

Mines

TILL GEOCHEMISTRY OF FOGO AND THE CHANGE ISLANDS (NTS MAP AREA 2E/09)

D. Brushett

Open File 002E/09/1736

St. John's, Newfoundland May, 2014

NOTE

Open File reports and maps issued by the Geological Survey Division of the Newfoundland and Labrador Department of Natural Resources are made available for public use. They have not been formally edited or peer reviewed, and are based upon preliminary data and evaluation.

The purchaser agrees not to provide a digital reproduction or copy of this product to a third party. Derivative products should acknowledge the source of the data.

DISCLAIMER

The Geological Survey, a division of the Department of Natural Resources (the "authors and publishers"), retains the sole right to the original data and information found in any product produced. The authors and publishers assume no legal liability or responsibility for any alterations, changes or misrepresentations made by third parties with respect to these products or the original data. Furthermore, the Geological Survey assumes no liability with respect to digital reproductions or copies of original products or for derivative products made by third parties. Please consult with the Geological Survey in order to ensure originality and correctness of data and/or products.

Recommended citation:

Brushett, D.

2014: Till geochemistry of Fogo and the Change Islands (NTS map area 2E/09). Government of Newfoundland and Labrador, Department of Natural Resources, Geological Survey, Open File 002E/09/1736, 90 pages.

Cover: Coastline near Joe Batt's Arm, Fogo Island.

Mines

TILL GEOCHEMISTRY OF FOGO AND THE CHANGE ISLANDS (NTS MAP AREA 2E/09)

D. Brushett

Open File 002E/09/1736

St. John's, Newfoundland May, 2014

CONTENTS

	Page
ABSTRACT	iii
INTRODUCTION	1
REGIONAL SETTING.	1
SURFICIAL GEOLOGY	2
QUATERNARY HISTORY	2
ICE-FLOW PATTERNS	5
Regional Northeast Newfoundland Ice-flow Patterns	5
Fogo and Change Islands Ice-flor Patterns.	5
REGIONAL SURFICIAL SEDIMENT SAMPLING	7
SAMPLING AND SAMPLE PREPARATION METHODS.	7
GEOCHEMICAL ANALYSIS.	7
DISPLAY OF GEOCHEMICAL DATA	7
ACKNOWLEDGMENTS	10
REFERENCES	19
APPENDIX A	23
APPENDIX B.	24
APPENDIX C	34

Page

TABLES

Table 1.	Variable list and description of data	8
Table 2.	Units, detection limits, ranges, medians and standard deviations of geochemical data. Values	
	below detection are coded as half of the detection limit value	9

FIGURES

Figure 1.	Map of study area showing place names referred to in the text. the red box in the inset map	
-	shows the location of the study area	1
Figure 2.	Bedrock geology of the study area (Colman-Sadd and Crisby-Whittle, 2005 and Williams et	
	al., 1988); also shown are locations of till samples (black dots)	3
Figure 3.	Surficial geology of study area (modified from Kirby et al., 2011)	4
Figure 4.	Ice-flow patterns overlain on SRTM image for (a) and (b). Three ice-flow phases affected	
	northeast Newfoundland. The first (Flow phase 1) was a regionally extensive eastward flow	
	likely sourced from Red Indian Lake. The second (Flow phase 2) was north-northeastward	
	from an ice divide between Middle Ridge and Meelpaeg Lake, and the third (Flow phase 3)	
	was a north-northwestward flow likely sourced from the Middle Ridge area	6
Figure 5.	Distribution of arsenic (As2) in till	11
Figure 6.	Distribution of gold (Au1) in till	12
Figure 7.	Distribution of beryllium (Be2) in till	13
Figure 8.	Distribution of chromium (Cr2) in till	14
Figure 9.	Distribution of copper (Cu2) in till	15
Figure 10.	Distribution of lead (Pb2) in till	16
Figure 11.	Distribution of yttrium (Y2) in till	17
Figure 12.	Distribution of zinc (Zn2) in till	18

ABSTRACT

This report provides the geochemical data for the Fogo map area (NTS map area 2E/09) and supplements a multiyear till-geochemistry and surficial mapping program conducted in northeastern Newfoundland (Brushett, 2012), commenced in 2009. Geochemical data for 58 elements, from 55 BC- or C-horizon till samples, are presented and include the results of analyses by ICP-OES for aluminum, arsenic, barium, beryllium, cadmium, calcium, cerium, chromium, cobalt, copper, dysprosium, iron, lanthanum, lead, lithium, magnesium, manganese, molybdenum, nickel, niobium, phosphorus, potassium, scandium, sodium, strontium, titanium, vanadium, yttrium, zinc and zirconium; by INAA for antimony, arsenic, barium, bromine, calcium, cerium, cesium, chromium, cobalt, europium, gold, iron, hafnium, iridium, lanthanum, lutetium, mercury, molybdenum, nickel, neodymium, rubidium, scandium, samarium, selenium, silver, sodium, strontium, tantalum, tin, terbium, thorium, tungsten, uranium, ytterbium, zinc and zirconium. A complete data listing, field duplicate data, and individual element distribution maps, on a bedrock geology base map, are also provided.

INTRODUCTION

This report provides the geochemical data for the Fogo map area (NTS 2E/09) and supplements a multiyear till-geochemistry and surficial-mapping program conducted in northeastern Newfoundland (Brushett, 2012), commenced in 2009. The present field program also included the determination of the paleo ice-flow history to aid in the interpretation of geochemical anomalies and the understanding of the regional ice-flow history. Fieldwork consisted of truck traverses along all primary and secondary roads on Fogo and the Change Islands (Figure 1).

REGIONAL SETTING

Fogo and the Change Islands lie within the Exploits Subzone of the Dunnage Zone of the northern Appalachians, defined by the remnants of volcanic arcs and back-arc basins formed on the peri-Gondwanan side of the early Paleozoic Iapetus Ocean (Williams *et al.*, 1988). With the exception of one small area of siliciclastic rocks of the Ordovician Badger Group, the sedimentary and volcanic rocks are Silurian Botwood Group. Silurian to Devonian plutonic rocks (of the Fogo Island granitic batholith) underlie most of Fogo Island but a significant portion of the south-

Figure 1. *Map of study area showing place names referred to in the text. The red box in the inset map shows the location of the study area.*

ern and eastern parts of the island consists of dioritic and gabbroic rocks. No plutonic rocks are present on the Change Islands; however, there are numerous dykes in the sedimentary rocks (too small to be represented on a 1:50 000 scale map; Figure 2). For a more detailed description of the bedrock geology the reader is referred to Baird (1958), Sandeman and Malpas (1995), Currie (1997) and Kerr (2011, 2013).

To date, three mineral occurrences have been recorded within the study area, and documented in the provincial Mineral Occurrences System Database (MODS; Newfoundland and Labrador Geological Survey, 2013); these include two gold showings (Change Islands and Western Indian Island) and one copper indication (Change Islands; Figure 2).

SURFICIAL GEOLOGY

Bedrock outcrop is found over much of the study area (Figure 3). Diamicton is generally very thin (less than 70 cm) and discontinuous. The diamicton has a matrix of predominantly light brownish-grey silty sand, and is poorly sorted and slightly to moderately compacted. Clast content varies from 30 to 70 percent and averages 50 percent. Clasts are of granule to boulder size (up to 3 m diameter) and are generally angular to sub-rounded. Some clasts are striated and faceted, and have thin silt coatings on their upper surfaces.

Field observations of the surficial geology were supplemented by surficial mapping (Kirby *et al.*, 2011). Till types identified include: till veneers, hummocky till, eroded till, and streamlined till. Till veneers are most common on the western part of Fogo Island, particularly in the upland regions, and along the coast. Streamlined till was identified in one area northwest of Little Seldom. Areas of hummocky terrain and eroded till were mapped in the southwestern part of Fogo Island; these areas likely reflect ice stagnation during deglaciation. Areas of eroded till are commonly associated with many minor meltwater channels. Fluvial or glaciofluvial deposits include one small deposit emptying into Cape Cove. Organic deposits are also common, particularly in the central part of Fogo Island where they directly overly bedrock. Sandy and gravelly marine deposits are present in Little Seldom and the beaches in Sandy Cove and Oliver's Cove.

QUATERNARY HISTORY

OVERVIEW

Previous work on the glaciation of Newfoundland suggested that during the last glacial maximum (LGM; ~21 ka BP), Newfoundland was covered with multiple local ice caps, producing almost complete glacial cover, and extending out to the continental shelf edge (Grant, 1989; Shaw *et al.*, 2006). The sequence of deglacial events following the LGM are based mostly on striation and landform data which depict a first-order ice divide extending south and southeast across Newfoundland along the axis of the Long Range Mountains, east through central Newfoundland and across the Avalon Peninsula. Early ice retreat was facilitated by calving along deep (>600 m) channels, particularly off northeast Newfoundland – this created a second-order ice divide along the axis of the Cape Freels peninsula that separated ice flow in Notre Dame and Trinity basins (Shaw, 2003). Ice retreat continued via calving embayments until ~13 ka BP when ice margins

Figure 2. Bedrock geology of the study area (Colman-Sadd and Crisby-Whittle, 2005 and Williams et al., 1988); also shown are locations of till samples (black dots).

Figure 3. Surficial geology of study area (modified from Kirby et al., 2011).

reached coastal areas and the configuration of ice divides shifted as deglaciation became landbased; retreat of isolated ice caps continued by ablation, predominantly through melting (Shaw et al., 2006). At least fifteen of these remnant ice caps were present, five of which had the potential to influence ice flow on Fogo and the Change Islands. These ice caps were located near Red Indian Lake, Meelpaeg Lake, Middle Ridge, north of Grand Falls (in the Twin Ponds area) and in the Gander area (Grant, 1974).

ICE-FLOW PATTERNS

Regional Northeast Newfoundland Ice-flow Patterns

Three ice-flow events affected northeastern Newfoundland (Figure 4a). The earliest ice flow was east-southeastward. Evidence for this flow was not observed on Fogo and the Change Islands but is widespread throughout much of northeastern Newfoundland and has been identified in the Gander River and Gander Bay areas, around Gander Lake and eastward into the Bonavista Bay area (Jenness, 1960; Butler *et al.*, 1984; Vanderveer and Taylor, 1987; Batterson and Vatcher, 1991; St. Croix and Taylor, 1991; Brushett, 2010, 2011, 2012). The probable source of this ice-flow event was from north of Red Indian Lake, based on the presence of eastward striations in the northwest Gander River area (Proudfoot *et al.*, 1988), the Grand Falls–Glenwood area (Batterson and Taylor, 1998) and the Red Indian Lake area (Rogerson, 1982; Vanderveer and Sparkes, 1982; Smith, 2010, 2012).

The eastward ice-flow event was followed by north-northeastward ice flow (~20°). Evidence for this north-northeastward ice flow is present throughout most of northeastern Newfoundland (Vanderveer and Taylor, 1987; St. Croix and Taylor, 1990, 1991; Batterson and Vatcher, 1991; Scott, 1994; Batterson and Taylor, 1998; Brushett, 2010, 2011, 2012). This event crossed Gander Lake and flowed northward into Hamilton Sound. The source of this ice flow was likely an ice divide situated between Middle Ridge and Meelpaeg Lake (Proudfoot *et al.*, 1988; St. Croix and Taylor, 1990, 1991).

The third ice-flow event was northwestward (~340°) and consistently crosscuts the earlier northeastward ice-flow when observed on the same outcrop (Vanderveer and Taylor, 1987; Taylor and St. Croix, 1989; St. Croix and Taylor, 1991; Brushett, 2010, 2011, 2012). This ice-flow was likely from an ice cap situated on Middle Ridge (Grant, 1974; St. Croix and Taylor, 1991).

Fogo and Change Islands Ice-flow Patterns

Two ice-flow directions determined from glacial erosional evidence, consisting mostly of striations, were observed on Fogo and the Change Islands: a northeastward direction (~20°, ranging from 0° to 30°) and a northwestward direction (~343°, ranging from 281° to 357°) (Figure 4b). No age relationships were determined from these two directions; however, based on regional iceflow directions for northeastern Newfoundland, they represent two separate ice flow events (Figure 4a; St. Croix and Taylor, 1990, 1991; Brushett, 2010, 2011, 2012). There is no consistent spatial relationship between the northeastward and northwestward striations; both are present on Fogo and the Change Islands which means that till dispersal was northward from 281° to 30° in this area.

