

**Mines Branch** 

# COMPLETE GEOCHEMICAL DATA FOR DETAILED-SCALE LABRADOR LAKE SURVEYS, 1978-2005



J.W. McConnell

**Open File LAB/1465** 

St. John's, Newfoundland April, 2009

#### NOTE

Open File reports and maps issued by the Geological Survey Division of the Newfoundland and Labrador Department of Natural Resources are made available for public use. They have not been formally edited or peer reviewed, and are based upon preliminary data and evaluation.

The purchaser agrees not to provide a digital reproduction or copy of this product to a third party. Derivative products should acknowledge the source of the data.

#### DISCLAIMER

The Geological Survey, a division of the Department of Natural Resources (the "authors and publishers"), retains the sole right to the original data and information found in any product produced. The authors and publishers assume no legal liability or responsibility for any alterations, changes or misrepresentations made by third parties with respect to these products or the original data. Furthermore, the Geological Survey assumes no liability with respect to digital reproductions or copies of original products or for derivative products made by third parties. Please consult with the Geological Survey in order to ensure originality and correctness of data and/or products.

Recommended citation:

McConnell, J.W.

2009: Complete geochemical data for detailed-scale Labrador lake surveys, 1978-2005. Government of Newfoundland and Labrador, Department of Natural Resources, Geological Survey, Open File LAB/1465, 20 pages.



**Mines Branch** 

# COMPLETE GEOCHEMICAL DATA FOR DETAILED-SCALE LABRADOR LAKE SURVEYS, 1978-2005

J.W. McConnell

Open File LAB/1465



St. John's, Newfoundland April, 2009

### CONTENTS

|                                                                                                                                                                          | Page        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| INTRODUCTION                                                                                                                                                             | 1           |
| LOCATION AND DESCRIPTION OF SURVEYS                                                                                                                                      | 1           |
| SAMPLE COLLECTION PROCEDURES                                                                                                                                             | 1           |
| SAMPLE PREPARATION AND ANALYSES<br>PREPARATION<br>ANALYSES                                                                                                               | 1<br>1<br>2 |
| DATA QUALITY                                                                                                                                                             | 4           |
| DATA DESCRIPTION                                                                                                                                                         | 5           |
| ACKNOWLEDGMENTS                                                                                                                                                          | 6           |
| REFERENCES                                                                                                                                                               | 6           |
| <b>Note:</b> Appendices 1 and 2 are separate pdfs linked from the Table of Contents and also included as Excel files on the CD.                                          |             |
| <b>APPENDIX 1:</b> Sample numbers, UTM and NTS locations, field data and analyses of lake-sediment data (see file "OF-LAB1465_field_and_lake_sediment_data.xls" on CD)   |             |
| <b><u>APPENDIX 2</u></b> : Sample numbers, UTM and NTS locations, field data and analyses of lake-water data (see file "OF-LAB1465_field_and_lake_water_data.xls" on CD) |             |
| APPENDIX 3: Descriptions and formats of field and analytical variables for Excel file "OF-LAB1465_field_and_lake_sediment_data.xls" on CD                                | 8           |
| APPENDIX 4: Descriptions and formats of field and analytical variables for Excel file "OF-LAB1465_field_and_lake_water_data.xls" on CD                                   | 15          |

### **FIGURES**

| Figure 1. Locations of survey areas | •••• | 2 |
|-------------------------------------|------|---|
|-------------------------------------|------|---|

### **TABLES**

| Table 1. | Date, location and description of surveys    | 3 |
|----------|----------------------------------------------|---|
| Table 2. | Analytical methods for lake-sediment samples | 4 |
| Table 3. | Analytical methods for lake-water samples    | 5 |

#### ABSTRACT

The report provides all analytical data, and selected field data, obtained from the twelve detailed-scale lake-sediment and lake-water surveys conducted in Labrador by the Newfoundland and Labrador Geological Survey during the period 1978 to 2005. About 6300 samples were collected at an average site density of one per 4-5 km<sup>2</sup>. By comparison, regional lake data have a site density of approximately one per 15 km<sup>2</sup>. These data are particularly suitable for displaying in a geographic information system or for performing statistical analyses.

Although most of these data have been released previously as individual reports by survey, there are also many new data provided, particularly for some of the early surveys.

#### **INTRODUCTION**

This report releases all geochemical lake-sediment and lake-water data collected from detailed-scale lake surveys conducted in Labrador by the Newfoundland and Labrador Geological Survey, during the period 1978 to 2005. Most of the data have been released previously in various open-file reports. However, as new analytical methods became available, some samples were re-analyzed for additional elements and some of these data have not been released previously.

#### LOCATION AND DESCRIPTION OF SURVEYS

The surveys encompass many areas of Labrador. Their locations are shown in Figure 1. Twelve lakesediment and water surveys were conducted during the period 1978 to 2005. The survey date, numbers of sites sampled and principal target elements are summarized in Table 1. Previously unreleased data from additional analytical methods that are included in this report are also noted.

#### SAMPLE COLLECTION PROCEDURES

Sediment and water samples were obtained using a float-equipped 206-B Jet Ranger helicopter that touched down on the surface of lakes. Samples of lake water were collected before the sediment sampler was dropped to avoid water contamination. Samples were collected in purified Nalgene bottles. These were filled by immersing the bottles about 40 cm below the lake surface. Prior to sampling, the bottles were acid leached in the laboratory, and washed with distilled and de-ionized water.

