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INTRODUCTION

This project continues regional surficial and till geochemistry mapping in eastern Newfoundland
(Batterson and Taylor, 2003), that began in 2000 on the Bonavista Peninsula (Batterson and Taylor,
2001a, b). The efficacy of this project was demonstrated recently by interest from mineral-exploration
companies and prospectors following the Bonavista open-file release (Batterson and Taylor, op. cit.),
which generated the staking of 1045 new claims having a value of $62 300, within the first 5 days of its
release. This response was similar to results from other till geochemistry projects, including those cov-
ering Grand Falls–Gander (Batterson et al., 1998), Hodges Hill (Liverman et al., 2000), Roberts Arm
(Liverman et al., 1996), and southern Labrador (McCuaig, 2002).

These projects combine surficial mapping (a combination of aerial photograph analysis and field ver-
ification), paleo ice-flow mapping and sampling of till for geochemistry analyses. The latter two elements
are complete for this project, although further surficial geology mapping is required.

LOCATION AND ACCESS

The Avalon Peninsula is located in the eastern part of the province, comprising an area of about 9700
km2, and that has a population of about 300 000 (over 60 percent of the total population of the province).
The Avalon Peninsula is connected to the rest of the island by the Isthmus, which is only 6.3 km wide at
its narrowest point. 

This project covered eight 1:50 000-NTS map sheets extending from the Clarenville area across the
Isthmus, and continuing north of the Trans-Canada Highway up the Bay de Verde Peninsula to the
Victoria–Heart's Content road (Route 74). Map sheets included were: 1N/5, Argentia; 1N/6, Holyrood;
1N/11, Harbour Grace; 1N/12, Dildo; 1N/13, Sunnyside; 1N/14, Heart's Content; 1M/16, Sound Island;
and 2C/4, Random Island (Figure 1).

Access to the area was generally good, via a network of paved and gravel roads. The decommissioned
Newfoundland railway track also provided access to areas on the Isthmus and the Bay de Verde
Peninsula. Parts of the study area, however, were only accessible via helicopter. These included the area
between Bull Arm and Southwest Arm, the eastern parts of the Isthmus, the Bellevue Peninsula and parts
of the Bay de Verde Peninsula.

The study area is one of variable relief (Figure 2), ranging from the rugged coastal highlands north
of Bull Arm to the gently rolling central Avalon lowlands characterized by a well-developed Rogen
moraine field. The highest terrain is between Bull Arm and Southwest Arm, where Centre Hill extends
to 515 m above sea level (m asl), and Crown Hill to over 365 m asl. Hills over 200 m asl are rare across
the remainder of the field area, although the Doe Hills in the central Isthmus are over 350 m asl.

BEDROCK GEOLOGY AND MINERAL POTENTIAL

The  study  area  lies  entirely  within  the  Avalon  tectonostratigraphic  zone.  The  bedrock  consists
of  late  Precambrian  igneous  and  sedimentary  rocks  overlain  by  Palaeozoic  shallow -marine   and

3
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Figure 1. Location of study area and places mentioned in text.



HCB

Figure 2: Shaded relief map and patterns of ice flow at the Late Wisconsinan maximum (modified from 
Catto, 1998).  Data shows that the western part of the study area was covered by ice from the main 
Newfoundland ice dispersal centre (red arrows), likely on Middle Ridge.  In contrast, the Avalon 
Peninsula was covered by radially-flowing ice from a number of small dispersal centres located on the 
spine of the peninsulas.  In the study area, ice flow was from dispersal centres at the head of St. Mary's 
Bay (blue arrows), Heart's Content barrens (HCB) and Collier Bay Brook (CBB).
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terrestrial sedimentary and minor volcanic rocks (O'Brien and King, 2002; O'Brien et al., 1983; King,
1988; Figure 3).

Hadrynian sedimentary sequences of shallow-marine to fluvial rocks underlie most of the study area.
The oldest are shallow-marine platformal rocks of the Conception Group, found on the western shore of
Conception Bay, which are overlain by deltaic sedimentary rocks of the St. John's Group. The Connecting
Point Group consists of early Hadrynian shallow marine sediments of similar age to the Signal Hill and
Conception groups and is found in the west of the study area. These are overlain by fluvial sediments of
the Signal Hill Group in the east, and the Musgravetown Group in the west. The Musgravetown Group
contains felsic and mafic volcanic flows and tuffs found within the Bull Arm Formation. The Bull Arm
Formation is intruded by the Hadrynian pink to grey, medium-grained Swift Current Granite.

Much of the remainder of the Avalon Peninsula and the Isthmus are underlain by small areas of
younger rocks, the largest of which is shale and limestone of the Early Cambrian to Middle Ordovician
Adeytown Group. These rocks are found at the southeast end of Trinity Bay and along its eastern shore.

West of the Isthmus, the Hadrynian rocks are intruded by several granitic bodies, including the
Devonian or earlier Clarenville Granite, a pink to red, medium-grained, biotite granite found along the
western shore of Northwest Arm, and by the Powder Horn intrusive suite. The Powder Horn intrusive
suite is composed mostly of fine- to medium-grained diorite, but also contains gabbro and minor granite
(King, 1988).

The now-abandoned lead mine located within Conception Group strata at La Manche (Figure 2) on
the north shore of Placentia Bay is one of the oldest mines in Newfoundland, operating from the mid to
late 1800s (Martin, 1983). More recently, the open-pit mine at Collier Point (Figure 2) extracted barite
for the offshore oil industry. Several other barite showings are found across the Isthmus, mostly within
the Connecting Point or Musgravetown groups. Other mineral occurrences include several manganese
showings within the Adeytown Group, pyrrhotite found within St. John's Group rocks in the central Bay
de Verde Peninsula, and copper exposed on the Heart's Content barrens within the St. John's Group.
Recent exploration efforts have focussed on the potential for sediment-hosted or volcanic red-bed cop-
per deposits within the Musgravetown Group (O'Brien and King, 2002). The discovery by Cornerstone
Resources of copper mineralization within the Crown Hill Formation on the northern Bonavista
Peninsula, and in volcanic rocks of the Bull Arm Formation has prompted exploration activity on the
Isthmus and Avalon Peninsula, both of which are underlain by the Crown Hill and Bull Arm formations.
Gold is found within the Powder Horn intrusive suite at the Lodestar gold showing, which is currently
being prospected by Pathfinder Exploration.

ICE-FLOW HISTORY

PREVIOUS WORK

Much  of  the  early  work  on  the  glaciation  of  the  Avalon  Peninsula  suggested  that the area was
covered by eastward-flowing ice from central Newfoundland (Murray, 1883; Coleman, 1926;
MacClintock  and  Twenhofel,  1940),  although  MacClintock  and  Twenhofel (op. cit.) argued that the
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Figure 3. Bedrock geology (after King, 1988)



Avalon Peninsula maintained an independent ice cap during deglaciation. Evidence of ice invading from
the west is speculative and mostly based on clast provenance, e.g., Summers (1949) notes the  presence
of serpentinite clasts near St. John's. This may be sourced off the Avalon Peninsula, although D. Bragg
(personal communication, 2001) reports serpentinite-rich veins in the Cochrane Pond area. There is no
erosional evidence (e.g., striations) for invasion from the west.