Figure 4. *Ice-flow patterns overlain on SRTM image for (a) and (b). Three ice-flow phases affected northeast Newfoundland. The first (Flow phase 1) was a regionally extensive eastward flow likely sourced from Red Indian Lake. The second (Flow phase 2) was north-northeastward from an ice divide between Middle Ridge and Meelpaeg Lake, and the third (Flow phase 3) was a north-northwestward flow likely sourced from the Middle Ridge area.*

The youngest eastward ice-flow event recorded throughout most of northeastern Newfoundland was not observed on Fogo and the Change Islands. It is possible that the ice related to this event did not cross this area but given its prevalence elsewhere in northeast Newfoundland it is more likely that the area was not affected because it was covered by stagnating ice. The presence of hummocky terrain, here and along the northeast coast, provides supporting evidence for this interpretation (Brushett, 2012).

REGIONAL SURFICIAL SEDIMENT SAMPLING

SAMPLING AND SAMPLE PREPARATION METHODS

Till sampling resulted in 55 samples (including duplicates) being collected from the Cand BC-horizons of test pits (average 55 cm depth), roadcuts (average 60 cm depth) and mudboils (average 25 cm depth). Thirteen samples were collected from bedrock detritus where there was a lack of surficial sediment to collect. Marine and fluvial or glaciofluvial sediments were avoided during sampling, because of the probability of reworking and the difficulty in defining distances and directions of transport. Sample spacing was controlled by access and surficial geology, but was generally one sample every 1 km along all primary and secondary roads. In the field, samples were placed in Kraft-paper sample bags, and sent to the Geological Survey's Geochemical Laboratory in St. John's, where they were air-dried in ovens at 60°C and dry-sieved through 180 µm stainless steel sieves.

GEOCHEMICAL ANALYSES

Analytical work was carried out at the Geological Survey's Geochemical Laboratory, and additional analyses from an external laboratory (a summary of analytical methods is provided in Appendix A). Analyses of 53 samples are presented (Figure 2), excluding field duplicates. Of the 58 elements determined, 16 were determined by both ICP-OES and INAA (As, Ba, Ca, Ce, Co, Cr, Fe, La, Mo, Na, Ni, Rb, Sc, Sr, Zn, Zr) and all are presented in the appended data listings (Appendix B). To distinguish the different analytical methods/laboratories, the element variables are labelled with a combination of the element name, a numeric code denoting the analytical method, and the unit of measurement. A complete list of variables is given in Table 1. Statistics (maximum, minimum, median, mean, standard deviation) were generated from the Excel computer application, and are presented in Table 2.

DISPLAY OF GEOCHEMICAL DATA

Maps showing the aerial distribution of the analyzed elements were created using the ArcMap GIS application. Values of each element are represented by circles whose size represents a particular concentration range, with the largest circles representing the highest values. These concentration ranges were determined using percentiles of the regional till geochemistry dataset (for the island of Newfoundland only); "background" values are less than the 90-percentile, "elevated" values are between the 90- and 97.5-percentile and "anomalous" values exceed the 97.5-percentile. Maps showing the distribution of selected elements of interest (As2, Au1, Be2, Cr2, Cu2, Pb2, Y2 and Zn2) are shown in Figures 5 to 12. Other element maps are included in Appendix C.

Variable	Description	Variable	Description
Sample	Unique sample ID. First number	Lal ppm	Lanthanum, ppm, by INAA
1	represents geologist id, <i>e.g.</i> ,	La2 ppm	Lanthanum, ppm, by ICP
	7 = Brushett; 4 = Batterson	Li2 ppm	Lithium, ppm, by ICP
NTS Map	NTS sheet (1:50 000)	LOI	Loss on ignition
UTMEast	UTM map coordinate NAD 27	Lu1 ppm	Lutetium, ppm, by INAA
UTMNorth	UTM map coordinate NAD 27	Mg2 pct	Magnesium, %, by ICP
Elev	Elevation of sample site (m)	Mn2 ppm	Manganese, ppm, by ICP
UTMZone	UTM zone	Mo1 ppm	Molybdenum, ppm, by INAA
Horizon	Soil horizon sampled	Mo2 ppm	Molybdenum, ppm, by ICP
Depth	Sample depth (cm)	Nal pct	Sodium, %, by INAA
Agl ppm	Silver, ppm, by INAA	Na2 pct	Sodium, %, by ICP
Al2 pct	Aluminum, %, by ICP	Nb2 ppm	Niobium, ppm, by ICP
As1 ppm	Arsenic, ppm, by INAA	Nd1 ppm	Neodymium, ppm, by INAA
As2 ppm	Arsenic, ppm, by ICP	Ni2 ppm	Nickel, ppm, by ICP
Aul ppb	Gold, ppb, by INAA	P2 ppm	Phosphorus, ppm, by ICP
Bal ppm	Barium, ppm, by INAA	Pb2 ppm	Lead, ppm, by ICP
Ba2 ppm	Barium, ppm, by ICP	Rb1 ppm	Rubidium, ppm, by INAA
Be2 ppm	Beryllium, ppm, by ICP	Rb2 ppm	Rubidium, ppm, by ICP
Br1 ppm	Bromine, ppm, by INAA	Sb1 ppm	Antimony, ppm, by INAA
Ca2 pct	Calcium, %, by ICP	Sc1 ppm	Scandium, ppm, by INAA
Cd2 ppm	Cadmium, ppm, by ICP	Sc2 ppm	Scandium, ppm, by ICP
Cel ppm	Cerium, ppm, by INAA	Sel ppm	Selenium, ppm, by INAA
Ce2 ppm	Cerium, ppm, by ICP	Sm1 ppm	Samarium, ppm, by INAA
Co1 ppm	Cobalt, ppm, by INAA	Sn1 ppm	Tin, ppm, by INAA
Co2 ppm	Cobalt, ppm, by ICP	Sr2 ppm	Strontium, ppm, by ICP
Cr1 ppm	Chromium, ppm, by INAA	Tal ppm	Tantalum, ppm, by INAA
Cr2 ppm	Chromium, ppm, by ICP	Tb1 ppm	Terbium, ppm, by INAA
Cs1 ppm	Cesium, ppm, by INAA	Th1 ppm	Thorium, ppm, by INAA
Cu2 ppm	Copper, ppm, by ICP	Ti2 ppm	Titanium, ppm, by ICP
Dy2 ppm	Dysprosium, ppm, by ICP	U1 ppm	Uranium, ppm, by INAA
Eu1 ppm	Europium, ppm, by INAA	V2 ppm	Vanadium, ppm, by ICP
Fel pct	Iron, %, by INAA	W1 ppm	Tungsten, ppm, by INAA
Fe2 pct	Iron, %, by ICP	Y2 ppm	Yttrium, ppm, by ICP
Hf1 ppm	Hafnium, ppm, by INAA	Yb1 ppm	Ytterbium, ppm, by INAA
Hg1 ppm	Mercury, ppm, by INAA	Zn2 ppm	Zinc, ppm, by ICP
Ir1 ppm	Iridium, ppb, by INAA	Zr1 ppm	Zirconium, ppm, by INAA
K2 pct	Potassium, %, by ICP	Zr2 ppm	Zirconium, ppm, by ICP

 Table 1. Variable list and description of data

Note: ppm = parts per million; ppb = parts per billion; pct = %

		Detection Limit	Maximum	Minimum	Mean	Median	Standard Deviation
A12	%	0.01	902.0	4.48	6.80	6.67	0.90
As1	ppm	0.5	606.0	0.25	32.20	10.0	90.70
As2	ppm	2	630.48	1.0	34.65	10.63	94.79
Au1	ppb	1	145.0	0.5	7.92	4.0	19.84
Ba1	ppm	50	650	110.0	358.68	360.0	117.93
Ba2	ppm	50	677.65	140.51	379.8	387.11	116.33
Be2	ppm	0.2	6.31	0.58	2.15	1.75	1.12
Br1	ppm	0.5	261	2.0	48.47	27.0	58.94
Ca2	%	0.01	3.81	0.22	1.15	1.16	0.63
Cd2	ppm	0.1	0.21	0.05	0.08	0.05	0.05
Cel	ppm	3	280	11.0	75.94	61.0	54.33
Ce2	ppm	2	289.14	12.04	78.06	65.36	48.95
Co1	ppm	1	100	0.5	15.73	11.0	18.89
Co2	ppm	2	77.52	0.5	10.76	7.27	14.59
Cr1	ppm	5	230	12	90.49	72.0	60.80
Cr2	ppm	2	185.2	7.93	52.41	45.76	33.16
Cs1	ppm	1	15	0.5	3.68	2.90	2.62
Cu2	ppm	2	103.96	0.5	19.38	14.03	18.67
Dy2	ppm	0.2	15.79	0.39	4.16	3.23	3.06
Eu1	ppm	0.2	4.3	0.1	1.52	1.50	0.69
Fe1	%	0.01	14.6	0.5	3.73	3.10	2.30
Fe2	%	0.01	13.41	0.58	3.76	3.14	2.15
Hf1	ppm	1	59.0	2.0	13.85	11.0	11.79
K2	%	0.01	2.93	0.23	1.63	1.58	0.62
La1	ppm	0.5	126.0	7.0	34.57	30.0	22.46
La2	ppm	1	116.15	5.39	31.53	24.01	21.96
Li2	ppm	0.2	57.23	1.26	23.95	23.99	12.10
LOI	%	0.01	36.95	2.07	8.17	5.53	7.28
Lu1	ppm	0.05	2.3	0.14	0.78	0.66	0.52
Mg2	%	0.01	3.33	0.01	0.84	0.80	0.54
Mn2	ppm	2	5125.22	74.44	1040.22	916.6	931.09
Mo1	ppm	1	11.0	0.5	1.08	0.50	1.78
Mo2	ppm	1	10.98	0.5	1.72	1.07	2.11
Na1	%	0.01	3.6	0.69	2.03	2.00	0.55
Na2	%	0.01	3.87	0.46	1.86	1.81	0.58
Nb2	ppm	2	3.91	0.5	1.90	1.84	0.59
Ni2	ppm	2	66.19	3.36	14.48	12.35	10.81
P2	ppm	5	61.72	0.5	22.81	17.28	16.31

Table 2. Units, detection limits, ranges, medians and standard deviations of geochemical data.Values below detection are coded as half of the detection limit value

		Detection Limit	Maximum	Minimum	Mean	Median	Standard Deviation
Pb2	ppm	2	1927.99	65.46	460.27	392.96	376.71
Rb1	ppm	5	150.0	0.25	73.85	67.0	32.78
Rb2	ppm	5	92.5	2.5	16.66	12.2	17.57
Sb1	ppm	0.1	3.6	0.05	0.84	0.7	0.74
Sc1	ppm	0.1	25.9	2.1	12.92	13.7	4.60
Sc2	ppm	1	125.52	13.68	60.81	55.87	23.91
Se1	ppm	1	0.5	0.5	0.5	0.5	0.50
Sm1	ppm	0.1	28.5	0.9	7.89	7.5	4.81
Sr2	ppm	2	24.9	1.7	12.68	13.41	4.51
Ta1	ppm	0.2	6.0	0.3	1.42	1.2	1.02
Tb1	ppm	0.5	4.9	0.25	1.25	1.0	0.85
Th1	ppm	0.2	60.4	1.4	11.48	9.0	9.51
Ti2	ppm	5	525.45	57.15	150.59	149.94	69.28
U1	ppm	0.5	18.4	0.5	4.27	2.90	3.67
V2	ppm	5	13618.1	1770.35	5042.04	4695.26	2198.71
W1	ppm	1	5	0.5	1.73	2.00	0.96
Y2	ppm	2	205.28	16.1	76.84	72.51	39.75
Yb1	ppm	0.2	15.0	0.9	4.60	3.90	3.7
Zn2	ppm	2	98.84	2.65	26.05	20.87	18.21
Zr2	ppm	2	211.87	8.16	64.99	54.76	39.03
Note:	ppm = pa	arts per million	; ppb = parts r	per billion; pct	$t = \frac{0}{0}$		

Table 2. Continued

For these maps the concentration ranges were determined using Jenks Optimization, also known as the goodness-of-variance fit, a method offered by ArcMap (Jenks, 1967). The method identifies natural breaks in the frequency distribution resulting in 4-6 concentration ranges.

