return to Grand Falls-Windsor to accommodations

at the Mount Peyton Hotel.
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DAY 3 - JUNE 1*

SPRINGDALE PENINSULA
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Participants will drive from the Mount Peyton Hotel on the Trans-Canada Highway to the
turnoff for Springdale and Kings Point. Upon reaching the turnoff drive ~8-9 km towards
the town of Springdale until you reach the Timbr Mart.

STOP 3.1: Pillow Lavas, of the Lushs Bight Group (Easting: 565022, Northing:
548043)

Park vehicles in the parking lot of the Timbr Mart. This outcrop is proximal to a busy
street so participants should be aware of traffic. This is also a road/parking lot cut so be aware
of other participants and potentially falling rocks. The outcrops are comprised of typical
sheared and chloritized pillow lavas of the Lushs Bight Group (Figure 14). The pillow lavas
are broken, veined, and variably deformed with some pyrite and Fe-carbonate stringers. This

stop is just to illustrate the typical pillow lavas present in the Lushs Bight Group.

STOP 3.2: Little Bay Mine Area, Shaft Area — Overview (Easting: 576456, Northing:
549103)

Participants should leave the Timbr Mart, take a right, and drive towards the turnoff for
Little Bay Mine Road. Take a right on the Little Bay Mine Road and drive towards the town
of Little Bay for approximately 15 km towards the Little Bay Mine Road Junction. Turn
right here and proceed about 600 km towards the mine. Park vehicles at the bottom of the
hill and walk to the top. This area contains numerous covered trenches, capped adits and
shafts, and there is fencing around the former mine pits. Please stay clear of all these things.
Also, despite being reclaimed, there is debris in places, so be aware of this while traversing

the area.

The vantage point from the top of this hill provides an overview of the Little Bay area
(Figure 14). The immediate area consists of variably deformed pillow lavas and breccias.
In the distance to the north one can see the rusty hills of sheeted dykes. Towards the south,
near Little Bay, one can see the reclaimed tailings, the past shipping port, and in the distance
rocks of the Roberts Arm Group.

STOP 3.3: Little Bay Mine Area, “Glory Hole” — (Easting: 576394, Northing: 5484240)

Walk down to the base of the hill with the capped shaft and towards the left one will
see a small road. The road is passable by 4x4 vehicle, but we will walk in. Walk approxi-
mately 200-300 m towards the “glory hole.” This area is littered with debris and the glory
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hole has fencing surrounding it to prevent access: beware of the debris and do not go near

the fence.

The hills immediately north of the glory hole contain spectacularly preserved pillow

lavas that are variolitic and contain amygdules filled with quartz and interpillow chert.

The glory hole illustrates the host and style of mineralization associated with the Little
Bay Mine. The mine produced ~3 Mt of ore with grades of 0.8-2% Cu and produced 195
kg of Au during two periods (1878-1894 and 1961-1969) (Kean, 1988; Kean et al., 1995).
The mineralization in the glory hole consists of a northeast trending chlorite schist zone
that occurs as a vertical surface with gossanous rocks towards the northwest (footwall?)
and well-developed variolitic pillow lavas towards the north. The mineralization within the
Little Bay Mine occurred as massive lenses, pods, veins, and veinlets of sulphide and sul-
phide-bearing quartz veins. This site is visited as it gives insight into the nature of miner-

alization that will be seen in drill core at the Little Deer deposit (Stop 3.6).

STOP 3.4: Catchers Pond Group Rhyolite
(Modified from Kean, 1988)

From the previous stop drive back to the Little Bay Mine road and head back towards
the Springdale Highway. When the turnoff is reached, turn right and head towards the Kings
Point Road. Turn right and drive approximately 2.9 km. The outcrop is located on the right
side of the Kings Point Road. Given that this is a highway road cut be careful for traffic

and for falling rocks from the rock faces.

This outcrop consists of pink to purple columnar jointed rhyolite from the Catchers
Pond Group (Figure 14). The unit is variably pyrite altered and locally clastic with lapilli.
In places it is potentially welded. The Catchers Pond Group is early Ordovician (Dunning
and O’Brien, pers. comm.) and was deposited on top of the Lushs Bight Group (Kean,
1988). This outcrop is mostly shown to illustrate the textures associated with younger

columnar jointed rhyolites of the Springdale Peninsula.