The erosional data suggest that the Avalon Peninsula maintained an independent ice cap during the
late Wisconsinan. Chamberlin (1895) was the first to suggest this, but subsequently the idea has been well
acknowledged (e.g., Vhay, 1937; Summers, 1949; Jenness, 1963; Henderson, 1972; Catto, 1998). The
main ice dome was likely at the head of St. Mary's Bay (Henderson, 1972; Catto, 1998), with ice flow-
ing radially, but particularly over the low cols to the north and northwest into the Trinity and Conception
bay watersheds; the Rogen moraines found south of Whitbourne formed during this northward flow. The
radial flow from St. Mary's Bay had little effect on intervening peninsulas, which likely maintained their
own ice caps (Summers, 1949; Catto, 1998). Similarly, the Isthmus area east of the Doe Hills was cov-
ered by ice from a local source. West of the Doe Hills, the area was covered by ice from the main part of
the Island (Catto, 1998). This is supported by striations and the provenance of clasts in till.

ICE-FLOW MAPPING

The favoured method of delineating ice flow is by mapping striations on bedrock (Batterson and
Liverman, 2001). Striations are excellent indicators of ice flow as they are formed by the direct action of
moving ice. Data from individual striations should be treated with caution, as ice-flow patterns can show
considerable local variation where ice flow was deflected by local topography. Regional flow patterns
can only be deduced after examining numerous striated sites. The orientation of ice flow can easily be
discerned from a striation by measuring its azimuth. Determination of the direction of flow can be made
by observing the striation pattern over the outcrop. For example, areas in the lee of ice flow may not be
striated. The presence of such features as ‘nail-head' striations, miniature crag-and-tails (rat-tails), and the
morphology of the bedrock surface may all show the effects of sculpturing by ice (Iverson, 1991). At
many sites, the direction of ice flow is unclear and only the overall orientation of ice flow (e.g., north or
south) can be deduced. Where striations representing separate flow events are found, the age relation-
ships are based on crosscutting striation sets, and preservation of older striations in the lee of younger
striations.

Striation data for Newfoundland and Labrador are compiled in a web-accessible database (Taylor,
2001), which currently contains over 10 700 observations. Ice flow is interpreted from striations and
additional data from large-scale landforms such as erosional rôche moutonée features or depositional fea-
tures such as Rogen moraines. Clast provenance also helped confirm glacial source areas.

RESULTS

Paleo ice-flow history was determined from over 1300 striation observations from across the study
area, of which 86 were collected during this project.  Striations were fresh, and unweathered. Where two
or more sets of striations were found at a site, the older striations showed no evidence (e.g., iron stain-
ing) of survival through a non-glacial period. Therefore, all striations were considered to have been pro-
duced during the late Wisconsinan. Data are summarized on Figure 2 and generally conform with the
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detailed ice reconstruction of Catto (1998). Within the study area, Avalon-centred ice extended northwest
across the Isthmus to the Doe Hills, north of which, eastward-flowing ice dominates. This is consistent
with the reconstruction of Batterson and Taylor (2001) that showed much of the area south and west of
Clarenville was covered by eastward-flowing ice from the Middle Ridge area of central Newfoundland.
This flow crossed the northern part of Placentia Bay from the Burin Peninsula, as indicated by the pres-
ence of eastward-oriented crag-and-tail hills on the west side of the Isthmus (Catto and Taylor, 1998a).
Preliminary work shows the presence of granite, mafic volcanic and quartzite clasts in tills, likely derived
from the Burin Peninsula.

South of the Doe Hills there is no evidence of ice flow from the area to the west. The striation pat-
terns and the presence of clasts derived from local bedrock suggest that ice flow from 3 separate local
sources covered the study area during the late Wisconsinan. The southern parts of the Bay de Verde
Peninsula, Trinity Bay and Conception Bay were covered by northward-flowing ice from the main
Avalon ice centre at the head of St. Mary's Bay. On the Bay de Verde Peninsula, topography had a pro-
found influence on ice-flow patterns, and in particular by the configuration of bays and inlets. Ice-flow
indicators are consistently oriented parallel to major, bedrock-controlled embayments, e.g., Harbour
Grace, Bay Roberts, Bay de Grave.

The Isthmus and the Bay de Verde Peninsula both maintained their own ice caps, from which ice flow
was radial. The Isthmus ice cap was centred on the Collier Bay Brook area, and the Bay de Verde ice cap
was located on the barrens to the east of Heart's Content (Catto, 1998). Within these areas, clasts found
in till are consistently locally derived.

SURFICIAL GEOLOGY

The surficial geology of much of the study area was mapped by Catto and Taylor (1998a to f). These
maps are being revised, based on field work from this study. Section descriptions of Quaternary expo-
sures will be completed in subsequent years. The following discussion is based on the work of Catto and
Taylor (op. cit.) and supplemented by recent observations.

The surficial geology within the study area is summarized in Figure 4. It is subdivided into 5 main
categories, viz., bedrock, till, glaciofluvial, raised marine and modern sediments.

BEDROCK

Outcrops of bedrock are found over much of the study area, although large expanses of bedrock-dom-
inated terrain are restricted to the higher parts of the Isthmus and the highlands between Bull Arm and
Northwest Arm, most of the Bellevue Peninsula, and the west side of Conception Bay. Bedrock exposed
at the surface is commonly streamlined. Bedrock outcrop is rare within the Rogen moraine field (see
below) that extends southward across the central Avalon lowland.

TILL

Till,  of  varying  thickness  and  composition,  is  by  far  the  most  aerially  extensive  unit  on  the
Avalon Peninsula. It commonly occurs as a veneer over bedrock, particularly over the Bay de Verde
Peninsula  and  the  central  Isthmus  and  has  numerous  bedrock  outcrops  exposed  within  it.  An
examination  of  tills  indicates  that  they  have  consistent  characteristics  over  a wide area. On the Bay
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Figure 4. Surficial geology (after Catto and Taylor, 1998a-f).



de Verde Peninsula, for instance, tills are commonly poorly consolidated, very poorly sorted to unsorted,
with a silty sand matrix. Clast content varies from 30 to 60 percent by volume, and clast rock types are
derived mainly from the underlying bedrock. Fine-grained rocks are commonly striated. Exotic clasts
were rare to absent. In contrast, tills to the west of the Doe Hills are commonly finer grained, and con-
tain numerous exotic clasts reflective of dispersal from the west. These observations agree with those of
Catto (1998).