In view of the small number of samples collected no interpretation of the data is attempted within this report. Individuals and companies are encouraged to undertake their own interpretation of the presented data.

ACKNOWLEDGMENTS

The author would like to thank Gerry Hickey for logistic support. Krista Lynn LaForest is thanked for her field assistance. Dave Taylor provided much appreciated guidance and support during sampling and preparation of this report. Neil Stapleton is acknowledged for his assistance providing GIS support. Martin Batterson, Jennifer Smith, Melanie Irvine and Steve Amor are thanked for providing critical reviews of this manuscript.

Figure 6. Distribution of gold (Au1) in till.

REFERENCES

Baird, D.M.

1958: Fogo Island map-area, Newfoundland. Geological Survey of Canada, Memoir 301.

Batterson, M.J. and Taylor, D.M.

1998: Surficial geology and geochemical sampling in the Grand Falls to Glenwood areas (NTS 2D/13, 2D/14, 2E/3). *In* Current Research. Newfoundland Department of Mines and Energy, Geological Survey Branch, Report 98-1, pages 1-8.

Batterson, M.J. and Vatcher, S.

1991: Quaternary geology of the Gander (NTS 2D/15) map area. *In* Current Research. Newfoundland Department of Mines and Energy, Geological Survey Branch, Report 91-1, pages 1-12.

Brushett, D.

2010: Quaternary geology of the Gander Lake and Gambo map area (NTS 2D/16 and 2C/13). *In* Current Research. Newfoundland and Labrador Department of Natural Resources, Geological Survey, Report 10-1, pages 159-170.

2011: Till geochemistry of the Gander Lake and Gambo map area (NTS 2D/16 and 2C/13). Government of Newfoundland and Labrador, Department of Natural Resources, Geological Survey, Open File NFLD/3134, 104 pages.

2012: Till geochemistry of northeast Newfoundland (NTS map areas 2C/13, 2D/15, 2D/16, 2E/01, 2E/08, 2F/04, and 2F/05). Government of Newfoundland and Labrador, Department of Natural Resources, Geological Survey, Open File NFLD/3174, 161 pages.

Butler, A.J., Miller, H.G. and Vanderveer, D.G.

1984: Geoscience studies in the Weir's Pond area, northeast of Gander, Newfoundland. *In* Current Research. Newfoundland Department of Mines and Energy, Mineral Development Division, Report 84-1, pages 271-278.

Colman-Sadd, S.P. and Crisby-Whittle, LV.J.

2005: Partial bedrock geology for the Island of Newfoundland (NTS 02E, 02F, 02L, 02M, 11O, 11P, 12A, 12B, 12G, 12H, 12I, 12P and parts of 01M, 02D). Newfoundland and Labrador Department of Natural Resources, Geological Survey, Open File NFLD/2616 version 6.0.

Currie, K.L.

1997: Fogo map area, Newfoundland. Geological Survey of Canada Open File 3466, 1:50 000 scale map.

Finch, C.J.

1998: Inductively coupled plasma-emission spectrometry (ICP-ES) at the Geochemical Laboratory. *In* Current Research. Newfoundland Department of Mines and Energy, Geological Survey, Report 98-1, pages 179-193.

Grant, D.R.

1974: Prospecting in Newfoundland and the theory of multiple shrinking ice caps. Geological Survey of Canada, Paper 74-1, Part B, pages 215-216.

1989: Quaternary geology of the Atlantic Appalachian region of Canada. *In* Quaternary Geology of Canada and Greenland. *Edited by* R.J. Fulton. Geological Survey of Canada, Geology of Canada No. 1, pages 391-400.

Jenks, G.F.

1967: The Data Model Concept in Statistical Mapping. International Yearbook of Cartography 7, pages 186-190.

Jenness, S.E.

1960: Late Pleistocene glaciation of eastern Newfoundland. Bulletin of the Geological Society of America, Volume 71, pages 161-179.

Kerr, A.

2011: Fogo Island – Exploring a composite bimodal magma chamber and its volcanic superstructure. Unpublished field trip guide and background material for Geological Association of Canada Newfoundland and Labrador Section Fall field trip.

2013: The Fogo Process from a geologist's prospective: a discussion of models and research problems. *In* Current Research. Newfoundland and Labrador Department of Natural Resources, Geological Survey, Report 13-1, pages 233-265.

Kirby, F.T., Ricketts, R.J. and Vanderveer, D.G.

2011: Surficial geology of the Fogo map area (NTS 2E/09). Geological Survey, Department of Natural Resources. Government of Newfoundland and Labrador, Map 2011-27. Open File 02E/09/1699.

Licthe, F.E., Golightly, D.W. and Lamothe, P.J.

1987: Inductively coupled Plasma-Atomic emission Spectrometry. *In* Methods for Geochemical Analysis. U.S. Geological Survey Bulletin 1770, pages B1-B10.

Newfoundland and Labrador Geological Survey

2013: "Mineral Occurrence Database System (MODS)." Newfoundland and Labrador GeoScience Atlas OnLine. [February 7, 2014]. http://gis.geosurv.gov.nl.ca/resourceatlas/ viewer.htm

Proudfoot, D.N., Scott, S., St. Croix, L., Taylor, D.M. and Vanderveer, D.G.

1988: Glacial striations in southeast-central Newfoundland. 1:250 000 scale. Newfoundland Department of Mines and Energy, Mineral Development Division, Map 88-102, Open file NFLD 1725.

Rogerson, R.J.

1982: The glaciation of Newfoundland and Labrador. *In* Prospecting in Areas of Glaciated Terrain - 1982. *Edited by* P.H. Davenport. Canadian Institute of Mining and Metallurgy, pages 37-56.

Sandeman, H.A. and Malpas, J.G.

1995: Epizonal I- and A-type granites and associated ash-flow tuffs, Fogo Island, northeast Newfoundland. Canadian Journal of Earth Sciences, Volume 32, pages 1835-1844.

Scott, S.

1994: Surficial geology and drift exploration of Comfort Cove-Newstead and Gander River map areas (NTS 2E/7 and 2E/2). *In* Current Research. Newfoundland Department of Mines and Energy, Geological Survey Branch, Report 94-1, pages 29-42.

Shaw, J.

2003: Submarine moraines in Newfoundland coastal waters: implications for the deglaciation of Newfoundland and adjacent areas. Quaternary International, Volume 99-100, pages 115-134.

Shaw, J., Piper, D.J.W., Fader, G.B., King, E.L., Todd, B.J., Bell, T., Batterson, M.J. and Liverman, D.G.E.

2006: A conceptual model of the deglaciation of Atlantic Canada. Quaternary Science Reviews, Volume 25, pages 2059-2081.

Smith, J.S.

2010: Glacial stratigraphy of the southwest Red Indian Lake Basin, Newfoundland: preliminary results. *In* Current Research. Government of Newfoundland and Labrador, Department of Natural Resources, Geological Survey, Report 10-1, pages 201-217.

2012: The paleogeography of glacial Lake Shanadithit, Red Indian Lake Basin, Newfoundland: implications for drift prospecting. *In* Current Research. Government of Newfoundland and Labrador, Department of Natural Resources, Geological Survey, Report 12-1, pages 207-227.

St. Croix, L. and Taylor, D.M.

1990: Ice flow in north-central Newfoundland. *In* Current Research. Newfoundland Department of Mines and Energy, Geological Survey Branch, Report 90-1, pages 85-88.

1991: Regional striation survey and deglacial history of the Notre Dame Bay area, Newfoundland. *In* Current Research. Newfoundland Department of Mines and Energy, Geological Survey Branch, Report 91-1, pages 61-68.

Vanderveer, D.G. and Sparkes, B.G.

1982: Regional Quaternary mapping; an aid to mineral exploration in west-central Newfoundland. *In* Prospecting in Areas of Glaciated Terrain-1982. *Edited by* P.H. Davenport. Canadian Institute of Mining and Metallurgy, Geology Division, pages 284-299.

Vanderveer, D.G. and Taylor, D.M.

1987: Quaternary mapping in the Gander River area, Newfoundland. *In* Current Research. Newfoundland Department of Mines and Energy, Mineral Development Division, Report 87-1, pages 39-43.

Williams, H., Colman-Sadd, S.P. and Swinden, H.S.

1988: Tectonic-stratigraphic subdivisions of central Newfoundland. *In* Current Research. Geological Survey of Canada, Paper 88-1B, pages 91-98.

APPENDIX A: Analytical Methods

Gravimetric Analysis (LOI)

Organic carbon content was estimated from the weight loss-on-ignition (LOI) during a controlled combustion in which 1g aliquots of sample were gradually heated to 500°C in air over a 3 hour period.

Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES)

For these analyses, the procedures outlined by Finch (1998) were followed. One gram of sample was weighed into a 125 ml Teflon beaker, and 15 ml HF (~48%), 5 ml of concentrated HCl and 5 ml of 1:1 HClO₄ was added to each sample. The samples were placed on a hotplate at 200°C and evaporated to dryness, after which 5 ml concentrated HCl and 45 ml deionized water were added and returned to the hotplate at 100°C. When the residue was completely dissolved the samples were removed, cooled and transferred to 50 ml volumetric flasks. One ml of 50 g/l boric acid was added to each sample to remove any residual hydrofluoric acid. The samples were made to volume and analyzed by ICP-OES (Licthe *et al.*, 1987). For most minerals dissolution was total; exceptions were chromite, barite and zircon.

Values for the following elements were determined: Al, Ba, Be, Ca, Ce, Co, Cr, Cu, Dy, Fe, Ga, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Sc, Sr, Ti, V, Y, Zn and Zr.

Instrumental Neutron Activation Analysis (INAA)

These analyses were carried out at Becquerel Laboratories, Mississauga, Ontario. An average of 24 g of sample was used for analysis and the samples were weighed and encapsulated in the Geochemical Laboratory of the Department of Natural Resources in St. John's. Samples were irradiated with flux wires and an internal standard (1 for 11 samples) at a thermal neutron flux of 7 x 10¹¹ n/cm²s. After 7 days (to allow Na²⁴ to decay), samples were counted on a high purity Ge detector with a resolution of better than 1.7 KeV. Using the flux wires, the decay-corrected activities were compared to a calibration developed from multiple certified international reference materials. The standard present is only a check on accuracy of the analysis and is not used for calibration purposes. Ten to 30 percent of the samples were checked by re-measurement.

Total contents of the following elements were determined quantitatively: As, Au, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, Hg, Ir, La, Lu, Mo, Na, Nd, Ni, Rb, Sb, Sc, Se, Sm, Sn, Sr, Ta, Tb, Th, U, W, Yb, Zn, and Zr.