STOP 3.5: Springdale Group Conglomerate — (Easting: 559664, Northing: 5484923)

Turn around at an appropriate location and drive towards the Springdale Highway. There
is a large road cut approximately 1.5 km back from the turnoff to the Springdale Highway.

As in Stop 3.4 this is a road cut so be aware of oncoming traffic and falling rocks.
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Figure 14 (continued). Legend for geological map of the Springdale Peninsula and sur-
rounding area with various mineral showings and deposits. Diagram from Kean et al.
(1995). Diagram redrafted and provided by Helena Toman (2012).
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This outcrop consists of a beautiful conglomerate of the Springdale Group that contains
cobble- to pebble-sized clasts within a sandy matrix (Figure 14). The conglomerate beds
are interbedded with sandstone that is locally cross-bedded. The clasts include granitic
clasts, purple and red rhyolite, andesite, amygdaloidal basalt, and chert. These rocks are in-
terpreted to have been deposited unconformably atop the Lushs Bight Group and are inter-
preted to have formed in extensional, alluvial basins, associated with Silurian caldera
development (Coyle, 1987; Kean, 1988) following arc-arc collision and closure of the Ia-
petus Ocean along the Red Indian Line; marking the terminal phase of the Taconic Orogeny
in the late Ordovician (van Staal, 2007).

STOP 3.6: Drill Core from the Little Deer VMS Deposit — Core Storage Area of Cor-
nerstone Resources and Thundermin Resources

Drive to the Springdale Highway, turn left and head towards the town of Springdale.
Follow the field trip leaders to the core storage facility of Cornerstone Resources and Thun-
dermin Resources. Representative drill cores of the mineralization found in the Little Deer

deposit will be shown.

The deposit was found in 1952 by Falconbridge Nickel Mines Ltd and was further ex-
plored by Brinex in 1955 (West, 1972; Kean, 1988; Kean et al., 1995). From 1962-1969
Brinex undertook extensive drilling and a shaft was suck on the deposit. From 1962-1972
reserves were delineated and Green Bay Mining Company produced 75 000 tonnes of ore
in 1974 (West, 1972; Kean, 1988; Kean et al., 1995). Since 2007 Cornerstone and Thun-
dermin Resources have undertaken exploration and development. The deposit has currently
had revised resources and a preliminary economic update and contains indicated resources
of 1.911 Mt @ 2.32% Cu, and inferred resources of 3.748 Mt @ 2.13% Cu (Putrich et al.,
2011).

Mineralization at Little Deer is hosted within a sequence of pillow lavas and massive
flows of the Lushs Bight Group that are variably strained and deformed and crosscut by
pyroxene-bearing mafic dykes (Figure 15) (Papezik and Fleming, 1967; Fleming, 1970;
West, 1972; Kean, 1988; Kean et al., 1995). The mineralization is typically stringer, clot,
to semi-massive in nature and is hosted within the lavas or within chlorite-schist zones, in-
terpreted to be deformed basaltic rocks (West, 1972; Kean et al., 1995; Pressacco, 2009;
Putrich et al., 2011) (Figures 15 to 17). The mineralization is dominated by chalcopyrite

and pyrrhotite, with lesser pyrite, sphalerite, cobaltite, rare galena, and microscopic grains
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Geological Map of the Little Deer - Whalesback Area

? whalesback
Pond

Little Deer Pond

LEGEND SYMBOLS

Feldspar amphibole; amphibole feldspar and pyroxene porphyry dykes, some felsites N\ Fault (Inferred)

w Highly sheared zones characterized by intensive chlorite sericite alteration, y Schistosity (vertica
£l usually sulfide bearing = Building

- Gabbroic intrusive rocks, dykes, sills and small stocks e Swamp

. Pyroclastic rocks: tuffaceous rocks and agglomerate

D St. Patrick Volcanics: highly chloritized, dark green pillow lavas and massive flows

Whalesback Volcanics: highly epidotized, light green to grey pillow lavas and minor unseparated
gabbro

Figure 15. Geological map of the Little Deer-Whalesback area. Map from Papezik and Fleming

(1967), Fleming (1970), and Kean et al. (1995). Diagram redrafted and provided by Helena Toman
(2012).

of Biand Ag tellurides and electrum (Helena Toman, unpublished data). The mineralization

represents the type locality for stringer-type Cyprus-style mineralization in the Newfound-
land Appalachians (e.g., Figure 17).