Till mostly forms either a veneer or blanket over bedrock and few areas of constructional landforms
were found. The west side of the Isthmus contains crag-and-tail hills, up to 800 m long, 300 m wide and
30 m high. These are oriented northeastward, in agreement with the local striation record, but in contrast
to the reconstruction of Catto (1998). The southern part of the Bay de Verde Peninsula contains part of
the central Avalon Rogen moraine field. The moraines are commonly crescent-shaped, and curved in the
direction of glacial movement, which was northward from the St. Mary's Bay ice-dispersal centre. The
Rogen moraines are up to 30 m high, and are spaced 200 to 400 m apart. They are composed mostly of
till, although some sorted sand and gravel is present. They are commonly found adjacent to small ponds.
These features are formed beneath actively flowing ice, although the actual method of formation has been
the subject of considerable debate. Lundqvist (1969) argues for squeezing of sediment into subglacial
cavities; Boulton (1987) suggests wholesale deformation of subglacial sediment; a melt-out hypothesis
is favoured by Bouchard (1989) and Aylsworth and Shilts (1989); and formation by subglacial meltwa-
ter is proposed by Fisher and Shaw (1992), based on work on the Avalon moraines.

GLACIOFLUVIAL SEDIMENT

Small areas of glaciofluvial sand and gravel are exposed on the Bay de Verde Peninsula, all of which
are currently being exploited for granular aggregate production. Both ice-contact and ice-distal glacioflu-
vial deposits were identified. At Makinsons, extensive pits within the broad South Brook valley expose
ice-contact sediments. The sediments display considerable vertical and lateral variation in both texture
and sedimentary structures. These include high-angle, poorly sorted, coarse gravelly sand beds and hor-
izontal rhythmically bedded silt and fine sand. Faulted beds and slump features were noted on pit walls.
The faults, slumps and high-angle beds are consistent with collapse from melting of ice blocks, and the
fine-grained beds were likely deposited within small ponds on the disintegrating glacier surface.

In the Shearstown Brook valley, which opens into Spaniard's Bay, aggregate operations reveal flat-
lying terraced sand and gravel deposits. The sediment is a moderately sorted, roughly horizontally bed-
ded to crossbedded, coarse sandy gravel. Crossbeds indicate paleo flow to the northeast (down-valley).
Clasts range up to about 15 cm diameter and the sediment lacks the large boulders characteristic of the
Makinsons exposures. These sediments were likely deposited in an ice-distal glaciofluvial environment.

RAISED MARINE SEDIMENT

The paleo sea-level history of the Avalon Peninsula is poorly understood. Grant (1987) suggested that
the 0 m isopleth crosses the Avalon Peninsula and lies roughly between Long Harbour and Chapel Arm,
extending northward along the western shore of the Bay de Verde Peninsula. The area to the west of this
line, therefore, has a Type B paleo sea-level history (Quinlan and Beaumont, 1981), with a period of
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raised sea levels following deglaciation and a subsequent fall to a lowstand position from which sea level
has gradually recovered to the present. To the east, the paleo sea-level history is characterized as being
always below modern levels, with no raised marine features occurring. However, this hypothesis has
been challenged by Catto and Taylor (1998a) who mapped raised marine sediments in the Argentia area
and at the head of St. Mary's Bay.

Within the study area, raised marine deposits were found at several localities on the Isthmus and Bay
de Verde Peninsula. At Southern Harbour, a raised beach having a surface elevation of 13 m asl was
noted. The beach consists of open work gravels containing angular to subangular clasts up to 10 cm diam-
eter, and a mean of 3 cm diameter. At Dildo South, raised beach sediments were found with a surface ele-
vation of 14.5 m asl, and raised marine terraces were noted at Heart's Delight (11 to 12 m asl) and Heart's
Content (9 m asl). The age of these surfaces remains speculative as no marine shells were found within
the Quaternary deposits.

MODERN SEDIMENT

Modern sediments include fluvial sand, gravel and silt (alluvium) found adjacent to modern streams,
colluvium at the base of steep hills, modern marine deposits such as beaches and tidal flats, and aeolian
deposits. Each of these sediment classes is found in small areas across the study area. The most aerially
extensive modern fluvial deposits are found in the Shearstown Brook valley and the South Brook valley,
which opens into Bay de Verde. Rivers in these valleys have partially reworked their thick glaciofluvial
sediments. Other thin veneers of alluvium were identified by Catto and Taylor (1998c, d), including those
along the South River, Island Pond Brook and Mosquito Brook valleys draining into Conception Bay, and
Murphy's Cove Brook and Collier Bay Brook draining into Trinity Bay. Many other small, unnamed
stream valleys also contain thin fluvial deposits over bedrock.

The largest areas of colluvium were identified on the highlands between Bull Arm and Northwest
Arm, and on the eastern side of the Bay de Verde Peninsula between Spaniard's Bay and Carbonear.
Several of these areas contain active slopes, including that at Upper Island Cove, where a rockfall in 1999
damaged a house and car.

Much of the coastline in the study area is steep and bedrock-dominated. Beaches are commonly
restricted to small, gravel-dominated, high-energy, pocket beaches. Barachois beaches were identified at
several localities, including Southern Harbour, Rantem Cove, Spread Eagle Bay, Chapel Arm, Cavendish
Bay, Clarke's Beach, Bay Roberts and Bristol's Hope (Figure 1). All are gravel-dominated, commonly
less than 500 m long, and exhibit a variety of structures, including small- and large-scale cuspate fea-
tures, and beach berms where the backbeach areas commonly exhibit overwash fans. Sand components
commonly exhibit wave ripples. The largest barachois beach and spit complex is Bellevue Beach, which
is over 1 km long. This area has an extensive backbeach system, with well-developed overwash fans and
active sand dunes. An unusual tidal flat complex is found at the head of Come-by-Chance, where large
boulders are littered over a sand-dominated flat. Catto and Thistle (1993) suggest that this is an eroded
glaciofluvial fan from which all but the boulders have been re-worked by the tide.

Several small areas of aeolian sediment were located at Bellevue and Hodge's Cove, mostly as a
veneer over till. Active sand dunes are present in the backbeach area of Salmon Cove (Figure 1). 
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Areas of organic accumulation are common across the entire area, mostly less than 50 cm thick,
although pockets of bog likely extend beyond 3 m in depth.

REGIONAL TILL SAMPLING

A regional till-sampling program was conducted using the surficial geology as a guide. Glaciofluvial,
fluvial, marine, and aeolian sediments were excluded. Most samples were from the C- or BC-soil hori-
zon, taken at about 0.5 m depth in test pits, or 0.5 to 1.0 m depth in quarries or road cuts. In rare instances,
the lack of surface sediment necessitated the sampling of bedrock detritus. Sample spacing was con-
trolled by access as well as surficial geology. In areas with good access, the sample density was about 1
sample per 1 km2, increasing to about 1 sample per 4 km2 in areas where helicopter support was required.
Samples were passed through a 5 mm-mesh sieve and approximately 1 kg of the sample was retained for
analysis.