APPENDIX B

Field and Geochemical Data

Open File 002E/09/1736 - Appendix B

BR1_PPM	55	71	59	31	48	17	20 20	0 0	04	216	16	2	10	13	ς Υ	17	.7	119	46	49	2	46	5 2	87 L	00	ω ;	24	67 G	207	111	32	103	18	5	149	28	4	сı С	35	17	S	1	139	171	17	62	189	ς Γ	35	2 E
BE2_PPM	1.5	0.6	1.3	1.8	1.6	1.5	τ. τ. τ	- <u>-</u>	0. 1	2.8	1.3	4.	2.8	1.6	1.5	2.7	4.1	1.7	2.3	0.1.0	2.5	2.1	7.L	0.0	0.2	1.6	0 8 0	3.1 1	 		5.2 2.2	2.6	1.4	2.3	3.6	2.6	1.7	2.5	1.6	2.6	2.9	2.1	1.7	6.3 0.3	2.C	2.0	1.0	3.6	1.5	1.1
BA2_PPM	276	244	216	296	254	276	334	002	333	150	205	285	331	294	315	464	1.12	312	491	453	481	407	105	449	385	424	420	387	382	215	560	511	270	484	466	547	336	467	468	530	678	567	210	422	449	475	141	378	300	320 425
BA1_PPM	270	190	180	250	240	240	320	077	310	110	170	270	310	270	300	430	260	260	470	420	450	380	040	065	380	450	410	360	350	0020	510	460	280	490	430	560	350	460	440	540	650	580	190	410	430	470	150	360	370	320 410
AU27_PPB	6-	<u></u>	6-	ဝု	6-	ဝှ ၊	ဂ္ ဂ	p c	ր զ	ာ တု	ာ တု	· 6·	ဝှ	<u>ө</u>	ဝု	ဂု ၊	ο Γ	ဂု ၊	ဂု ၊	ဂု ၊	o-	တု ဖ	ດຸ	ဂု ပ	ဂု	ດຸ	ဂု ပ	ດຸ	າ ດ	ρ Γ	ဂု ဂု	ာ တု	<u></u>	ဝှ	ဝု	ၐ	ဂု	ဂု ၊	ဝု	ဝု	ဝု	<u>ө</u>	ဂု ၊	ဂု ၊	ο ^ρ ι	ဂု ၊	ο [,]	ဂု ၊	ი ი	ρ φ
AU1_PPB	2	12	13	6	с	0	ς, τ	<u>י כ</u>	- 7	- თ	5 0	2	9	4	5	53	ς ·	4	- -	- (N	· ۲	4 •	- c	ר ס	4	9 2 2 2 3	- <u>1</u>		145	<u>5</u> -	- vo	5	2	5	4	9	ო	2	7	4	œ	- -	~ (N •	~ `	- !	. 16	4 (v ←
AS2_PPM	7	-	14	630	11	2	9 4	- 0	04	27	15	9	24	33	19	26	24	27	2	n ∞		5 5	9	= ;	01 8	89 : 99 :	14	216	202	00 26.30	C02 1	23	28	10	24	10	20	ო	ი ე	10	-	7	=	; 10	4.	4 .	- ;	51	ი	0 0
AS1_PPM	0.9	0.3	12.0	606.0	7.8	6.4	8.7	о. С	0.0	14.0	15.0	4.9	23.0	33.0	19.0	25.0	0.62	21.0	2.5	6.3	6.0	10.0	13.0	10.0	0.11	44.0	15.0	225.0	0.62	40.0	0.222	18.0	31.0	10.0	17.0	9.1	22.0	3.5	2.7	10.0	1.6	4.3	9.9	4.2	12.0 2 0	2.3	0.3	50.9 0.0	0.0 0.0	α.υ 10.0
AL2_PCT	6.79	5.73	7.31	6.29	6.91	6.79	6.30	10.0	0./0 5.38	9.20	6.88	6.37	6.89	6.39	6.06	6.51	6.10	7.43	6.59	6.09	6.74	6.76	0.17	8.42	0.04	1.27	6.66	6.64	6.6U F FE	00.00 AF	0.43	6.67	5.81	6.29	7.08	7.23	6.42	6.39	4.48	6.85	8.07	6.04	8.36	7.55	00.00	6.00	8.27	7.74	5.84	1 .2. 1 7.61
AG6_PPM	6-	<u></u>	6-	<u></u>	6-	<u>و</u> ، ا	ဂု ဂ	ρ -	ρ γ	ာ တု	စု	· 6·	<u>ө</u> -	6-	<u>ө</u> -	ဂု ၊	ې ار	ဂု ၊	ဂု	ο _ρ ι	o-	တု ဖ	ο Γ	ဂု	ဂု	ο _ι ο	ο _ρ ι	ດຸ	p q	ρ Γ	ρ Γ	ာ ကု	<u></u>	<u>ө</u> -	<u>о</u> -	ဝု	ဂု	ဝု ပ	ဂု	ဝု	о -	6-	ရ ၊	ဝု ပ	ο Γ	ο _ρ ι	ο _ι ι	ဂု ၊	ი ი	ာ့ တု
AG1_PPM	6-	6-	6-	6-	6-	6- ⁻	ဂု ဂ	n C	ף ק	ာ တု	ە م י	- 6-	<u>ө</u> -	6-	6-	ი -	ף י	ი -	ە י	ο ο	o-	ο [,] ο	ρ ο	ວຸ ເ	ກຸ	ວຸ ເ	ဝှ ပ	ວຸ ເ	ף ק	ກ ເ	ກ ຕ	ە م י	6-	<u>ө</u> -	6-	6-	ဂု	ဝှ ပ	<u>م</u>	<u>ө</u> -	<u>ө</u> -	6-	<u>و</u>	ဝှ ပ	ρ ο	ο [,] ο	ວ [ຸ] ່	ဂု ၊	ဝှ ဝ	ະ ທີ່
LAT_NAD27	0.00000	49.67279	49.66281	0.00000	49.63745	49.62948	49.61757	49.009.04	49.23000	49.57560	49.57672	0.00000	49.58947	49.59085	49.59601	49.60022	49.60528	49.60595	49.71032	49.70225	49.69403	49.68616	49.67715	49.66956	49.65829	49.64864	49.63787	49.62870	49.62138	49.01101	49.01900	49.64340	49.64967	49.65850	49.66953	49.65785	49.65689	49.65608	49.71190	49.67392	49.67461	49.68389	49.69975	49.70971	49.72016	49.72415	49.70838	49.71246	49.71348	49.72320
LONG_NAD27	0.00000	54.42502	54.40137	0.00000	54.39613	54.40240	54.41276 54.41295	04141200	54.41065	54.40796	54.29694	0.00000	54.27017	54.25315	54.24336	54.22105	54.19414	54.16531	54.27492	54.25853	54.24677	54.23688	54.23218	54.22956	54.22111	54.22136	54.21198	54.20030	54.19296 64 31236	04.01000	54.31024	54.30391	54.30007	54.28661	54.28991	54.26952	54.25507	54.23731	54.30353	54.21981	54.20123	54.19349	54.18819	54.19320	54.19156	54.17989	54.07222	54.09867	54.11420	54.13313 54.14866
DATUM	NAD 27	NAD 27	NAD 27	NAD 27	NAD 27	NAD 27			NAD 27	NAD 27	NAD 27	NAD 27	NAD 27	NAD 27	NAD 27	NAD 27	NAU 27	NAD 27	NAD 27	NAD 27	NAD 27	NAD 27				NAD 27	NAD 27	NAD 27			NAD 27	NAD 27	NAD 27	NAD 27	NAD 27	NAD 27	NAD 27	NAD 27	NAD 27	NAD 27	NAD 27	NAD 27	NAD 27	NAD 27	12 UAN 27	NAD 27	NAD 27	NAD 27	NAD 27	NAD 27
UTMZONE	21	21	21	21	21	21	21	- č	2 1	2 2	5	21	21	21	21	21	71	21	21	21	21	21	5	2		21	21	2	2 2	- 6	2 1	21	21	21	21	21	21	23	21	21	21	21	21	23	17	21	21	21	53	21
UTMNORTH	5505497	5505216	5504166	5503397	5501359	5500458	5499108 5409160	0430103 E 40702E	5496255	5494455	5494861	5495468	5496348	5496547	5497146	5497673	5498308	5498461	5509769	5508915	5508033	5507184	5506196	5505358 FF01100	5504129	5503055	5501883	5500895	5500101 5408630	3430030 5400605	5501322	5502255	5502963	5503979	5505196	5503951	5503883	5503840	5509870	5505870	5505995	5507048	5508825	5509919	6801166	5511560	5510104	5510484	5510554	5511540
UTMEAST	687154	685786	687531	687628	688007	687585	686883 6 96009	000000	687291	687390	695411	696262	697294	698518	699205	700800	102123	704803	696464	697678	698559	699305	699681	699901 700557	199007	/ 900/	701300	702181	604087	604403	694219	694641	694893	695829	695547	697065	698112	699397	694395	700586	701924	702443	702760	702357	/ 02432	703256	711084	709160	708036	705511
NTS_MAP	02E/09	02E/09	02E/09	02E/09	02E/09	02E/09	02E/09		02E/09	02E/09	02E/09	02E/09	02E/09	02E/09	02E/09	02E/09	07E/09	02E/09	02E/09	02E/09	02E/09	02E/09	02E/09	02E/09	02E/09	02E/09	02E/09	02E/09	07E/09	075/09	02E/09	02E/09	02E/09	02E/09	02E/09	02E/09	02E/09	02E/09	02E/09	02E/09	02E/09	02E/09	02E/09	02E/09	07E/09	02E/09	02E/09	02E/09	02E/09	02E/09

ß
ы.
- A
p
8
ē.
2
9
<
6
ě.
N
ì.
\geq
2
5
1
0
≘.
0
e
E
-
Ð
å
ñ
$\mathbf{\tilde{\mathbf{v}}}$