Participants will drive from Stop 3.6 and drive towards the town centre of Springdale to

the Pelly Inn (located on the Springdale Highway, Phone (709)673-3931 or 1-877-9SAFARI;
E-Mail: cog@islandsafaris.com).
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Figure 16. A) Long section through the Little Deer deposit with locations of drill hole in-
tersections, previous workings, and grades. B) Isometric projections of the mineral resource
domains from the Little Deer deposit. The different colours represent different resource
blocks. The shells give an idea of the geometry of mineralization. From Putrich et al. (2011).
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Figure 17. Schematic section through the Little Deer deposit outlining the nature of min-
eralization as stringers within basaltic host rocks with a tight envelope of chlorite alteration.
Their association with shear zones is interpreted to be due to remobilization of original

chlorite alteration pipes (e.g., Kean et al., 1995). Diagram from Pressacco (2009) and Pu-
trich et al. (2011).
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DAY 4 — JUNE 2™

BAIE VERTE PENINSULA
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Participants will leave the Pelley Inn, drive from Springdale to the Trans-Canada Highway,
take a right, and drive towards Baie Verte junction. At Baie Verte junction take a right and
drive towards Baie Verte until they meet the LaScie Highway where one takes a right and
drives to the Mings Bight Road turnoff. Take a left at this junction and proceed approxi-
mately 200 m and the Ming Mine will be on the left hand side.

STOP 4.1: Ming Mine Site

This stop will include a visit to the mine site and to view drill core of the stratigraphy,
alteration, and mineralization from the Ming Mine. Staff at Rambler Metals and Mining
Ltd. and Stefanie Brueckner will lead a significant portion of this part of the tour. Partici-
pants must adhere to all safety regulations of Rambler Metals and Mining Ltd., including

wearing proper personal protective equipment, where appropriate.

The Ming Mine is a past producer and is currently producing. It currently has a total
NI-43-101 compliant geological resource of 3.65 Mt @2.26% Cu, 1.13 g/t Au, 6.78 g/t Ag,
and 0.32% Zn occurring in numerous different zones. One of the zones, the 1806 zone, is
very precious metal-rich and contains 487 000 tonnes of 3.4 g/t Au and 22.31 g/t Ag (Pil-
grim, 2009); it has recently gone into production following a feasibility study (Darling et
al., 2010). The deposit is hosted by rocks of the Pacquet Harbour Group within the Baie
Verte VMS belt, and is generally considered as a regional correlative to rocks of the Betts
Cove complex (Hibbard, 1983; Castonguay et al., 2009; Skulski et al., 2009, 2010) (Figures
18 to 20). The general stratigraphy of the deposit consists of a footwall of strongly deformed
rhyolitic flows and volcaniclastic rocks, regionally referred to as the “Rambler Rhyolite”,
that are boninite-like and part of Skulski ef al.’s (2009; 2010) Lower Pacquet Harbour Group
(see also Tuach and Kennedy, 1978; Pilgrim, 2009; Brueckner et al., 2011) (Figures 18 to
22). The hanging wall rocks consist of relatively fresh, but deformed, turbiditic rocks of
mixed provenance (Tuach and Kennedy, 1978; Pilgrim, 2009; Brueckner et al., 2011) (Fig-
ure 21). This package is overlain regionally by a distinctive chert and iron formation that is
correlated with the Nugget Pond horizon, host to orogenic Au mineralization elsewhere on
the Baie Verte Peninsula (Skulski ez al., 2009, 2010) (Figures 20 and 22). The entire strati-
graphic package is crosscut by two generations of post-mineralization mafic dykes (Tuach
and Kennedy, 1978; Pilgrim, 2009; Brueckner et al., 2011) (Figures 21 and 22). The min-
eralization occurs in numerous zones and includes pyritic massive sulphide that is variably
precious metal enriched (i.e., Ming South upplunge and downplunge extensions), poly-

metallic and precious metal-rich sulphides (i.e., 1806 and 1807 zones), and Cu-rich, footwall
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Ming's Bight
Gp.