A total of 1042 samples were collected, including field duplicates, and submitted to the Geological
Survey's geochemical laboratory in St. John's for major- and trace-element analysis. Data quality was
monitored using field and laboratory duplicates (analytical precision only) and standard reference mate-
rials. In all cases, the silt–clay fraction (less than 0.063 mm) was analyzed.

IMPLICATIONS FOR MINERAL EXPLORATION

For the purposes of discussion, the study area is divided into 4 discrete subareas: north of the Doe
Hills; southern Isthmus; southern Bay de Verde Peninsula; and central Bay de Verde Peninsula.

NORTH OF THE DOE HILLS

Paleo ice-flow indicates that during the late Wisconsinan the area north of the Doe Hills was covered
by eastward-flowing ice, likely from the main Newfoundland dispersal centre on Middle Ridge. Till con-
tains clasts derived from the west. Transportation distances are commonly greater than 5 km. Batterson
and Taylor (2001a) documented dispersal of granite clasts on the Bonavista Peninsula by eastward-flow-
ing ice at least 50 km from their source in the Clarenville area.

SOUTHERN ISTHMUS

The southern part of the Isthmus was covered by a small ice cap during the late Wisconsinan centred
on the Tickle Harbour Station–Collier Bay Brook area (Figure 2). Paleo ice-flow radiated from this cen-
tre into Placentia Bay and Trinity Bay. Diamictons are characteristically dominated by locally derived
clasts, and distances of transport are considered to be less then 5 km.

SOUTHERN BAY DE VERDE PENINSULA

Ice from the St. Mary's Bay dispersal centre covered much of the southern part of the Bay de Verde
Peninsula. The influence of topography is noted by the movement of ice into Trinity Bay on the west and
Conception Bay on the east side of the peninsula. Ice flow commonly was parallel to the orientation of
the major bays on both coasts. Northward-flowing St. Mary's Bay ice produced the Rogen moraines that
characterize the central Avalon Peninsula. The mode of formation of these moraines may be unimportant
to prospecting in the area. If formed of diamicton during active subglacial ice flow by a compressive flow
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regime, these features may reflect local derivation. If, however, they were formed by erosion during a
subglacial flood event they are  likely also composed of locally derived material, although partially trans-
ported in a glaciofluvial system. Further work on these features is required to determine their mode of
formation. 

CENTRAL BAY DE VERDE PENINSULA

The central part of the Bay de Verde Peninsula maintained its own ice cap during the late
Wisconsinan. Paleo ice-flow from this centre was radial. Diamictons characteristically contain clasts
from the underlying bedrock and erratics are absent from this area. Dispersal distances are therefore con-
sidered to be less than 5 km.

Areas of glaciofluvial sedimentation are well defined on published surficial maps and should be treat-
ed separately from diamictons in a regional till-geochemistry program. Much of the coastline shows evi-
dence of having been raised up to about 15 m above modern sea level following deglaciation. Marine
sediments, due to the uncertainty in source directions and distances of transport (e.g., possibly iceberg
derived), should be avoided in exploration programs. Colluvium is derived from the overlying slopes and
therefore provides point source geochemical data.

TILL GEOCHEMISTY

SAMPLING AND SAMPLE PREPARATION METHODS 

Sediment sampling was conducted across the entire peninsula, guided by the surficial geology.
Marine and fluvial/glaciofluvial sediment was avoided during the sampling programme. Most samples
were BC- or C-soil horizon samples from tills, although in rare cases the lack of surface sediment neces-
sitated the sampling of bedrock detritus. A total of 1042 samples were collected, including field dupli-
cates (Figure 5a, b and c). This provided a sample density ranging from 1 sample per 1 km2 for road
accessible areas to 1 sample per 4 km2 for helicopter-supported sampling. In the field, samples were
placed in kraft-paper sample bags, and sent to the Geological Survey's Geochemical Laboratory in St.
John's, where they were air-dried in ovens at 40°C and dry-sieved through 63 mm stainless steel sieves.
The <63 mm till fraction was used for geochemical analysis.

GEOCHEMICAL ANALYSIS 

Analytical work was carried out at the Geological Survey's Geochemical Laboratory, with addition-
al analyses from a commercial laboratory. The appended data listings contain all the field and analytical
data from the till survey. To distinguish the different analytical methods/laboratories, the trace element
variables are labeled with a combination of the element name, a numeric code and the unit of measure-
ment. 

A complete list of variables is given in Table 1, and a full listing of field and geochemical data is con-
tained in Appendix A. 
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Table 1. Variable list and description of data

VARIABLE DESCRIPTION

Sample Unique sample ID
NTS NTS sheet (1:50 000)
Easting UTM map coordinate
Northing UTM map coordinate
Al2 pct Aluminium, %, by ICP
As2 ppm Arsenic, ppm, by ICP
Ba2 ppm Barium, ppm, by ICP
Be2 ppm Beryllium, ppm, by ICP
Ca2 pct Calcium, %, by ICP
Cd2 ppm Cadmium, ppm, by ICP
Ce2 ppm Cerium, ppm, by ICP
Co2 ppm Cobalt, ppm, by ICP
Cr2 ppm Chromium, ppm, by ICP
Cu2 ppm Copper, ppm, by ICP
Dy2 ppm Dysprosium, ppm, by ICP
Fe2 pct Iron, %, by ICP
K2 pct Potassium, %, by ICP
La2 ppm Lanthanum, ppm, by ICP
Li2 ppm Lithium, ppm, by ICP
Mg2 pct Magnesium, %, by ICP
Mo2 ppm Molybdenum, ppm, by ICP
Mn2 ppm Manganese, ppm, by ICP
Na2 pct Sodium, %, by ICP
Nb2 ppm Niobium, ppm, by ICP
Ni2 ppm Nickel, ppm, by ICP
P2 ppm Phosphorus, ppm, by ICP
Pb2 ppm Lead, ppm, by ICP
Sc2 ppm Scandium, ppm, by ICP
Sr2 ppm Strontium, ppm, by ICP
Ti2 ppm Titanium, ppm, by ICP
V2 ppm Vanadium, ppm, by ICP
Y2 ppm Yttrium, ppm, by ICP
Zn2 ppm Zinc, ppm, by ICP
Zr2 ppm Zirconium, ppm, by ICP
As1 ppm Arsenic, ppm, by INAA
Au1 ppb Gold, ppb, by INAA
Ag1 ppm Silver, ppm, by INAA
Ba1 ppm Barium, ppm, by INAA
Br1 ppm Bromine, ppm, by INAA
Ca1 pct Calcium, %, by INAA
Ce1 ppm Cerium, ppm, by INAA
Co1 ppm Cobalt, ppm, by INAA
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Table 1. Continued