FE4_PCT	<u>о</u> -	<u>و</u>	6-	о -	<u>ە</u> ،	ဂု ဂု	о С	6-	о -	6-	ဂု	ဂု ၊	ာ ရ	ρσ	ာ ကု	о -	<u>6</u> -	о -	ၐ	ဝု	တု င	ာ င	မ် င	n n	የ	о С	6-	о -	6-	<u>و</u>	ဂု ၊	ဂု ဂ	ဂဂု	о -	о -	6-	<u>ө</u>	ဂု ဖ	ວຸ ເ	ဂုဝ	ρ Γ	p q	- 6-	6-	<u>6</u> -	6-	ဝှ ဝှ
FE2_PCT	2.76	1.25	8.25	4.37	2.98	3.46	2.25	3.09	1.07	3.24	2.69	2.89	3.70	3.47	4.30	5.23	6.02	2.15	2.39	2.36	2.98	0.4 2 0.4	20.7	4 00	3.62	3.98	4.84	6.24	4.98	1.54	7.39	3.50	5.45	2.63	3.57	2.06	0.58	2.62	3.08	2.16	1-1-0-1 1-1-0-1 1-1-0-1	2.15	2.55	8.84	4.25	2.31	2.66 4.56
FE1_PCT	0.5	1.0	7.8	4.2	3.2	3.4	2.2	3.0	1.0	3.1	2.6	2.9	3.5	0.4 G	4.0	5.0	5.4	2.2	2.3	2.4	ი. - ო	0.0 0.0	0 r	- C	1.0	4.1	4.6	5.8	5.2	1.6	7.8	τ. α α	5.3	2.9	3.7	2.1	0.6	2.8		2.4	0.4 4	2.0	2.6	9.1	4.2	2.5	2.8 4.7
EU1_PPM	0.1	0.1	2.0	1.9	÷.,	1.0	1.0	0.7	0.8	2.6	1.5	1.3	- 7 - 7	 	1.6	1.7	1.4	1.9	0.9		<u>, 1</u>	c	0.0	0.0	- - -	4.3	1.5	0.6	1.9	3.2	1.9	7.1	5.1	2.0	1.9	1.5	0.5	1.5	0.1	7.1	- c i t	1.7		1.8	2.1	1.0	1.1 1.3
DY2_PPM	2.6	0.4	2.3	2.0	1.7	7.0	1.6	1.0	0.8	6.0	2.6	2.2	0.2	2.7	4.7	3.1	1.7	4.5	2.8	5.1	4.7	0. C	0.0	4.4	n en F en	13.8	2.1	0.9	4.9	3.2	3.4	9.1 0	11.0	8.0	3.2	4.9	1.4	7.2	0.0 0	6.2	0.1	15.8	3.6	2.9	6.6	1.9	3.0 3.0
CU4_PPM	<u>о</u> -	ၐ	6-	6-	ဂု ၊	ာ့ ဇု	، ە	6-	<u>ө</u>	6-	ဝု	ဂု ၊	ာ့ ရ	ρσ	ာ တု	6-	<u>ө</u>	6-	ဝှ	ဂု	ရ ၀	ာ င	ဂု င	ף ק	o	، ە	6-	ဓ	6-	<u>ە</u>	ဂု ၊	ဂု ဂ	ဂဂု	о -	ဓ	6-	ဝှ	ဂု ဂ	ວຸ ເ	ဂုဝ	ာ ဂ	ဂုရ	- Р	6-	ၐ	6-	တ္ တု
CU2_PPM	37	4	42	104	9 1	37 36	19	8	e	35	15	25	35 35	3 5	27	38	18	9	7	ŝ	1 22	- 0	N 00	C7 CC	10	17	4	10	53	25	22	28	- 7	5	25	8	-	12	- (5	<u>0</u> r	22	9	67	24	2	04
CS1_PPM	2.6	2.9	5.3	6.6	2.2	5.4 4.2	2.7	14.0	3.3	2.0	1.8	3.5	0.1 0 0	0 0 0	9.4 4.0	3.1	2.9	1.9	2.8	2.6	1.9 0.1	7 7 7 7	- u	0 V V	0 0 0	э.з Э.З	4.0	5.0	2.1	1.4	15.0 2.0	2.2	- 00 - 00	4.6	2.8	2.0	1.2	2.4	0.0	4.4	- c	4.2	2.4	0.5	7.7	2.7	1.7 5.7
CR4_PPM	<u></u>	<u>о</u>	6-	6-	ဂု ၊	ာ့ ဇု	စု	6-	6-	6-	ဂု	ဂု ၊	ာ့ ဝ	ρσ	ာ တု	6-	<u>ө</u>	6-	<u>ი</u>	ဂု	တု င	ာ င	ာ င	n d	ი ი	စု	6-	6-	6-	ဝှ ၊	ဂု ၊	ဂု ဂု	ဂုရ	ဝှ	6-	6-	<u>ი</u>	တု ဖ	ο Γρ	ဂု င	ာ ရ	စုစု	<u>о</u> -	6-	<u>و</u>	6-	ဝှ ဝှ
CR2_PPM	58	22	17	52	36	58 71	53	46	41	70	76	8 i	67 07	78	99 90	87	65	44	42	25	40	000	0 0	00 105	64	20	62	70	185	31	140	83	21	45	68	33	1	36	<u>5</u> 0	1 G	/ a c	о 1	15	65	40	25	30 40
CR1_PPM	14	21	16	64	110	160 160	160	72	120	74	180	200	15U 210	190	110	150	72	71	71	37	61	20	1001	150	00	110	95	78	230	40	170	220	23	81	150	56	34	68	07	19	<u>c</u> t	÷ 1	25	75	50	57	60 53
CO4_PPM	<u>о</u> -	<u>و</u>	6-	6-	ဂု ၊	ဂု ဂု	စု	6-	<u>ө</u>	6-	ဝု	ဂု ၊	ာ့ ဇု	ρσ	ာ တု	6-	<u>6</u> -	6-	ဝှ	ဓု	တု င	ာ င	မ် င	ρ γ	o	စု	6-	ဝု	6-	ဝှ ၊	ဂု ၊	ဂု ဂ	ဂုရ	ဝှ	ဝု	6-	ဝှ	တု ဖ	ວຸ ເ	ဂု ပ	ဂု င	စုစု	ဝု	6-	<u>ө</u>	6-	ဝှ ဝှ
CO2_PPM	10	-	14	78	4	5 5 5	9	10	2	13	2	o ;	1 1 1 1	<u>5</u> €	<u>ე</u> თ	18	78	4	e	ი ი	4 7	n .	- ç	Ξ α	<u>o</u> «	, 5	7	б	7	e i	23	۳ 14	0 0	9	1	4	-	~ `		n c	0 ٢	- 4	5	30	13	e	പറ
CO1_PPM	80	8	22	97	6	202	œ	12	2	34	5	<u>5</u> i	1 01	2 [2	22	100	8	7	2	o (<u>א</u> כ	υĘ	71	1 5	: 5	6	18	26	9	ŝ	19	10	7	13	5	~	o 0	n o	ωţ	<u>1</u>	<u>0</u> ~	2	51	14	5	7
CE2_PPM	55	17	99	116	47	55 49	48	34	35	126	60	61	114 מה	82	91	75	62	65	45	59	66 6	25	000	00	60	157	56	40	136	41	113	/3 66	56	106	82	68	12	92	09	223	00	289	52	78	137	29	54 52
CE1_PPM	26	1	48	110	44	52 47	51	34	37	120	64	99	110 83	8	84	69	49	59	40	52	61	200	5 5	92 65	20	130	99	28	130	43	110	92	42	110	89	66	13	66 6	63	280	0 to	280	51	52	130	34	60 50
CD2_PPM	0.05	0.05	0.2	0.2	0.05	c0.0 20.0	0.05	0.05	0.05	0.1	0.05	0.1	0.1	4 C	0.2	0.2	0.2	0.05	0.05	0.05	0.05	cn.n		- 0	0.05	0.05	0.05	0.05	0.05	0.05	0.1	0.05	0.05	0.05	0.05	0.05	0.05	0.05	CU.U	0.05	0.0	0.05	0.05	0.1	0.2	0.05	0.05 0.05
CA2_PCT	1.55	0.36	1.25	0.35	0.94	1.26	1.26	0.32	0.78	1.00	1.48	1.42	1.16	1 20	0.99	2.05	1.26	1.19	0.87	1.03	1.22	1.17	1.00	02.1 18.0	1 88	1.02	1.65	0.32	0.59	2.51	0.72	1.30	0.43	0.96	1.38	1.16	0.22	0.96	0.92	0.76	0.25	0.43	0.57	3.81	1.29	1.08	1.30 1.30
CA1_PCT	oʻ	ဂု	6-	<u>ө</u>	oʻ (ဂု ဂု	ە م	6-	о -	6-	ဂု	ဂု ၊	ာ့ ဝ	p 9	ာ ကု	6-	<u>ө</u>	<u>ө</u>	ဝု	ဂု	တု င	ာ င	ာ င	n d	የ	ە م	6-	о -	6-	<u>ە</u> ،	ဂု ၊	ဂု ဂု	ဂဂု	о -	о -	6-	ဝှ	ဂု ဂ	ວຸ ເ	ဂု င	p q	ဂုရ	<u>о</u>	6-	 ٩	6-	ဝှ ဝှ

m
ndix
Appe
9
ñ.
-
6
2E/
Ξ.
File (
Open

ND1_PPM	ە י	6-	6-	<u>ө</u> -	ი -	ף ק	ာ ဝု	6-	о -	6-	ဝု	ဝု	တု င	က ဂ	ρ φ	စု	о -	6-	<u>6</u> -	<u>ө</u> -	6-	<u>6</u> -	<u>و</u>	ဂု	<u>о</u> -	ဝု	<u></u>	ດຸດ	ວຸ ເ	ဂုပ	ρ q	י קי	о с -	о 6-	6-	6-	<u>ө</u> -	ი- ი	ၐ	<u>و</u>	ဂု	ဂု	တု ဖ	ρ ο	ဂု င	ρ ο	ဂု င	ہ م	ှ ဂု
NB2_PPM	6.8	5.4	5.5	12.4	8.1	0.0 7 1	7.4	3.4	6.3	7.2	8.4	9.0	10.1	0.0	3.2 14 4	7.1	12.3	12.1	14.4	13.6	15.3	14.8	66.2	9.4	9.7	11.4	12.7	17.2	C./L	11.9	16.7	7.5	11.3	50.3	16.1	10.0	12.8	17.8	14.6	36.6	11.2	33.1	22.6	7.77	10.9	1.0.1	13.8	7.71	19.8
NA2_PCT	1.62	2.94	1.67	0.98	1.81	1.62	1.70	1.53	1.71	0.76	1.75	1.75	1.58	1 60	1.71	1.64	1.61	1.99	1.93	2.40	2.13	1.85	3.87	1.85	2.09	2.11	1.57	2.16	1.04	0.46	18.2	1 72	2.25	1.72	1.97	1.79	2.40	1.81	2.13	2.87	2.07	1.25	1.01	2.18	2.14	4.14	1.90	CI.7	2.48
NA1_PCT	2.40	2.50	1.90	1.10	2.10	1.70	1.80	1.70	1.60	0.82	1.80	1.80	1.70	07.1	1 80	1.70	1.60	2.20	1.90	2.60	2.40	2.00	3.60	2.00	2.40	2.10	1.90	2.30	1.20	0.69	0.0	00.1	2.50	1.90	2.30	2.00	2.50	1.70	2.50	3.00	2.50	1.90	1.40	01.2	2.30	2.70	2.10	2.20	2.80
MO2_PPM	0.5	1.7	1.0	5.1	0.5	0.5 0	0.5	0.5	0.5	2.0	0.5	0.5	2.0	с. С. С.	0.7 0 1	0.5	2.3	0.5	0.5	0.5	0.5	1.1	4.7	2.2	0.5	0.5	1.6	4. •	4. 4	1.6	י י	0.5	1.5	9.2	1.2	0.5	0.5	2.3	0.5	11.0	1.3	5.9	2.1	ה. - י	ν Ο	0.0	0.0 0.0	0.0	2.0
MO1_PPM	0.5	0.5	0.5	2.0	0.5	0.5 0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	2.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.0	0.0	1.0	6.0	0.5	0.5	0.5	1.0	0.5	11.0	0.5	5.0	0.5	0.5 L	C.U	0.0 •	0.4	0.0	2.0
MN4_PPM	б-	6-	6-	<u>б</u> -	ە י	ף ק	ာ ဝု	6-	о -	6-	ၐ	ရ ၊	တု င	p q	ဂု ဂု	စု	ဝှ	6-	ၐ	о -	6-	<u>6</u> -	<u>و</u> ،	o-	ၐ	ၐ	<u>و</u> ، ر	ດຸດ	ວຸ ເ	ဂုဝ	p q	pσ	о с -	ာ ဂု	ၐ	о -	ၐ	о -	о	<u>و</u>	o-	ဂု	ဂု ၊	ρ ο	ກຸດ	p o	ρ ο	ņ q	ာ ဂု
MN2_PPM	919	74	1698	5048	200	919 1666	1072	396	312	849	1317	1237	1160	1622	1276	1317	5125	474	480	427	585	762	351	945	1397	993	1079	1136	991	367	400 860	2076	926	283	595	1054	502	150	721	646	644	929	1208	820	304	1198	917	200 777	640
MG2_PCT	1.13	0.17	1.11	0.76	0.59	1.13	0.87	1.12	0.30	0.90	0.94	1.08	1.25	<u>. 5</u>	1.05	1.54	1.04	0.66	0.48	0.43	0.62	0.80	0.13	1.05	2.09	1.10	1.12	1.09	0.48	0.67	0.00	1 0 1	0.63	0.23	0.71	1.07	0.60	0.01	0.73	0.28	0.28	0.37	0.65	0.23	0.19	0.00 1 1 1	1.11	0.57	0.86
LU1_PPM	0.25	0.14	0.26	0.43	0.37	05.0 0 30	0.35	0.23	0.28	0.34	0.37	0.45	0.68	0.40	0.68	0.47	0.36	0.64	0.56	0.91	0.92	0.73	1.90	0.70	0.72	0.63	1.80	0.74	0.34	0.46	00.0	0.56	0.81	2.30	1.20	0.59	0.89	0.77	1.30	1.80	1.20	1.20	2.00	07.2	27.0	0.41	1.20	0.55	0.93
LOL_PCT	9.3	24.3	14.6	13.3	6.4	0.0 9	3.7	5.5	3.0	36.9	7.1	2.6	5.5	0 c	2.2	2.5	18.6	4.6	9.5	3.6	5.5	8.3	5.4	3.8	5.8	4.3	13.4	11.6	4.6	26.9 6 E	0.0	0.0	4.7	2.5	2.8	2.4	5.1	2.1	3.0	4.1	3.5	24.1	20.0	0.0 1	4.7	υ. ΓΙ.	3.6	4 u	9
LI2_PPM	26.7	1.3	30.7	40.7	19.3	41.2	25.7	27.3	4.3	42.3	22.8	26.8	38.9	0.10 1.10	49.4	25.2	26.0	19.4	14.6	18.3	18.0	20.0	12.3	25.6	24.0	14.9	38.9	8.0 0.0	20.6	36.3	0.4 7 0.4	2.10	18.0	20.5	25.5	26.5	17.0	4.2	26.6	11.9	19.9	23.7	36.4	20.02	α.υ γ	14.2	48.9	0.0	22.3
LA2_PPM	24	7	26	57	20	2 2	52	15	16	44	26	28	54	0 0 0	40 40	32	24	34	17	23	23	27	: 1	41	23	21	67	22	14	99 7	2 9	9 6	28	15	42	37	29	2	34	18	113	19	41	9		7 7	19	0 [18
LA1_PPM	14	7	26	57	24	07 77	26	21	18	41	30	33	56	90 00	00 00 00	348	21	36	19	25	26	30	5	48	26	21	74		14	2 2	C2 A4	40	30	16	47	43	30	7	40	27	126	20	41	70L	81	8	27	<u>0</u> %	32
K2_PCT	1.01	1.01	1.13	1.64	1.09	5.6	0.96	2.25	1.36	0.51	0.78	1.09	1.29	i 5	1 74	1.09	1.07	2.07	1.97	2.25	1.74	1.41	2.24	1.49	1.44	1.58	1.46	1.64	2.46	1.09	- 1- 1 - 1- 0 - 1-	1.08	2.15	2.17	2.51	1.41	2.23	2.34	2.21	2.42	2.88	0.77	2.79	2.93	2.39	0.23	2.04	1.13	1.85
IR1_PPB	ဝု	<u>و</u>	6-	ဝု	<u>ە</u> ،	ף ק	ာ ဂု	6-	ර -	6-	ဂု	ဝှ	တု င	ρ Γ	ρ Γ	စ္	၀ -	6-	<u>ө</u>	о -	6-	ဂု	ရ ၊	ဂု	ဇု	ဝု	ဂု ၊	ဂုပ	ດຸ ເ	ဂုပ	n n	ף ק	ဂဂု	ဂဂု	<u>ө</u>	6-	ဝု	ၐ	ၐ	<u>و</u>	ဂု	ဝု	ဂု ၊	ဂု	ဂု	ာ ဂ	ဂု	ہ م	ှ ဂု
HG1_PPM	<u>و</u>	6-	6-	ဓု	ဂု ၊	ף ק	ာ ဂု	6-	о -	6-	ၐ	ရ-	တု င	ρ Γ	ဂု ဂု	စု	ං	6-	о -	о -	6-	6	<u>و</u>	ဂု	о -	ၐ	<u></u>	ດຸ	ວຸ ເ	ဂု င	p q	pσ	о с -	ဂဂု	о -	6-	ၐ	<u>о</u>	ၐ	<u>و</u>	ဂု	ဂု	ဂု ၊	ກຸດ	ກຸດ	ာ ဂ	ဂု	ہ م	ှ ဂု
HF1_PPM	7	2	4	5	- 7		6	4	13	с	7	ω	~ 0	0 0	ء 10 ھ	0	9	12	13	16	15	14	59	12	11	14	13	80	οı	5 2 4	0 -	- 6	16	32	17	11	14	16	18	29	18	51	16	2	<u>0</u>	<u>0</u> r		₽ ₹	17
GA2_PPM	ဝု	<u>о</u> -	6-	6-	ဂု ၊	ρ σ	о о	6-	о -	6-	ဝု	ဝှ	တု င	ကို င	ρ φ	ە ە [.]	ဝု	6-	6-	6-	6-	6-	<u></u>	ဝှ	o-	<u>ە</u>	<u></u>	ດຸ	ວຸ ເ	ဂု င	ρ Γ	p q	စုံ	ဂဂု	6-	6-	<u>ە</u>	<u>ө</u>	ဓ	<u>و</u> ،	o-	ဝု	ဂု ၊	ဂု ဂ	ဂု ဂ	ဂု ဂ	ဂု င	ې م	ာ ဂု