Cape Brule
Porphyry

Big Rambler
PQpd Mini

/ Burlington Granodiorite

Py

Figure 18. Geological compilation map of the Pacquet Harbour Group and associated
rocks near the Ming Mine, Baie Verte Peninsula. Compilation from Skulski et al. (2009,
2010) and Castonguay et al. (2009) based on original mapping by Hibbard (1983). Field
trip stops denoted by red dots with annotation. Other stops are off this map. Legend for
lithostratigraphic units in Figure 19.

stringer-type mineralization (Ming Footwall zone) that is precious metal poor (Tuach and
Kennedy, 1978; Pilgrim, 2009; Brueckner et al., 2011) (Figures 21 to 23). Alteration asso-
ciated with the massive sulphide mineralization is predominantly quartz and sericite alter-
ation, with or without green mica (Tuach and Kennedy, 1978; Pilgrim, 2009; Brueckner et
al., 2011). The precious metal-rich 1806 zone also contains intensely silicified zones that
are often associated with green mica immediately at the hanging wall-footwall contact to
mineralization (Brueckner et al., 2011). The Ming Footwall zone contains intensely chlorite
altered rhyolitic rocks, often with blue quartz eyes still preserved within a sea of green-
black chlorite, representative of typical, chlorite pipe-like alteration (e.g., Franklin et al.,
2005).
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Figure 19a. Provisional lithostratigraphic units for Ordovician and older units of the Baie
Verte Peninsula. From Skulski et al. (2009, 2010).
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Figure 19b. Provisional lithostratigraphic units for Silurian units of the Baie Verte Penin-
sula. From Skulski et al. (2009, 2010).

40



(0102 ‘6007) ‘T8 1° 1yYS|nYS Woif wpL3v1(] ‘SUOID][2LI0D [PUOLSL YIIN DINSUIUDJ )43/ 210G Yy} Jo Aydp.31n.435010393] *()T INSIY

U
U
M < Qwm= n
= m / .m,m.m. 21603 m W
25 g8
z - B
< gL
w o (58, yboy W / BN £SS xajdwio>
Sy pue buung) A ot S fupug
Ocx aujolydo suoz BN 687 OF S a16inqziey !
w < uondnpanseidns ° - 8 puas g
== o : JE=N. : :
oc = I} - ) = E] o
w _ = o e mwv il 2
= @ nyFn3 2pauabufs (2uuiuoq) 08 m me w ) sa1e|NWND g8
=2 SWASAOD 3I1L 3 (oueweyu S8 kX uchmz_: =
<= 2Je pueys| ! % e 97-1) T o g I 38
e © (owsoysdue puers)) 1y eI /8t g oiqqe g
SWA Bui-1ejquiey g vl % sAp _om«w@r__w &
(B 6/1~) sHels uoldnpgo < Ajwiojuodsip <€ Awioyuodun 2222222222
a4 ‘|Buod ¥4 = ‘|buod F ‘4| - 41 3|[1AUSp|OD R BN 62> -
nNU W Uol1eWIO} UOI puod 1966nN - BN LSV 8z g
3 g10'L S (ce6l luezowrey) 35 WRYUWeS9T-LL o=
=0 (ggve dnn2joy) L 3 § (csop e em 23 ooy T | £5
u Y (xdd)yd  [RARA & [E— 23 1 £
2w uibiew i 3 (lle-2(e) v3  ExS=srE.] wm g5 S
)] 3 2o oo lev=2e - A a
@5 [EIUSUIIUOD UO o) S5 840W-3 g4OW-3
eQ de ey ewsor v [ |2 ewosy T %
Zz T =
> 1 4 g
(%]
~evN N oA d ] ~~v ~v ~~v VA sz ~v ~~v oA d g ~v ~v ~~v VNN NN N
A WZsy e (€6, 6UlUUNa  5y01poueIb
= wsnewbew 3 PuePoOMEd)  uojbuiung
= n A BW O
zcx le |ejusuRuo> < (g6, @%D) (€6, @) @
w
> 3 ew o@@ (€6, 0%) BN ZEY  owipbuny
0 2 BN 671 :
- 2 VNN NN N NN
Zvu Ho-yeaiq qe|s E m\_wmﬁ%ﬁw — e
O BN 9t uobeweung w
v (35 01) 57y 2
pue spj|oj ueunjis x
Auabouo djuijes )
£
419 ul ny >nauabids 1SV3