VARIABLE DESCRIPTION

Cr1 ppm Chromium, ppm, by INAA
Cs1 ppm Cesium, ppm, by INAA
Eu1 ppm Europium, ppm, by INAA
Fe1 pct Iron, %, by INAA
Hf1 ppm Hafnium, ppm, by INAA
Hg1 ppm Mercury, ppm, by INAA
Ir1 ppm Iridium, ppm, by INAA
La1 ppm Lanthanum, ppm, by INAA
Lu1 ppm Lutetium, ppm, by INAA
Mo1 ppm Molybdenum, ppm, by INAA
Na1 pct Sodium, %, by INAA
Nd1 ppm Neodymium, ppm, by INAA
Ni1 ppm Nickel, ppm, by INAA
Rb1 ppm Rubidium, ppm, by INAA
Sb1 ppm Antimony, ppm, by INAA
Sc1 ppm Scandium, ppm, by INAA
Se1 ppm Selenium, ppm, by INAA
Sm1 ppm Samarium, ppm, by INAA
Sn1 ppm Tin, ppm, by INAA
Sr1 ppm Strontium, ppm, by INAA
Ta1 ppm Tantalum, ppm, by INAA
Tb1 ppm Terbium, ppm, by INAA
Th1 ppm Thorium, ppm, by INAA
U1 ppm Uranium, ppm, by INAA
W1 ppm Tungsten, ppm, by INAA
Yb1 ppm Ytterbium, ppm, by INAA
Zn1 ppm Zinc, ppm, by INAA
Zr1 ppm Zirconium, ppm, by INAA
Ag6 ppm Silver by AAS
Rb6 ppm Rubidium by AAS
LOI pct Loss-on-ignition, %, gravimetric
Site Sample site number
Zone UTM zone 
Horizon Soil horizon sampled
Depth Sample depth (cm)



ANALYTICAL METHODS

Atomic Absorption Spectrophotometry (AAS)

Silver (Ag6) was determined on 0.5g aliquots of sample following digestion in 2 ml of concentrated
HNO3 overnight at room temperature, and then in a water bath at 90°C for 2 h (Wagenbauer et al., 1983).
For till the results maybe somewhat less than total (Table 2). At the time of publication, silver data were
unavailable and will be released at a later date.

Gravimetric Analysis (LOI)

Organic carbon content was estimated from the weight loss on ignition (LOI) during a controlled
combustion in which 1g aliquots of sample were gradually heated to 500°C in air over a 3 h period.
Accuracy can be judged from the results for reference materials (Table 2).

Inductively Coupled Plasma Emission Spectrometry (ICP)

For these analyses, the residue of the 1g aliquot of sample remaining from the LOI determination at
500°C was digested in a mixture of 15mL of concentrated HF, 5mL of concentrated HCl  and 5 mL of 50
volume percent HClO4 in a 100 mL teflon beaker, which was allowed to stand overnight before being
heated to dryness on a hot-plate. The residue was taken up in 10 volume percent HCl by gentle heating
on the hot plate, allowed to cool and made up to 50 mL with 10 volume percent HCl (Wagenbauer et al.,
1983). For most elements dissolution is total; exceptions are Cr from chromite, Ba from barite and Zr
from zircon as these minerals are not usually completely dissolved. Accuracy can be judged from the
results for reference materials (Table 2)

The following elements were determined: Aluminium, barium, beryllium, calcium, cerium, cobalt,
chromium, copper, dysprosium, iron, gallium, potassium, lanthanum, lithium, magnesium, manganese,
molybdenum, sodium, niobium, nickel, phosphorus, lead, scandium, strontium, titanium, vanadium,
yttrium, zinc and zirconium (Al2, Ba2, Be2, Ca2, Ce2, Co2, Cr2, Cu2, Dy2, Fe2, Ga2, K2, La2, Li2,
Mg2, Mn2, Mo2, Na2, Nb2, Ni2, P2, Pb2, Sc2, Sr2, Ti2, V2, Y2, Zn2 and Zr2, respectively).

Instrumental Neutron Activation Analysis (INAA)

These analyses were carried out at Activation Laboratories Ltd., Ancaster, Ontario. On average 24g
of sample was used for analysis, and the samples (with duplicates and control reference materials includ-
ed incognito) were weighed and encapsulated in the Geochemical Laboratory of the Department of Mines
and Energy in St. John's (see Table 3). Total contents of the following elements were determined quanti-
tatively: silver, arsenic, gold, barium, bromine, calcium, cerium, cobalt, chromium, cesium, europium,
iron, hafnium, mercury, iridium, lanthanum, lutetium, molybdenum, sodium, neodymium, nickel, rubid-
ium, antimony, scandium, selinium, samarium, tin, strontium, tantalum, terbium, thorium, uranium, tung-
sten, ytterbium, zinc and zirconium. (Ag1, As1, Au1, Ba1, Br1, Ca1, Ce1, Co1, Cr1, Cs1, Eu1, Fe1, Hf1,
Hg1, Ir1, La1, Lu1, Mo1, Na1, Nd1, Ni1, Rb1, Sb1, Sc1, Se1, Sm1, Sn1, Sr1, Ta1, Tb1, Th1, U1, W1
Yb1, Zn1, and Zr1 respectively).
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Table 2. Accuracy of till geochemical data by ICP. Results of analyses of CANMET Reference samples
TILL-1 to -4. Observed values (Obs.) are compared against recommended values (Rec). Recommended
values are from Lynch (1996). In all cases number of observations = 16

TILL-1 TILL-2 TILL-3 TILL-4
Obs. Rec. Obs Rec. Obs Rec. Obs Rec.

Al2 % 6.4 7.3 7.5 8.5 5.9 6.5 6.8 7.6
As2 ppm 18 28 88 111
Ba2 ppm 705 702 538 540 494 489 397 396
Be2 ppm 1.4 2.4 3.2 4.0 1.2 2.0 3 3.7
Ca2 % 1.77 1.94 0.87 0.91 1.76 1.88 0.86 0.89
Cd2 ppm 0.2 ? 0.23 ? 0.01 ? 0.01 ?
Ce2 ppm 60 71 83 98 36 42 69 78
Co2 ppm 19 18 16 15 16 15 8 8
Cr2 ppm 54 65 59 74 97 123 38 53
Cu2 ppm 43 47 164 150 20 22 274 237
Dy2 ppm 4.3 ? 3.7 ? 2 ? 3.2 ?
Fe2 % 4.78 4.81 3.81 3.84 2.73 2.78 4.01 3.97
K2 % 1.65 1.84 2.24 2.55 1.8 2.01 2.34 2.70
La2 ppm 28 28 46 44 21 21 43 41
Li2 ppm 16 15 47 47 22 21 30 30
Mg2 % 1.19 1.30 1.02 1.1 0.96 1.03 0.7 0.76
Mn2 ppm 1530 1420 829 780 536 520 528 490
Mo2 ppm 0.56 2 14 14 1.14 16.9 15
Na2 % 2.05 2.01 1.69 1.62 1.94 1.96 1.84 1.82
Nb2 ppm 11 10 18 20 7 7 15 15
Ni2 ppm 24 24 32 32 39 39 18 17
P2 ppm 890 930 694 750 477 490 852 880
Pb2 ppm 22 22 31 31 26 26 50 50
Sc2 ppm 14 13 12 12 10 10 11 10
Sr2 ppm 296 291 150 144 309 300 119 109
Ti2 ppm 5608 5990 5235 5300 2956 2910 4916 4840
V2 ppm 100 99 78 77 61 62 67 67
Y2 ppm 27 38 19 40 13 17 17 33
Zn2 ppm 94 98 124 130 56 56 71 70
Zr2 ppm 102 502 99 390 82 390 89 385
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Table 3. Accuracy of till geochemical data by INAA and gravimetry. Results of analyses of CANMET
Reference samples TILL-1 to -4. Observed values (Obs.) are compared against recommended values
(Rec). Recommended values are from Lynch (1996). In all cases number of observations = 16

TILL-1 TILL-2 TILL-3 TILL-4
Obs. Rec. Obs Rec. Obs Rec. Obs Rec.