m
pendix
- Apl
736
2
E/O
ŝ
File
pen
0

SR1_PCT	<u>о</u> -	<u></u>	6-	<u>ө</u>	ဝှ	ဂ္ ဂု	ာ ဂု	6-	6-	6-	ဂု ၊	ວຸດ	စု ဇု	о 9	6-	<u>ө</u>	ဝု	ဂု	ဂု ၊	ວຸ ຊ	ף ס	ο σ <u></u>	ာ ဂု	ဝု	6-	ဝု	6-	ဂု	ဂု ၊	ဂု ၊	ი ი	ာ င	ဂု ဂု	6-	<u>ө</u>	ဝု	ဂု ၊	ဂု	ဂ္ ဝု	, 0	ာ ဝု	6-	ဝ-	ၐ	ი -	ο _ρ ι	ာ့ တု
SN1_PCT	6-	<u>6</u> -	6-	6-	ဂု	ဂု ဝု	ာ တု	6-	<u>6</u> -	6-	ဂု ၊	ວຸດ	ဂု ဂု	ە م	6-	6-	ဝု	ဂု	ဂု ၊	ດ ດ	p q	ه م ا	ဂဂ	<u>о</u> -	6-	<u>о</u> -	6-	ဂု	ဂု ၊	ဂု ၊	ဂုဂ	ာ င	ဂု ဂု	6-	6-	ဝှ	ဂု ၊	ο	ဂ္ ဝု	0 9	ာ ဝု	6-	<u>6</u> -	<u>ө</u>	<u>و</u>	ဂုပ	ာ့ တု
SM1_PPM	2.5	0.9	4.9	8.1	4.2	5.7 7.7	4.8	2.8	3.2	10.5	6.4	6.3	7.8	7.7	8.4	7.6	4.5	8.2	4.7	с./ 7 л	0.7	2.0	10.0	7.9	6.0	23.4	7.3	2.3	10.1	5.3 1	7.8	0.0	- 0.0 0.3	13.9	9.0	8.2	1.6	12.1	11.0 14 9	n F L	11.2	28.5	5.6	7.0	14.9	ດ ເ ເຕັ	5.6 5.6
SE1_PPM	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0 C	0.5	0.5	0.5	0.5	0.5	0.5	0.5 0.5
SC2_PPM	15.5	8.7	17.3	15.8	7.8	15.5	10.2	17.5	9.0	16.1	13.0	15.5	15.9	14.6	12.3	20.2	17.5	8.4	8.4	2.2 7 F	0.4	89	14.0	24.9	15.8	16.7	17.3	7.4	15.0	8.7	13.8	7.0	6.9 6.5	10.6	14.2	9.1	1.7	11.3	13.4 6.0	16.0	11.7	5.0	4.6	18.4	18.8	9.1	11.3 16.4
SC1_PPM	19.9	7.4	16.5	15.6	8.1	15.0 15.1	10.3	17.2	8.9	13.6	12.7	15.0	15.5	14.4	11.3	18.7	15.9	8.4	8.5	8.4 4.7	13.6	69	13.7	25.9	14.9	17.4	17.3	7.7	15.3	9.1	15.3	- 0	7.0	11.4	14.6	9.1	2.1	12.6	15.1 7.2	1 a l	14.9	4.5	4.9	20.5	18.6	10.0	12.1 17.0
SB1_PPM	1.3	0.1	2.0	3.6	0.8	0.0	0.8	3.1	0.9	0.1	0.6	0.8	0.0	0.9	0.6	1.3	0.3	0.0	0.4	0.4 9.0	0.0	- 0	0.9	0.8	0.5	3.5	0.8	0.5	0.1	0.2	0.0	0. r	0.0	0.5	0.9	0.0	0.4	1.0	0.0		0.2	0.6	0.5	0.1	1.3	0.7	0.6 1.1
RB6_PPM	ဝု	6-	6-	<u>ө</u> -	ဂု	ې م	ာ တု	6-	<u>ө</u> -	6-	ဂု ၊	ວຸດ	ဂု ဂု	ာ ဂု	6-	<u>ө</u> -	ဝု	ဝှ	ဂု ပ	ာ ရ	pσ	ه م ا	ာ ဝု	<u>ө</u> -	6-	<u>ө</u> -	6-	ဂု	ဂု ၊	ο _ρ ι	ဂု ပ	ဂု င	ဂု ဂု	6-	<u>ө</u> -	ဝှ	ဂု ၊	o-	ဂ္ ဝု	ρ ο	ာ တု	6-	<u>ө</u> -	о -	ဂု ၊	ο _ρ ι	ာ့ တု
RB2_PPM	40	35	39	64	35	40 43	35	89	51	22	29	40	90 46	5 4	61	44	46	99	65	7.7	48	88	55	59	57	54	65	87	4 :	35	100	3 £	5 28	101	56	81	12	78	103 83	86	126	116	80	14	85	22	51 74
RB1_PPM	58	35	40	71	41	45 48	\$ 1	120	64	13	89 i	25	10	60	76	56	46	89	888	66 73	2 2	110	67	71	63	99	74	96	32	34	120	88	8 6	130	70	110	94	100	120	0	150	150	100	ო	110	83	63 93
PT27_PPB	<u>ල</u>	ę.	6-	о -	ဂု	ဂ္ ဝု	ာ တု	6-	6-	<u></u>	ဂု ၊	ဂု င	စု ဇု	۰ <u></u>	6-	о -	ဝု	ဂု	οņ (ဂု ဂ	ף ק	ہ م ا	ာ ဂု	ဝှ	6-	ဓ	6-	ဂု	ဂု ၊	ဂု ၊	ი ი	ာ င	ဂု ဂု	6-	о -	ဝု	ဂု ၊	o-	ဂု ဂု	ρσ	ာ တု	6-	ං	ဝု	ရ ၊	οņ (ာ့ တု
PD27_PPB	<u>ө</u> -	<u>6</u> -	6-	о -	ဂု	ဂ္ ဂ	ာ တု	6-	о -	ၐ	ဂု ၊	ဂု င	စု ဇု	ဂဂ	6-	о -	ဂု	o -	ဂု ၊	ာ ရ	የማ	የ	ာ ဂု	ဝှ	6-	ၐ	о -	ဂု	ې ٩	ο _ρ ι	ဂုပ	ာ င	ဂု ဂု	6-	о -	ဝု	ဂု ၊	ο	ი ი	ρσ	ာ တု	6-	о -	ဂု	ဂု	ο _ρ ι	ာ့ တု
PB4_PPM	6-	6-	6-	<u>ө</u>	ဂု	ې م ا	ာ တု	6-	<u>ө</u>	6-	ဝှ ၊	ဂု င	ဂု ဂု	- 6-	6-	<u>ө</u>	ဝု	ဓု	ဂု ၊	p q	יי יי	ہ م י	စု	ဝှ	6-	<u>ө</u>	6-	<u>о</u>	ဂု ၊	ဝု ဖ	ဂု ပ	ဂ် င	ဂု ဂု	6-	<u>ө</u>	ဝှ	ဂု ၊	o-	ဂ္ ဝု	р с	ာ တု	6-	ං	<u>ө</u>	ဝှ	ဝု ပ	ာ့ တု
PB2_PPM	С	c	8	92	36	ოო	0 0	e	e	19	ი ;	13	11	7	30	80	2	18	ო (00	5 00	0 00	17	11	10	61	e	თ	28	14	2	י ע ל מ	16	16	15	7	: 5	19	4 %	11	52	63	19	ო	64	13	4 12
P2_PPM	486	244	866	393	140	486 777	509	387	94	1244	320	247	527 527	566	670	1928	1041	364	107	69 100	154	163	639	632	400	548	152	517	535	117	625	210	481 481	319	772	355	176	129	133 195	654	526	185	153	1695	786	110	139 176
	<u>о</u> -	6-	6-	о -	ဂု	ဂ္ ဝ	ာ တု	6-	0	ၐ	ဂု ၊	ဂု င	စု ဇု	ဂဂ	6-	о -	ဂု	<u>م</u>	ဂု ၊	ာ့ ရ	የማ	የ	ာ ဂု	ဝှ	6-	ၐ	6 -	ဂု	ရ ၊	ο _ρ ι	ဂုပ	ာ င	ဂု ဂု	6-	о -	ဝု	ဂု ၊	ې ٩	ი ი	φ	ာ တု	6-	о -	ၐ	ဂု	οņ (ာ့ တု
NI2_PPM	35	~	18	50	17	35 35	29	20	5	28	35	65	40 120 120	4 4 4	35	56	23	16	- 10 10	ο Ç	2	. ^	31.	22	14	30	11	23	36	13	62	t + 0 ∠	<u>+</u> 6	17	39	10	- ;	16	م 10	+ +	4	4	4	55	24	9 0	9 0
NI1_PPM	ဝု	6-	<u>6</u> -	ဝု	ဂု	ဂ္ ဝု	ာ တု	6-	<u>ө</u>	<u>6</u> -	ဂု ၊	ဂု င	ဂု ဂု	۰ ၐ	6-	ဝု	ဝု	o-	တု ဖ	ဂု ဂ	ף ס	οĢ	ာ ဝု	ဝှ	6-	ဝု	<u>6</u> -	ဂု	ဂု ၊	ဝု ဖ	οp o	ာ င	ာ့ တု	6-	ဝု	ဝှ	ဂု ၊	<u>و</u>	ဂ္ ဝု	0 9	ာ တု	6-	ဝှ	<u>ө</u>	ဝှ	ဝု ပ	ာ့ တု