‘asde||od [pUOISURIXD
uejuoAS(Q

41



(6002) ‘Te 19 dbnduoy

-sv) puv (0[10Z ‘6002) T8 1R 1yS|nyS “(€861) pirqqi Aq Suiddvu jpu1sLio uo pasvq (11(z) ‘1 12 4ouydon.ig wo.f parfipour S1 mpL3v1(]
J1sodap Suipy ayj Jo sauoz pajp1o0ssv puv dupy Sulpy ayj uo sisvyduid yim spsodap S 12]quivy ay) fO 3u1ppas [p2130]0L5) *1 INSIY

N LG (LS .6V

oiqqeb paieays

a)luluog anljoueA‘olAyde ‘pamol|id
uoljewlo4 peaH syog .

yeseq mojid omisoy) ole

puels! ‘sjuluog-1] 8jeipawlsu|
uonjewuod Aissiy N [

(N 28¥ ‘8HI0Ayl Jojquiey,)

B10091q 4N} ‘SMO}}

aAIssew 8)1j0Ayd ‘e)ioepoAyy
uonewlo4 Aiasiin IN —
(uerdirnopuaQ Aleg) oH 1omo

(e ¢8¥) 01qqeb ‘yeseq mojid
uoljewo juiod adesds [

saypIqun}

‘syo0l onyseoide ‘Yny oye
uoljewuod ano) Aqqog

Jeseq moj|id
uoljewo ybig s,weusp\ [

(BN 02%)

4ny o1sa) pue ‘(BN L9t) dNjoAuy
uoljewlo4 aA0) png wesjeg _H_

aleys Yoej|q ‘syool onsejoids oyep
uoljewiod aA0) png wesjeg [
(uerdinopuQ Ajiea o} -piN)
9Hd 18ddn

(9Hd) dnoug inogaeH
jJonboed - 3901 UBIDIAOPIQ

N «¥S .SS .6V

3 €120.S

auoz
ynos Buiy

Q

elens

9

3 W.L19G

M 81 (10 .99

N €21¥2S9S

jineq N~
yeys punoabiapun -

uOZLIOY UOIJeZI|RIBUIN U0z 908l

Ui
uoneoso| SUIN  uep Bun®

Jaquinu
KemyBiy pue AemybiH i

SMOJ} pUB SYn} 8)eipawlaiul pue
oljew Ajjeooj ‘saAisnijul ‘synj
pue smoj} o3Ayoel) pue oljoAUY
(ueunpig Ajied)

dnoug uyor g aden [
ajlolpouels)
(e ocy - vev)