As1 ppm 19 18 28 26 95 87 119 111
Au1 ppb 11 13 2 2 3 6 2 5
Ba1 ppm 661 702 657 540 475 489 449 395
Br1 ppm 6.4 6.4 12.2 12.2 4.7 4.5 8.4 8.6
Ca1 % 1.7 0 2.1 0
Ce1 ppm 74 71 107 98 43 42 93 78
Co1 ppm 18 18 15 15 14 15 8 8
Cr1 ppm 64 65 77 74 123 123 50 53
Cs1 ppm 0 1.0 10 12.0 1.9 1.7 10.3 12.0
Eu1 ppm 1.8 1.3 1.6 1.0 1 0.5 1.4 0.5
Fe1 % 4.9 4.8 4.1 3.8 2.9 2.8 4.2 4.0
Hf1 ppm 14.1 13.0 11.4 11.0 6.8 8.0 11.7 10.0
La1 ppm 31 28 53 44 21 21 49 41
Lu1 ppm 0.6 0.6 0.6 0.6 0.3 <0.5 0.6 0.5
Mo1 ppm <5 <5 16 14 <5 <5 16 16
Na1 % 2.16 2.01 1.82 1.62 2.07 1.96 1.98 1.82
Nd1 ppm 27 26 42 36 17 16 37 30
Rb1 ppm 44 44 136 143 47 55 143 161
Sb1 ppm 7.5 7.8 1.1 0.8 1 0.9 1.4 1.0
Sc1 ppm 14 13 13 12 10 10 11 10
Sm1 ppm 6.2 5.9 8 7.4 3.5 3.3 7 6.1
Ta1 ppm 0 0.7 1.4 1.9 <0.5 <0.5 0.3 1.6
Tb1 ppm 0.9 1.1 1.2 1.2 <0.5 <0.5 0.1 1.1
Th1 ppm 5.8 5.6 18.3 18.4 4.8 4.6 17.5 17.4
U1 ppm 2 2.2 5 5.7 1.9 2.1 4.6 5.0
W1 ppm <1 <4 3.8 <2 <1 <4 175 204
Yb1 ppm 4.1 3.9 4.2 3.7 1.7 1.5 3.8 3.4
Zn1 ppm 53 114 24 99
Zr1 % 0.03 0.02 0.01 0.01

LOI % 6.5 6.3 7.1 6.8 3.9 3.6 4.8 4.4



QUALITY CONTROL

Data quality was monitored using laboratory duplicates (analytical precision only), estimates of
which are given in Table 4. Accuracy estimates are provided by the results from standard reference mate-
rials analysed with them (Tables 2 and 3). These data show that for almost all elements, with Zr2 as an
exception, all data is of high quality.

It should be emphasized that for mineral exploration, the relative variation of an element is of pri-
mary concern. Of the 44 elements determined, 15 were determined by both ICP and INAA (As, Ba, Ca,
Ce, Co, Cr, Fe, La, Mo, Na, Ni, Sc, Sr, Zn, Zr), and two by INAA and AAS (Ag, Rb). To reduce the size
of the data for presentation and statistical analysis, for these 17, the data from the method with the best
quality determined from comparison with laboratory and field duplicates have been used (Ag6, As1, Ba2,
Ca2, Ce2, Co2, Cr2, Fe2, La2, Mo2, Na2, Ni2, Rb6, Sc2, Sr2, Zn2, Zr2), although all are presented in
the data listing (Appendix A). A summary of duplicate and control data is included in this report, and
detailed data are available on request.

STATISTICAL ANALYSIS – FREQUENCY DISTRIBUTIONS

The frequency distributions of the geochemical data were examined using the Jenks optimization
method, also known as the goodness of variance fit (Jenks, 1967) found within the ArcMap GIS appli-
cation. The method identifies natural breaks in the data set, and has replaced the selection of breaks using
cumulative frequency plots (cf., Batterson and Taylor, 2001). Comparison of the two method produced
similar subdivisions of the data. Breaks in slope of the curves were used to subdivide the element values
into 4-6 natural population groups. These groups are represented by symbols that increase in size with
increasing element levels in Figure 6 to Figure 16. Statistics (maximum, minimum, median, mean, stan-
dard deviation) were generated from the Excel computer application, and are presented in Table 4.

INTERPRETATION OF GEOCHEMICAL DATA

Dot plot maps of selected elements (As, Au, Ba, Cr, Cu, Mn, Ni, Pb, Sb, V, Yb and Zn) are present-
ed in Figures 6 to 16 respectively. Other element plots are not presented in this open file, but are avail-
able on request. A list is included in Appendix F. Individuals and companies are encouraged to undertake
their own interpretation of the presented data, the following being a preliminary guide.

COPPER

Exploration for copper in eastern Newfoundland has been a focus of activity in the mineral industry
for the past several years. The Cornerstone Resources Red Cliff and Princess Group properties on the
Bonavista Peninsula have shown promising indications of extensive copper mineralisation (Cornerstone
Resources, 2000). Exploration was enhanced by the 2001 till geochemistry release (Batterson and Taylor,
2001) which generated approximately $62 000 worth of staking activity, focusing mostly on copper
exploration.

Copper  in  till  (Figure  10)  data  failed  to  highlight  the  Crown  Hill  Formation south of Southwest
Arm,  although  this  formation  hosts  significant  copper  mineralisation  on  the  Bonavista  Peninsula.
This  is  similar  to  the  findings  of  the  2001  till  geochemistry  survey. In that case it was argued that
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Table 4. Units, detection limits, ranges, medians and standard deviations of geochemical data. Values
below detection are coded as half of the detection limit value

Detection
limit Minimum Maximum Median Mean St. Dev.