FIELD_NUM SAMPLE_NUM SITE_NUM 02E/09/120001 02E/09/120002 02E/09/120003 02E/09/120006 02E/09/120006 02E/09/120009 02E/09/120010 02E/09/120013 02E/09/120013 02E/09/120013 02E/09/120016 02E/09/120016 02E/09/120016 02E/09/120016 02E/09/120016 02E/09/120023 02E/09/120023 02E/09/120023 02E/09/120023 02E/09/120025 02E/09/120027 02E/09/120028 02E/09/120029 02E/09/120030 02E/09/120033 02E/09/120033 02E/09/120035 02E/09/120035 02E/09/120036 02E/09/120036 02E/09/120036 02E/09/120036 02E/09/120038 02E/09/120038 02E/09/120038 02E/09/120041 02E/09/120042 02E/09/120043 02E/09/120044 02E/09/120045 02E/09/120045 /09/120051 /09/120052 /09/120053 |20048 |20049 |20050 20054 20055 20047 02E/09/12 02E/09/12 02E/09/12 02E/09/12 02E/09/12 02E/09/12 02E/09/12 09/1 02E/(ZR2_PPM $\begin{smallmatrix} & 0 \\ &$ МЧ ZN4 ZN2_PPM 26×200 MPM ZNI Mdd ΥB1 Y2_PPM 4 2 4 9 6 7 4 7 8 8 8 9 7 7 7 8 8 8 9 7 7 8 9 7 7 8 9 7 7 8 9 7 7 8 9 7 7 8 9 7 7 8 9 7 7 9 7 7 8 9 7 7 9 7 7 8 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 Mdd 2000 200 2000 2 ž V2_PPM MPM 5 **TI2_PPM** МЧЧ $\begin{array}{c} 6.6.4\\ 2.4.5.6\\ 2.5.6.6$ Ŧ MPM Ξ Mdd TAI SR2_PPM

Open File 002E/09/1736 - Appendix B

29

INIEKP	weathered hedrock	weathered bedrock	weathered bedrock	weathered bedrock	till	weathered bedrock		III 17			till woothorod hodrook	weathered bedrock	weathered bedrock	weamered bearook	weathered hedrock	weathered bedrock	weathered bedrock	weathered bedrock	weathered bedrock	till	til																															
SED_TYPE	weathered hedrock	weathered bedrock	weathered bedrock	weathered bedrock	diamicton	weathered bedrock	diamicton		diamicton		diamicton	weathered bedrock	weathered bedrock	diamicton	weathered hedrock	weathered bedrock	weathered bedrock	weathered bedrock	weathered bedrock	diamicton	diamicton																															
	Rc/R	R-Rc	Rc/O	Rc/O	Rc/O/Tv	Rc/O/Tv	Rc/O-Tv	Rc/O/Tv	Rc/O/Tv	Rc-Tv/O	Rc/O-Tv	O-R/Tv	O-Rc//Tv	Rc-Tv	т	Tv/Rc	Tv/Rc	Tv/Rc	т	R/O/Tv	Rc-O/Tv	R-O/Tv	R/O/Tv	R-O/Tv	R/O/Tv	Rc/Tv	Tv/Rc	Tv/Rc-O	Tv-Rc/O	Tv-Rc/O	Tv-Rc/O	R/Tv/O	Rc/Tv/O	Rc//Tv	Rc/Tv	Rc/Tv	Re-Rc			D2//0					Re/Rc/O	Re/Rc/O	Re/Rc/O	Re/Rc/O	Rc//O	R/O	R//Tv	R/O/Tv
SOIL_HORIZ	ء	2			q	c	U	c	c	U	c	c	U	v	c	U	v	U	v	v	U	v	v	c	bc	v	U	c	c	c	U	bc	c	c	c	c		0		5 0	ر	υ				þ					c	c
DEPTH_CM	25	25	80	30	35	35	40	40	45	40	65	55	45	50	55	50	60	60	60	60	40	45	40	35	30	40	55	50	35	45	40	35	30	65	65	30	30	450 17		00	00	0 G	10	0 0 0 0	30	35	30	30	30	30	40	35
EXPDIMEN_M																																																				
EXP_TYPE	test nit	test pit	test pit	pit/quarry	test pit	test pit	test pit	roadcut	roadcut	test pit	roadcut	roadcut	test pit	pit/quarry	roadcut	roadcut	roadcut	roadcut	ditch	roadcut	test pit	mudboil	mudboil	mudboil	mudboil	roadcut	roadcut	test pit	test pit	test pit	roadcut	test pit	test pit	pit/quarry	pit/quarry	roadcut	test pit	roadcut		ancn mudhail		pit/quarry		mudbail	roadcut	roadcut	other	other	pit/quarry	other	pit/quarry	mudboil
ELEV_BASIS	SUD	ode	adb	dbs	sdb	sdb	sdb	sdb	gps	sdb	sdɓ	sdb	sdb	gps	sdb	sdb	sdb	gps	edb	sdb	sdb	gps	sdb	ode	sdb	sdb	sdb	sdb	sdb	sdb																						
ELEV_M	36	35	8 8	64	55	62	59	20	60	42	37	38	56	72	100	86	54	20	51	65	92	94	104	112	82	59	53	69	91	52	60	48	41	57	66	65	54	2.0	0, 1	4 t 0 4 t	2 9	4 7 2		0 4 7	57	43	75	51	71	135	88	60
OPEN_FILE	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002 1/20 1/ 30	002E/03/1/30	002 E/02/11/20	002E/09/1/36	002E/03/1/30	002E/03/1/30	002E/09/1/30	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736	002E/09/1736
DATE_D_M	7/8/2012	7/8/2012	7/8/2012	7/8/2012	7/8/2012	7/8/2012	7/8/2012	7/8/2012	7/8/2012	7/8/2012	7/9/2012	7/9/2012	7/9/2012	7/9/2012	7/9/2012	7/9/2012	7/9/2012	7/9/2012	7/9/2012	7/9/2012	7/9/2012	7/9/2012	7/9/2012	7/9/2012	7/9/2012	7/9/2012	7/9/2012	7/9/2012	7/9/2012	7/9/2012	7/10/2012	7/10/2012	7/10/2012	7/10/2012	7/10/2012	7/10/2012	7/10/2012	2102/01/7	2102/01/2	2102/01/1	2102/01/1	2102/01//	2102/01/2	2102/01/1	7/10/2012	7/10/2012	7/10/2012	7/10/2012	7/10/2012	7/10/2012	7/10/2012	7/11/2012
YEAR	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	2012	7107	2102	2012	2012		21.02	2012	2012	2012	2012	2012	2012	2012	2012
GEOLOGIST	D M Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Drusriett	D.M. Brushett		D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett	D.M. Brushett
	10231731	10231732	10231733	10231734	10231735	10231736	10231737	10231738	10231739	10231741	10231742	10231743	10231745	10231746	10231747	10231748	10231749	10231751	10231752	10231753	10231754	10231755	10231756	10231757	10231758	10231759	10231761	10231762	10231763	10231764	10231765	10231766	10231767	10231768	10231769	10231772	10231773	10231774	C111 CZ01	10231777	1110701	10231770	1021201	10/1231/01	10231783	10231784	10231785	10231786	10231787	10231788	10231789	10231791

Open File 002E/09/1736 - Appendix B
Open File 002E/09/1736 - Appendix B

NUCTURE MATRIX FABRIC FINES_PCT COLOUR_OBS	FABRIC FINES_PCT COLOUR_OBS	FINES_PCT COLOUR_OBS	COLOUR_OBS		MUNSELLCOL	SORTING	CLAST_CONC	PEBL_SAMPL	MINCLST_CM	MEDCLST_CM	MAXCLST_CM
silty clay No high >20% greyish brown	No high >20% greyish brown	high >20% greyish brown	greyish brown				low 1-20%	No		~ ,	<i>с</i> , и
slity clay No high >20% greyish brown	No high >20% greyish brown	high >20% greyish brown	greyish brown				Iow 1-20%	No			εn q
slity clay No high >20% brown	No high >20% brown	high >20% brown	brown brown				nign >40%	NO			01 ,
silty clay ino iligii >20% buownisii gley silty sand No ilow 1-10% reddish brown	No Ingri >20% brownish grey No Iow 1-10% reddish brown	Ingri >20% browniisii grey Iow 1-10% reddish brown	reddish brown				medium 21-40%	ox ox			04
silty sand No medium 11-20% greyish brown	No medium 11-20% greyish brown	medium 11-20% greyish brown	greyish brown				low 1-20%	No		~	4
silty sand No medium 11-20% brownish grey	No medium 11-20% brownish grey	medium 11-20% brownish grey	brownish grey				medium 21-40%	No		-	5
silty sand No high >20% light brownish gre	No high >20% light brownish gre	high >20% light brownish gre	light brownish gre	کر ا			low 1-20%	°Z Z		. .	ო ძ
Slity sand No nigh >20% light brownish gr	No nign >20% light brownish gr	High >20% Hight brownish gr	light brownish gr	ey			hign >40%	ON T			χ
sirty sand No rign >20% iign grey sirty sand No medium 11-20% grevish brown	No nign >20% lignt grey No medium 11-20% grevish brown	nign >∠0% iignt grey medium 11-20% arevish brown	ngnt grey arevish brown				nign >40% medium 21-40%	o c		- ~	0 [
silty sand No high >20% light brownish g	No high >20% light brownish g	high >20% light brownish g	light brownish g	rev			low 1-20%	No No		I -	2 0
silty sand No low 1-10% light brownish g	No low 1-10% light brownish g	low 1-10% light brownish g	light brownish g	rey ,			low 1-20%	No		2	12
sandy silt No high >20% light brownish g	No high >20% light brownish gi	high >20% light brownish gi	light brownish gi	ey.			medium 21-40%	No		-	8
sandy silt No high >20% light brownish gr	No high >20% light brownish gr	high >20% light brownish gr	light brownish gr	ey			low 1-20%	No		7	10
clayey silt No high >20% grey	No high >20% grey	high >20% grey	grey				low 1-20%	No		~	e
silty sand No medium 11-20% light brownish gre	No medium 11-20% light brownish gre	medium 11-20% light brownish gre	light brownish gre	>			medium 21-40%	No		2	10
silty sand No high >20% light brownish grey	No high >20% light brownish grey	high >20% light brownish grey	light brownish grey				low 1-20%	No		-	8
silty sand No low 1-10% greyish brown	No low 1-10% greyish brown	low 1-10% greyish brown	greyish brown				medium 21-40%	No		2	15
silty sand No low 1-10% light greyish browr	No low 1-10% light greyish brown	low 1-10% light greyish browr	light greyish browr	_			high >40%	No		-	8
silty sand No medium 11-20% greyish brown	No medium 11-20% greyish brown	medium 11-20% greyish brown	greyish brown				medium 21-40%	No		-	8
silty sand No medium 11-20% greyish brown	No medium 11-20% greyish brown	medium 11-20% greyish brown	greyish brown				low 1-20%	No		-	9
silty sand No medium 11-20% light brownish gre	No medium 11-20% light brownish gre	medium 11-20% light brownish gre	light brownish gre	>			medium 21-40%	No		-	12
silty sand No high >20% light brownish gre	No high >20% light brownish gre	high >20% light brownish gre	light brownish gre	ž			medium 21-40%	No		2	12
silty sand No medium 11-20% reddish brown	No medium 11-20% reddish brown	medium 11-20% reddish brown	reddish brown				medium 21-40%	No		-	5
silty sand No medium 11-20% light grey	No medium 11-20% light grey	medium 11-20% light grey	light grey				medium 21-40%	No		-	ø
silty sand No high >20% light brownish gr	No high >20% light brownish gr	high >20% light brownish gre	light brownish gre	Уe			medium 21-40%	No		2	20
silty sand No high >20% light brownish gr	No high >20% light brownish gr	high >20% light brownish gr	light brownish gr	ey			medium 21-40%	No		2	12
silty sand No medium 11-20% brownish grey	No medium 11-20% brownish grey	medium 11-20% brownish grey	brownish grey				high >40%	No		2	20
silty sand No medium 11-20% light brownish g	No medium 11-20% light brownish g	medium 11-20% light brownish g	light brownish g	rey			medium 21-40%	No		2	20
silty sand No high >20% light brownish (No high >20% light brownish (high >20% light brownish (light brownish (grey			high >40%	No		2	10
silty sand No medium 11-20% reddish brown	No medium 11-20% reddish brown	medium 11-20% reddish brown	reddish brown				high >40%	No		-	15
silty sand No medium 11-20% light brownish	No medium 11-20% light brownish	medium 11-20% light brownish	light brownish	i grey			low 1-20%	No		2	10
clayey silt No medium 11-20% brownish	No medium 11-20% brownish	medium 11-20% brownish	brownish				high >40%	No		2	10
silty sand No medium 11-20% light brownish	No medium 11-20% light brownish	medium 11-20% light brownish	light brownish	grey			low 1-20%	No		2	10
silty sand No high >20% light pinkish gre	No high >20% light pinkish gre	high >20% light pinkish gre	light pinkish gre	×			low 1-20%	No		-	80
silty sand No Iow 1-10% brownish	No low 1-10% brownish	low 1-10% brownish	brownish				high >40%	No		-	12
silty sand No low 1-10% light brownish gr	No low 1-10% light brownish gr	low 1-10% light brownish gr	light brownish gr	ey			medium 21-40%	No		-	15
silty sand No high >20% light grey	No high >20% light grey	high >20% light grey	light grey				low 1-20%	No		-	8
silty sand No low 1-10% light brownish gr	No low 1-10% light brownish gr	low 1-10% light brownish gr	light brownish gr	ey			high >40%	No		-	12
sandy silt No high >20% grey	No high >20% grey	high >20% grey	grey				high >40%	No		-	9
silty sand No medium 11-20% light pinkish grey	No medium 11-20% light pinkish grey	medium 11-20% light pinkish grey	light pinkish grey				high >40%	No		-	12
silty sand No low 1-10% brownish grey	No low 1-10% brownish grey	low 1-10% brownish grey	brownish grey				low 1-20%	No		-	10
silty sand No low 1-10% light pinkish grey	No low 1-10% light pinkish grey	low 1-10% light pinkish grey	light pinkish grey				medium 21-40%	No		-	12
silty sand No low 1-10% reddish brown	No low 1-10% reddish brown	low 1-10% reddish brown	reddish brown				medium 21-40%	No		~	10
silty sand No Iow 1-10% light brownish are	No Iow 1-10% light brownish are	low 1-10% light brownish are	light brownish are	>			hiah >40%	No		~	18
silty cand No Iow 1-10% light ninkish are	No Iow 1-10% light ninkish are	low 1-10% licht ninkish are	light ninkish are	2. >			low 1-20%			I -	5 €
aity satid two tow 1-10/0 IIght Prinkingt			light brownshi yi	cy			biah - 400/				4 ¢
Silty Sand No IOW I-10% IIght Drownish			aronich hronism				nign >40%	NO NO			2 0
SILLY SALIA NO IOW I-10% UEVISILIDIOW				=			0/07-1 MOI				28
sanay slit No nign >20% light grey	No nign >20% light grey	high >20% light grey	light grey				1000 1-20%	NO			20
יארטאטון וושוו סלטאר וושוו טעו אוואט אווש פוועס וושוו טעו טוואט טעו סוועון סון סווען טען טען טען טען טען טען ט גע איזעיגיא איזע טען איזע פוועע פ	NO high 20% light of WIISH	high 200% IIght DioWrllSh	light ninuisil	giey ∿'			madium 21-40%				<u>5</u> 5
airty adriu ivo irigiti >2070 irgint pirikisri gre		ויישוו אבע איס וועוון אווואוצת קרפייניים איז	ingini pirihish gre	2						- c	4
slity sand ino IOW 1-10% reddish brown		IUW 1-1U% readish brown	readish brown				hign >40%	No		V	2