ajpJolpouels uoybullung
A1Aydiod sedspjal-zyenb
‘ajoipouelb onuAydiod

(e ogy) Ahydiod 9nig aded [

suoisniju] ueln|is

M €T 80 .99

N 88€1€£S9S

42



®
9o
1S S o
Q © o >
o @ Qa = = 8 @ '28 RMUG08-121
SNPLoERS © £ Bseg § £ S5
nCO0OmOOn c 2 S22« £ Eo
| I | 1
" UTM Zone 21N (NAD 83) WGS 84 (Deg Min Sec) Depth [m]
Coordinates Easting  Northing Long (W) Lat (N) (below surface)
Start (0 m) 566128 5520696 56°04'44.0" 49°5457.5"  -60.6
10 End(826m) 566092 5520768 56°04'45.8" 49°54’59.9"  -41.1
20
Cu [wt%] Au [g/t] Zn [wt%] Pb [wt%
30 10 102 107 10° 102 10 10° 10' 102 102 10% 10° 10+ 102
33 Luml Lol o ol Lunl ol el IRT - MR WA W - 33
H i - - - - - a7 4 ] ] ] 37
E " - - - - i i i i
H v A0 T T T 41 = - - - 4
E L ] - - - - - . p p p
H 299024 _ T _ T _T _" o 45 - - - 45
i |2990£ - = = ] ] ] ]
N 2 osod - - 49 o - - - 49
. ' -_-_- ] ] i i
u . - = = E 53+ - - - 53
| | ¥ — - - - E E p p
' ! - - = i 5 57 - - - - 57
[] H [] 60 - = H - 4 4 4
" = 1 T = = - 61 - - s 61
E - 65 = - - - 65
. 704 69 = - - - 69
N B ] ] ] ]
. Bl H 73 - - - o 73
= 1 H 1 b b b b
I ElH] H 77 o - - - 77
| | o i——
s 826
[
Q2
E ° © 5 ¢ ° RMUG08-140
S = — © 2
e b =22 S = cz 3 82
355 '[% 533 2 ¥ oE¥El 3 = gs Cu [wt%] Au [g/] Zn [wt%] Pb [wt%]
¢ s =Resa = ® g0+ 102 00 10000 10000 0% 102 407 400 10 400 100
Ll ! L1 ! 1 1 1 1 1 ] ] 0 usugustusts eumd ot _ 0
Iz, H ] ] I I
"] " m 4 o o o L 4
- i ¢ i 1 i [
: * 8 - - - L 8
S 10 = E E E -
H 12 o - - =12
H T 16 o - - 16
. i E 2 ] - - L 20
I . I E= E E E -
- - 2 24 - - =24
1 ] - 3 ] _ ] |
. =" 28 = - - L 28
. 1 - ] ] ] [
P . = ] ] o
I s ! 36 - - - L 36
x ] H 1 1 1 -
' o s 40 40 = - - = 40
T - E 1 E -
- - H 44 44
50
" UTM Zone 21N (NAD 83) WGS 84 (Deg Min Sec) Depth [m]
Coordinates Easting Northing Long (W) Lat (N) (below surface)
60 Start (0 m) 566088 5520774 56°04'46.0" 49°5500.1"  -78.1
65.2 End(652m) 566141 5520778 56°04'432" 49°5500.2"  -40.3
Alteration Lithology
s Weak [ Rhyolite B Coarse grained gabbros [_] Silicification
= == == == Moderate
Strong [ atz-eye rhyolite  [Jl] Finer grained gabbros  [Jlll] Mixed mafic-felsic tuffs and
X X X sedimentary rocks
29782 A Sample number Il suiiides ] Fine grained grey dykes
and location

Figure 22. Stratigraphic sections of two drill holes from the 1806 zone, RMUG08—121 (top)
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Legend

: Ramp Planning

B : Zone Development Planning
: Existing Ramp
: Existing Zone Development

Figure 23. A) Isometric shells of the various ore zones and infrastructure from the Ming
Mine. B) Unmined ore zones below the 2200 level and underground mine workings. Those
shells represent the different sulphide zones and potential areas to be mined. Diagrams from
Darling et al. (2010).
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STOP 4.2: Iron Formation above the Rambler VMS Deposits (Nugget Pond Horizon
Equivalent) (Easting: 565964, Northing: 5529370)
(Modified after Skulski et al., 2009)

This stop is located proximal across the Ming’s Bight Highway across from the Ming
Mine, located on the road immediately east of the turn off for the Ming Mine (Figure 18).
Traverse this road towards an abandoned pit and the outcrops are located on the edge of the
pit. This is a very dangerous location and participants should stay clear of overhanging

faces, old workings and stopes, and obey all posted signage.

The footwall to this pit contains sericite altered, schistose Rambler Rhyolite with pyrite
and minor massive sulphide mineralization. This is overlain by graded greywacke, siltstone,
and thin 10-20 cm iron formation bands that are interpreted to be equivalent to the Nugget
Pond horizon that hosted orogenic Au mineralization at the Nugget Pond mine near Betts

Cove.

STOP 4.3: Rambler Rhyolite - Rambler Main Mine Area (Easting: 566323, Northing:
5527313)
(Modified after Skulski et al., 2009)

This site is located on the La Scie highway almost immediately across from the Ming’s
Bight Road turnoff. Head out the Ming’s Bight road and take a left on the La Scie Highway
and head east approximately 700 m to the Rambler Mine Road on the right hand side of the
road. You will have to get out of the vehicles and walk about 500 m towards an outcrop of
the Rambler Rhyolite (Figure 18). This area is an abandoned and partly reclaimed minesite,
therefore, the road is not well maintained, the area has abundant debris, and it requires peo-

ple to stay away from any sinkholes and potential hazards.