Ag1 ppm 5 <5 7 <5 <5 0.2
Ag6 ppm 0.1
Al2 % 0.01 3.4 9.9 6.3 6.4 0.7
As1 ppm 0.5 0.7 110 7.3 8.8 6.8
As2 ppm 1 1 119 8 9.4 7.2
Au1 ppb 1 <1 32 <1 2.3 2.9
Ba1 ppm 50 <50 19000 400 465 764
Ba2 ppm 50 76 2923 408 448 196
Be2 ppm 0.2 0.7 4.5 1.4 1.5 0.4
Br1 ppm 0.5 0.5 280 16 28.2 34.8
Ca1 % 1 <1 4 <1 <1 0.5
Ca2 % 0.01 0.1 4.4 0.7 0.8 0.5
Cd2 ppm 0.1 <0.1 1.9 0.05 0.1 0.09
Ce1 ppm 3 7 350 60 66 33.7
Ce2 ppm 2 3 287 56 60 29
Co1 ppm 1 <1 70 10 11.4 7
Co2 ppm 2 <1 88 12 13.5 8.6
Cr1 ppm 5 <5 160 33 34.7 14
Cr2 ppm 2 2 153 29 30.5 11.4
Cs1 ppm 1 <1 26 2 2.9 1.8
Cu2 ppm 2 <2 262 19 23.3 18.3
Dy2 ppm 0.2 0.8 18.9 4.2 4.3 1.5
Eu1 ppm 0.5 <0.5 5.3 1.4 1.4 0.4
Fe1 % 0.1 0.4 12.8 3 3.1 1
Fe2 % 0.01 0.3 11.9 3 3.2 1
Hf1 ppm 1 2 24 8 7.7 1.9
Hg1 ppm 1 <1 2 <1 <1 0.1
Ir1 ppb 5 <5 5 <5 <5 0.2
K2 % 0.01 0.2 4.1 1.4 1.4 0.3
La1 ppm 1 2.9 90 22 23 8.5
La2 ppm 1 2 85 23 23 8.3
Li2 ppm 0.2 1.1 87.8 22.9 25.6 11.4
LOI % 0.01 0.6 45.6 3.5 5.3 5.1
Lu1 ppm 0.05 0.3 2.6 0.5 0.5 0.1
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Detection
limit Minimum Maximum Median Mean St. Dev.

Mg2 % 0.01 0.1 2.7 0.5 0.6 0.2
Mn2 ppm 2 54 4765 780 870 488
Mo1 ppm 1 <1 12 <1 1.4 1.7
Mo2 ppm 1 <1 9 <1 1.1 0.9
Na1 % 0.1 0.5 4.1 2.2 2.1 0.4
Na2 % 0.01 0.5 3.5 2.2 2.1 0.4
Nb2 ppm 2 4 45 13 13.7 3
Nd1 ppm 5 <5 91 19 20 9
Ni1 ppm 2 10 240 10 13 20
Ni2 ppm 2 <2 99 14 14.7 6.3
P2 ppm 5 38 1815 518.5 536 224
Pb2 ppm 2 <2 399 17.5 23.3 23.5
Rb1 ppm 5 <5 220 50 51 20
Rb6 ppm 10 7 269 48 49 16
Sb1 ppm 0.1 <0.1 3.3 0.6 0.6 0.3
Sc1 ppm 0.1 2.1 47 11 11.8 3.2
Sc2 ppm 1 1.6 53 12.2 12.6 3.1
Se1 ppm 1 <1 6 <1 <1 0.4
Sm1 ppm 0.1 0.7 20 4.9 5 1.8
Sn1 % 1 <1 <1 <1 <1 0
Sr1 % 0.05 <0.05 0.09 <0.05 <0.05 0.01
Sr2 ppm 2 23 644 173 179 68
Ta1 ppm 0.2 <0.2 2.9 <0.2 0.5 0.6
Tb1 ppm 0.5 <0.5 3.4 0.7 0.7 0.4
Th1 ppm 0.2 0.8 24 7 7.1 1.7
Ti2 ppm 5 823 14120 5604 5806 1208
U1 ppm 0.5 <0.5 9.2 1.8 1.9 0.8
V2 ppm 5 8 551 68 74 32.8
Y2 ppm 2 8 87 25 25.2 6.7
W1 ppm 1 <1 4 <1 <1 0.4
Yb1 ppm 0.2 2 17.5 3.2 3.3 0.8
Zn1 ppm 5 25 499 25 60 47
Zn2 ppm 2 10 550 57 65.6 37.6
Zr1 % 0.01 <0.01 0.07 <0.01 <0.01 0.01
Zr2 ppm 2 44 235 99 101 18.4



surface rocks are barren red sandstone, with the mineralisation being found in reduced layers only visi-
ble in coastal cliffs. The same can be suggested for the Isthmus area.

Data from the Isthmus area shows slightly elevated copper values (median=19 ppm; mean = 23 ppm)
compared with the Bonavista Peninsula (median=14 ppm; mean=18 ppm), although the Bonavista
Peninsula dataset had the highest value (307 ppm compared with 262 ppm in the Isthmus dataset).
Several clusters of high values were noted in the Isthmus area dataset. The contact between the Bull Arm
Formation and the Connecting Point Group shows a cluster of samples with values between 60 and 183
ppm. Ice flow in this area is southwestward. Till samples overlying parts of the Connecting Point Group
on the Bonavista Peninsula showed copper anomalies (Batterson and Taylor, 2001). Areas of enriched
copper values are found overlying Bull Arm Formation rocks west and southwest of Southwest Arm, with
a cluster of values between 59 and 106 ppm. Similar results from the Bull Arm Formation were revealed
from the Bonavista survey (Batterson and Taylor, 2001). An area of enriched copper in till is found over
the St. John's Group on the east side of the Bay de Verde Peninsula. Most samples show copper values
of over 32 ppm, with highs of 65 to 77 ppm. Several copper showings are located on the Heart's Content
barrens, but none have been located elsewhere in the St. John's Group. The highest copper value was 262
ppm, found in till overlying rocks of the Bull Arm Formation north of the Doe Hills. Field and laborato-
ry duplicates showed a high degree of correlation, and the data is thus considered accurate and precise.

LEAD

The distribution of lead within till (Figure 13) is similar to that expressed for copper. High values are
found along the contact between Bull Arm Formation and Connecting Point Group rocks near Placentia
Bay where values up to 399 ppm are found; and in till overlying rocks of the St. John's Group (Fermeuse
Formation), where values up to 274 ppm are recorded. These are considerably higher than values found
during the Bonavista survey (maximum 172 ppm). Lead was mined at the turn of the century from
Connecting Point rocks at La Manche, and a lead showing is found in the Renews Formation on the
Heart's Content barrens. No lead showings have been reported from the Fermeuse Formation. All of these
areas should be considered prospective environments. Field and laboratory duplicates showed a high
degree of correlation, and the data is thus considered accurate and precise.

Similar distributions are also found for cobalt (Figure 24), nickel (Figure 12) and zinc (Figure 17) in
till. This suggests base metal exploration is warranted in this area.