Open File 002E/09/1736 - Appendix B

PHOTOCAPTN																																																			
PHOTOID																																																			
COMMENTS			taken from top of small quarry																																																
SEE_NOTES	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	oN :	oN :	oN 2	No No	oN 1	oz z	oz :	No	oz z	oN :	oN :	oN :	oN :	oN :	No No			e N	No	No	No :	No						No No		No.	No	No	No	No	No	No
JOINTING																																																			
OXIDATION																																																			
COMPACTION																																																			
FISSILITY																																																			
FACET_CLST	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No No	No	No No	oN :	No	oN 2	o z	No	oN 2	oN 2	oN 2	No No	No	No No	No No			No No	No	No	No	No		NO					o N	No	No	No	No	No	No	No
STR_CLST	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	o Z	No S	o Z	No	No Z	oz z	No 2	No	oz z	o Z	o Z	No S	No	No S	oN o			No No	No	No	No	No Z							o Z	No	No	No	No	No	No	No
RANG_ROUND	very angular to subangular	very angular to subangular	very angular to subrounded	very angular to angular	very angular to angular	very angular to subangular	very angular to subangular	very angular to subrounded	very angular to subangular	very angular to subrounded	angular to subrounded	very angular to subangular	very angular to subrounded	very angular to subrounded	very angular to subangular	very angular to subangular	very angular to subrounded	very angular to subrounded	very angular to subrounded	very angular to rounded	very angular to subangular	very angular to subrounded	very angular to subangular	very angular to subrounded	very angular to subangular	very angular to subrounded	very angurat to subangular	very angular to subangular very apprilar to subapprilar	very angurar to subangurar	very angular to subrounded	very angular to subandular	very angular to angular	very angular to subrounded	very angular to subangular	very angular to subrounded	very angular to subangular	very angular to angular	very angular to subrounded													
MED_ROUND		very angular	very angular	very angular	angular	angular	angular	subangular	very angular	subangular	angular	subangular	angular	angular	angular	subangular	angular	angular	subangular	very angular	angular	angular	angular	subangular	subangular	angular	subangular	subangular	very angular	angular	very angular	very angular subandular	very angular	subangular	angular	angular	angular	supangular	subangular værv andilar	very angular	very angular væry angular	very arigurar escular	angular subandular	verv andular	angular	subangular	very angular	very angular	very angular	very angular	very angular

Open File 002E/09/1736 - Appendix B

РНОТОКЕУИР РНОТОСМИТ

APPENDIX C: Figures 13-67. Symbol Plots of Element Distributions

Figure 13.	Distribution of aluminum (Al2) in till
Figure 14.	Distribution of arsenic (As1) in till
Figure 15.	Distribution of arsenic (As2) in till
Figure 16.	Distribution of gold (Au1) in till
Figure 17.	Distribution of barium (Ba1) in till
Figure 18.	Distribution of barium (Ba2) in till
Figure 19.	Distribution of beryllium (Be2) in till
Figure 20.	Distribution of bromine (Br1) in till
Figure 21.	Distribution of calcium (Ca2) in till
Figure 22.	Distribution of cadmium (Cd2) in till
Figure 23	Distribution of cerium(Ce1) in till
Figure 24	Distribution of cerium(Ce2) in till
Figure 25.	Distribution of cobalt (Co1) in till
Figure 26.	Distribution of chromium (Cr1) in till
Figure 27	Distribution of chromium (Cr2) in till
Figure 28.	Distribution of cesium (Cs1) in till
Figure 29	Distribution of copper (Cu2) in till
Figure 30.	Distribution of dysprosium (Dy2) in till
Figure 31.	Distribution of europium (Eu1) in till
Figure 32.	Distribution of iron (Fe1) in till
Figure 33.	Distribution of hafnium (Hf1) in till
Figure 34.	Distribution of potassium (K2) in till
Figure 35.	Distribution of lanthanum (La1) in till
Figure 36.	Distribution of lanthanum (La2) in till
Figure 37.	Distribution of lithium (Li2) in till
Figure 38.	Distribution of loss-on-ignition (LOI) in till
Figure 39.	Distribution of lutetium (Lu1) in till
Figure 40.	Distribution of magnesium (Mg2) in till
Figure 41.	Distribution of manganese (Mn2) in till
Figure 42	Distribution of molybdenum (Mo1) in till
Figure 43.	Distribution of molybdenum (Mo2) in till
Figure 44.	Distribution of sodium (Na1) in till
Figure 45.	Distribution of sodium (Na2) in till
Figure 46.	Distribution of niobium (Nb2) in till
Figure 47.	Distribution of nickel (Ni2) in till
Figure 48.	Distribution of phosporous (P2) in till
Figure 49.	Distribution of lead (Pb2) in till
Figure 50.	Distribution of rubidium (Rb1) in till
Figure 51.	Distribution of rubidium (Rb2) in till
Figure 52.	Distribution of antimony (Sb1) in till
Figure 53.	Distribution of scandium (Sc1) in till
Figure 54.	Distribution of scandium (Sc2) in till
Figure 55.	Distribution of samarium (Sm1) in till

Figure 56.	Distribution of strontium (Sr2) in till
Figure 57.	Distribution of tantalum (Ta1) in till
Figure 58.	Distribution of terbium (Tb1) in till
Figure 59.	Distribution of thorium (Th1) in till
Figure 60.	Distribution of titanium (Ti2) in till
Figure 61.	Distribution of uranium (U1) in till
Figure 62.	Distribution of vanadium (V2) in till
Figure 63.	Distribution of tungsten (W1) in till
Figure 64.	Distribution of yttrium (Y2) in till
Figure 65.	Distribution of ytterbium (Yb1) in till
Figure 66.	Distribution of zinc (Zn2) in till
Figure 67.	Distribution of zirconium (Zr2) in till

Figure 13. Distribution of aluminum (AI2) in till.

Figure 14. Distribution of arsenic (As1) in till.

Figure 15. Distribution of arsenic (As2) in till.

Figure 16. Distribution of gold (Au1) in till.

Figure 17. Distribution of banum (Ba1) in till.

Figure 18. Distribution of barium (Ba2) in till.

Figure 19. Distribution of benyllium (Be2) in till.

Figure 20. Distribution of bromine (Br1) in till.

Figure 21. Distribution of calcium (Ca2) in till.

Figure 22. Distribution of cadmium (Cd2) in till.

Figure 23. Distribution of cerium (Ce1) in till.

Figure 24. Distribution of cerium (Ce2) in till.

Figure 25. Distribution of cobalt (Co1) in till.

Figure 26. Distribution of chromium (Cr1) in till.

Figure 27. Distribution of chromium (Cr2) in till.

Figure 28. Distribution of cesium (Cs1) in till.

Figure 29. Distribution of copper (Cu2) in till.

Figure 30. Distribution of dysprosium (Dy2) in till.

Figure 31. Distribution of europium (Eu1) in till.

Figure 32. Distribution of iron (Fe1) in till.

Figure 33. Distribution of hafnium (Hf1) in till.

Figure 34. Distribution of potassium (K2) in till.

Figure 35. Distribution of lanthanum (La1) in till.

Figure 36. Distribution of lanthanum (La2) in till.

Figure 37. Distribution of lithium (Li2) in till.

Figure 38. Distribution of loss-on-ignition (LOI) in till.

Figure 39. Distribution of lutetium (Lu1) in till.

Figure 40. Distribution of magnesium (Mg2) in till.

Figure 41. Distribution of manganese (Mn2) in till.

Figure 42. Distribution of molybdenum (Mo1) in till.

Figure 43. Distribution of molybdenum (Mo2) in till.

Figure 44. Distribution of sodium (Na1) in till.

Figure 45. Distribution of sodium (Na2) in till.

Figure 46. Distribution of niobium (Nb2) in till.

Figure 47. Distribution of nickel (Ni2) in till.

Figure 48. Distribution of phosphorous (P2) in till.

Figure 49. Distribution of lead (Pb2) in till.

Figure 50. Distribution of rubidium (Rb1) in till.

Figure 51. Distribution of rubidium (Rb2) in till.

Figure 52. Distribution of antimony (Sb1) in till.

Figure 53. Distribution of scandium (Sc1) in till.

Figure 54. Distribution of scandium (Sc2) in till.

Figure 55. Distribution of samarium (Sm1) in till.

Figure 56. Distribution of strontium (Sr2) in till.

Figure 57. Distribution of tantalum (Ta1) in till.

Figure 58. Distribution of terbium (Tb1) in till.

Figure 59. Distribution of thorium (Th1) in till.

Figure 60. Distribution of titanium (Ti2) in till.

Figure 61. Distribution of uranium (U1) in till.

Figure 62. Distribution of vanadium (V2) in till.

Figure 63. Distribution of tungsten (W1) in till.

Figure 64. Distribution of yttrium (Y2) in till.

Figure 65. Distribution of ytterbium (Yb 1) in till.

Figure 66. Distribution of zinc (Zn2) in till.

Figure 67. Distribution of zirconium (Zr2) in till.