These outcrops consist of strongly deformed rhyolite with variably sericite, quartz, and
pyrite alteration. There are locations in this immediate area that contain clasts and are likely
tuff breccias. The rocks exhibit a very strong elongation lineation (L-fabric) that mirrors
the regional plunge lineation and the geometry of the plunge of the various zones at the
Ming Mine and the Rambler Main mine (Tuach, 1988; Castonguay et al., 2009; Pilgrim,
2009). This L-fabric is related to the predominant regional D2 deformation and is associated

with regional folding and thrusting.
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This site is also the location where the only age constraint on the Pacquet Harbour Group
exists. Despite numerous previous attempts to date the rhyolitic rocks of the Pacquet Har-
bour Group, their boninite-like affinities and low Zr contents (Piercey et al., 1997; Bailey,
2002) result in them having very little zircon. McNicoll in Skulski et al. (2010), obtained a
~487 Ma age for the rhyolite at this site, which is slightly older but similar to ages obtained
for regionally correlatable rocks of the Betts Cove Complex (Dunning and Krogh, 1985;
Skulski et al., 2009, 2010) (Figure 18).

STOP 4.4: The Dorset Eskimo Soapstone Quarry
(Modified after Skulski et al., 2009)

Drive from the previous site along the La Scie Highway towards Baie Verte. Drive
through the town of Baie Verte and continue towards the community of Fleur-de-Lys and
follow the signs for the “Dorset Soapstone Quarry Historic Site”, which is located on the
north side of the harbour. Park the vehicles at the information centre. This centre is quite
impressive and provides a lot of historical background to the area. The site itself is along

the wooden boardwalk just behind the centre.

The rocks at the soapstone locality are altered ultramafic rocks that are structurally in-
terleaved with metasedimentary rocks of the Fleur-de-Lys Supergroup. They were tradi-
tionally considered Paleozoic in age (Hibbard, 1983), but recent U-Pb work by McNicoll
has obtained ages on correlative rocks that suggest they may be Precambrian (~558 Ma;
McNicoll in Skulski et al., 2009). The ultramafic rocks are interpreted to have been struc-
turally interleaved with the metasedimentary rocks during obduction during the Taconic
orogeny (Hibbard, 1983; Skulski et al., 2009, 2010). This is a protected archacological site

therefore no sampling, hammering, or disturbance is permitted.

The ultramafic rocks at this historical site represent one of the oldest known mining ex-
cavations in North America and the material below is taken from Skulski et al. (2009) and
O’Driscoll (1998). Excavations at this locality started in the 1980s and the archeological
evidence suggests that it was used by the Maritime Archaic people ~4000 years ago and
then subsequent by the Middle Dorset Paleoeskimo people ~1800-2000 years ago. The scars
on the faces of these outcrops represent the remnants of stone vessels and unfinished vessels
that are typical of the Middle Dorset period. Stone tools located at the site were made from

chert and quartz.
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The soapstone from the quarry was mostly used for functional purposes, such as cooking
pots and lamp vessels, rather than for artistic carving. The site was interpreted to have been
active for centuries based on the number of extraction scars present at the site. It is inter-
preted that the soapstone vessels were carved in situ, and the first round or ovoid soapstone
“preform” created the inner surface for the next vessel, and the process continued. Some
partially finished vessels have been left in the quarry after it was abandoned, and it is inter-

preted that the partially finished vessels were removed from this site and finished elsewhere.

STOP 4.5: Advocate Asbestos Historic Lookout Site
(Modified after Al et al., 1988)

Drive from the town of Fleur de Lys towards the town of Baie Verte. En route it will be
obvious where the Advocate Mines site is (Figure 18). There is a lookout that we will stop
at close to the mine location and reclamation of the old pits. This site is also an historic visit
to a traditional mine in the area. The stop will be on the side of the highway so beware of
traffic.

The Advocate Mines were in production from 1963-1981 and produced roughly 30 Mt
of ore from which 967 590 tonnes of asbestos fiber was produced. The ore is hosted within
serpentinized ultramafic rocks of the Advocate Complex and mineralization consists of
stockworks of chrysotile crossfiber veins, typical of ultramafic complexes within the Ap-

palachians. Currently the site is being reclaimed.