GOLD

The gold in till (Figure 7) data is difficult to interpret, and shows a spotty distribution. The sample
size is likely a factor. Caution must be exercised when interpreting anomalies, due to the ‘nugget effect'.
The highest value recorded within the study area is 32 ppb, found in till overlying the Powder Horn intru-
sive suite adjacent to the Lodestar gold showing. A cluster of samples, showing results up to 27 ppb, are
found in tills overlying the Big Head and Heart's Content formations of the Musgravetown Group, along
the northern edge of sampling. Till sampling in 2003 will extend to the northern part of the Bay de Verde
Peninsula, and should delineate the extent of this area of potential mineralisation. Field and laboratory
duplicates showed a low degree of correlation.
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ARSENIC

Arsenic (Figure 6) is considered a pathfinder for gold. Although arsenic values generally bear little
areal relationship to the distribution of gold anomalies in the Isthmus area, the highest values for gold
and arsenic are found in till from adjacent to the Lodestar gold showing (As=110 ppm and Au=32 ppb).
Relatively high arsenic values are found in the eastern part of the study area, in areas underlain by the St.
John's Group. Field and laboratory duplicates showed a high degree of correlation, and the data is thus
considered accurate and precise.

Arsenic is also a factor in human health. The Canadian soil quality guidelines indicate values below
12 ppm are acceptable. About 20% of data points are above this value within the study area.  In particu-
lar the western side of Conception Bay is enriched in arsenic. Coincidentally, this area has the greatest
concentration of communities within the study area. The proximity of sites with high arsenic values to
local or regional water supplies should be examined with a view to further testing of water quality in the
region.

YTTERBIUM

Ytterbium (Figure 16) has a high values of 17.5 ppm, found adjacent to the Swift Current granite
south of Clarenville. The data also shows some distinct clustering in tills overlying the St. John's Group,
and in the area around Heart's Content. Similar distributions are found for other light rare earths, includ-
ing cerium (Figure 23), dysprosium (Figure 26), europium (Figure 27) and lutetium (Figure 36). Field
and laboratory duplicates showed a high degree of correlation, and the data is thus considered accurate
and precise.

BARIUM

Values of barium (Figure 8) show a strong relationship with bedrock. The highest value is 2923 ppm
found in tills overlying felsic flows of the Bull Arm Formation. High values for barium are clustered
within the southern part of the Bull Arm Formation on the Isthmus. The area contains numerous barium
showings, as well as a barite mine at Colliers Point. Several of the geochemical highs are adjacent to
known showings, although many are not. Till samples from near the barite mine were not anomalous,
likely due to a lack of surface exposure of the barite. Field and laboratory duplicates showed a high
degree of correlation, and the data is thus considered accurate and precise.

CHROMIUM

The highest value for chromium (Figure 9) was 153 ppm, and show a cluster of values between 73
and 153 ppm. All are from tills underlain by Lower Cambrian Harcourt and Adeytown group sediments.
High nickel values are also recorded from this area. Field and laboratory duplicates showed a high degree
of correlation, and the data is thus considered accurate and precise.

OTHER ELEMENTS

Antimony (Figure 14) values are low across the area, with a maximum value of only 3.3 ppm.
Vanadium (Figure 15) has a maximum value of 551 ppm, and shows clusters in the Musgravetown
Group and the Bull Arm Formation. Calcium (Figure 21) shows distinct regional differences being rel-
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atively enriched in the west, particularly in tills overlying the Bull Arm Formation, compared to the val-
ues within tills overlying the older Conception and St. John's group rocks to the east. Strontium (Figure
48) shows a distinct cluster of samples up to 644 ppm in tills overlying the southern part of the Bull Arm
Formation.

SUMMARY

The till geochemistry highlights distinct differences in bedrock across the study area. The St. John's
Group is considered a prospective area for base metals, with enrichment of copper, lead, zinc and nickel
identified from the survey results. These data will be supplemented by sampling in 2003 which will
include coverage of the northern part of the Bay be Verde Peninsula. The relationship to manganese
(Figure 11) will require examination to determine the effects of post-depositional scavenging.

Barium showed several high values not associated with known mineral occurrences. Gold results
were generally low, although a small cluster of relatively higher values near Heart's Content may warrant
further examination.

Regional and local ice flow had an influence on dispersal patterns. In the north, regional ice flow was
eastward; dispersal from which was well illustrated by Batterson and Taylor (2001). Ice flow on the
Isthmus and Bay de Verde Peninsula was generally from small, local ice centres. The pattern of striations
suggested short distances of transport were likely. The till geochemistry data supports this contention.
Data commonly shows a strong affinity to underlying bedrock chemistry with little down-ice transport
away from the source, e.g., strontium, chromium, calcium.

Work planned for summer 2003 should more clearly define geochemical patterns in the area between
Placentia and Whitbourne (NTS map sheets 1N/5 and 1N/6), and in the northern half of the Bay de Verde
Peninsula. Data release from this survey is expected in June 2004.
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Sodium
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Appendix F:

List of Figures not included in text, but available on request.

Figure 18. Distribution of Aluminum(Al2) in till
Figure 19. Distribution of Beryllium (Be2) in till
Figure 20. Distribution of Bromine (Br1) in till
Figure 21. Distribution of Calcium (Ca2) in till
Figure 22. Distribution of Cadmium (Cd2) in till
Figure 23. Distribution of Cerium (Ce2) in till
Figure 24. Distribution of Cobalt (Co2) in till
Figure 25. Distribution of Cesium (Cs1) in till
Figure 26. Distribution of Dysprosium (Dy2) in till
Figure 27. Distribution of Europium (Eu1) in till
Figure 28. Distribution of Iron (Fe2) in till
Figure 29. Distribution of Hafnium (Hf1) in till
Figure 30. Distribution of Mercury (Hg1) in till
Figure 31. Distribution of Iridium (Ir1) in till
Figure 32. Distribution of Potassium (K2) in till
Figure 33. Distribution of Lanthanum (La2) in till
Figure 34. Distribution of Lithium (Li2) in till
Figure 35. Distribution of Loss-on-Ignition (LOI) in till
Figure 36. Distribution of Lutetium (Lu1) in till
Figure 37. Distribution of Magnesium (Mg2) in till
Figure 38. Distribution of Molybdenum (Mo2) in till
Figure 39. Distribution of Sodium (Na2) in till
Figure 40. Distribution of Niobium (Ni2) in till
Figure 41. Distribution of Neodymium (Nd1) in till
Figure 42. Distribution of Phosphorous (P2) in till
Figure 43. Distribution of Rubidium (Rb6) in till
Figure 44. Distribution of Scandium (Sc2) in till
Figure 45. Distribution of Selenium (Se1) in till
Figure 46. Distribution of Samarium (Sm1) in till
Figure 47. Distribution of Tin (Sn1) in till
Figure 48. Distribution of Strontium (Sr2) in till
Figure 49. Distribution of Tantalum (Ta1) in till
Figure 50. Distribution of Terbium (Te1) in till
Figure 51. Distribution of Thorium (Th1) in till
Figure 52. Distribution of Titanium (Ti2) in till
Figure 53. Distribution of Uranium (U1) in till
Figure 54. Distribution of Tungsten (W2) in till
Figure 55. Distribution of Yttrium (Y2) in till
Figure 56. Distribution of Zirconium (Zr2) in till
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