STOP 4.6: Virginite Occurrences (Easting: 548917, Northing: 5516955)
(Modified after Skulski et al., 2009)

From the last stop drive through the town of Baie Verte towards the Trans-Canada High-
way. The outcrops in question are located just past the turnoff for the Burlington Highway
and they are located on the right side of the highway. The outcrops are bright green and

contain abundant dun-coloured weathering. Be careful for traffic at this locality.

These outcrops are of “virginite”, a local term used for these metasomatized ultramafic
rocks that are used in local crafts and jewelry. Meyer’s Minerals' currently own the mineral
rights to this property and given this ownership please take only small samples. The rocks

consist of quartz—magnesite—fuchsite-rich metasomatized ultramafic materials that are part

" http://www.newfoundlandlabrador.com/planyourtrip/Detail/212112

47



of'a group of dismembered ophiolitic rocks that have been caught up in the Baie Verte Line,
a fault that separates the Dunnage Zone from the Humber Zone. These rocks are often re-
ferred to as listwaenites, listvenites, or mariposites, but in Newfoundland they have been
referred to as virginites by a local prospector and geologist Norman Peters. These rocks are

often associated with orogenic gold elsewhere on the Baie Verte Peninsula.

Participants should drive from the last stop towards the Trans-Canada Highway. Take a
left on this highway and drive towards Deer Lake and stop at the Deer Lake Motel, which
will be on the left hand side of the highway (Deer Lake Motel: 5 Trans Canada Highway,
Deer Lake, NL, A8A 2ES5, Phone: (709) 635-2108, www.deerlakemotel.com).
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DAY 5 - JUNE 3™
DEER LAKE
Participants will either catch flights directly out of Deer Lake or will be returning to St.

John's. The time of departure for the participants will be determined by the field trip leaders

after consultation with the participants.
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The following are field trips organized for the GAC — MAC Meeting, St. John’s 2012.
PRE-MEETING TRIPS

FT-A1 Accreted Terranes of the Appalachian Orogen in Newfoundland: In the Footsteps of
Hank Williams
Cees van Staal and Alexandre Zagorevski
FT-A2 The Dawn of the Paleozoic on the Burin Peninsula
Paul Myrow and Guy Narbonne
FT-A4 Mistaken Point: A Potential World Heritage Site for the Ediacaran Biota
Richard Thomas
FT-AS Neoproterozoic Epithermal Gold Mineralization of the Northeastern Avalon Peninsula,
Newfoundland
Sean J. O’Brien, Gregory W. Sparkes, Greg Dunning, Benoit Dubé and Barry Sparkes
FT-A9 Cores from the Ben Nevis and Jeanne d’Arc Reservois: A Study in Contrasts
Duncan Mcllroy, Iain Sinclair, Jordan Stead and Alison Turpin

POST-MEETING TRIPS

FT-B1 When Life Got Big: Ediacaran Glaciation, Oxidation, and the Mistaken Point Biota of
Newfoundland
Guy M. Narbonne, Marc Laflamme, Richard Thomas, Catherine Ward and Alex G. Liu
FT-B2 Peri-Gondwanan Arc-Back Arc Complex and Badger Retroarc Foreland Basin:
Development of the Exploits Orocline of Central Newfoundland
Brian O’Brien
FT-B3 Stratigraphy, Tectonics and Petroleum Potential of the Deformed Laurentian Margin
and Foreland Basins in western Newfoundland
John W.F. Waldron, Larry Hicks and Shawna E. White
FT-B4 Volcanic Massive Sulphide Deposits of the Appalachian Central Mobile Belt
Steve Piercey and John Hinchey
FT-BS Meguma Terrane Revisited: Stratigraphy, Metamorphism, Paleontology and
Provenance
Chris E. White and Sandra M. Barr
FT-B6 The Grenville Province of Southeastern Labrador and Adjacent Quebec
Charles F. Gower
FT-B7 Geotourism and the Coastal Geologic Heritage of the Bonavista Peninsula: Current
Challenges and Future Opportunities
Amanda McCallum and Sean O’Brien