Collection of sediment involved dropping a weighted, steel, tubular sampler fitted with a nylon rope for retrieval. A butterfly valve in the bottom of the tube opened upon impact with the sediment and closed upon retrieval, trapping the contained sediment. Samples were stored in water-resistant Kraft paper bags. Markings on the rope permitted determination of the sample depth. Other observations made during sampling included coordinates of the site, the nature of vegetation surrounding the lake, sediment colour, texture and composition and water colour.

Additionally, approximately one site in 20 was sampled in duplicate. These site duplicate samples were collected about 50 m apart. In general, smaller lakes were sampled in these surveys than was the case for the regional surveys, in which the objective had been to obtain a broader geochemical perspective. Normally, the centre of the lake (or if apparent from the air, the central basinal portion of the lake) was sampled. On some deep lakes (>20-25 m), no sample was retrieved in lake centres and a sample from a shallower site closer to shore was obtained. Sampling of a typical site took about one minute between touchdown and takeoff.

#### SAMPLE PREPARATION AND ANALYSES

#### PREPARATION

Lake sediments were partially air-dried in the field prior to shipping to the Departmental Laboratory for final oven-drying at 40°C. The samples were then disaggregated using a mortar and pestle before



Figure 1. Locations of survey areas.

being screened through a 180 micron stainless-steel sieve. The fine fraction was retained for chemical analyses. To monitor analytical precision, five percent of the samples were randomly selected, split and included as blind duplicates in all analytical procedures. Water samples were stored in a cool environment prior to shipping to St. John's. At the laboratory, waters were filtered using a 0.45 µm millipore filtration apparatus.

#### ANALYSES

Lake sediment was analyzed using up to ten methods for a large suite of elements plus loss-on-ignition (Table 2). To enable the user to readily distinguish the method of analysis for a given element, a suffix is attached to the element symbol when used in most tables.

Lake water was analyzed by several methods for a large suite of elements; these vary by survey. The methods used for the water analyses are summarized in Table 3.

| Survey<br>Date      | NTS Areas<br>(all or part of)                                                                                                                                               | Sites<br>Sampled | Principal Target<br>Elements             | New<br>Data               |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------|---------------------------|
| 1978 <sup>1</sup>   | 13B03, 13B04, 13B11,13F14, 13F15, 13G09,<br>13G10, 13G13, 13G14, 13G15, 13G16,<br>13H04, 13H05, 13H12, 13I11, 13I12,<br>13I13, 13J03, 13J09, 13J16                          | 702              | U                                        | ICP-ES<br>and INAA        |
| 1979 <sup>2</sup>   | 13M04, 13M05, 13M06, 13M09, 13M16,<br>13N01, 13N02, 13N03, 13N06, 13N07,<br>13N11, 13N14, 13O04, 14D10, 14D11,<br>23G09, 23G10, 23G15, 23J02, 23J09,<br>23J10, 23J15, 23J16 | 777              | U, Cu, Ni and Zn                         | ICP-ES<br>and INAA        |
| 1983 <sup>3,4</sup> | 14D05 and 24A08                                                                                                                                                             | 101              | U and rare-earth and associated elements | none                      |
| 19854               | 13E15, 13L01, 13L02, 13L13, 14D05, 14D07, 14D10, 23I07, 23I08, 23I09, 23I10                                                                                                 | 404              | U and rare-earth and associated elements | INAA                      |
| 19855               | 23003, 23J10, 23J11, 23J14, 23J15                                                                                                                                           | 218              | Au and associated elements               | Fe, Mn and<br>Zn in water |
| 1986                | 23G07, 23J02, 23J03, 23J06, 23J07, 23J10, 23J11                                                                                                                             | 473              | Au                                       | ICP-ES                    |
| 19876               | 23B14, 23G02, 23G03, 23G07, 23G15, 23J02, 23J06, 23J11                                                                                                                      | 592              | Au                                       | ICP-ES                    |
| 19967               | 13N02, 13N03, 13N06, 13N07                                                                                                                                                  | 579              | Au and base metals                       | none                      |
| 1998 <sup>8</sup>   | 13E06, 13E07, 13E09, 13E10, 13K05, 13K13,<br>13K14, 13L01, 13L08, 13L16, 13M01,<br>13M08, 13M09, 13N04, 13N05, 13N12                                                        | 938              | Ni, Cu, Co (Au,<br>Pt and Pd)            | none                      |
| 2002°               | 23A13, 23A14, 23A15, 23G01, 23G08,<br>23H01, 23H02, 23H03, 23H04, 23H05,<br>23H06, 23H07, 23H08                                                                             | 506              | Cu, Ni, Pt and Pd                        | none                      |
| 200410              | 13K11 and 13K14                                                                                                                                                             | 259              | U, Cu and Ni                             | none                      |
| 200511              | 13J11, 13J12, 13J13, 13K09, 13K16,<br>13N01, 13N04                                                                                                                          | 775              | U                                        | none                      |

#### Table 1. Date, location and description of surveys

References: <sup>1</sup>McConnell (1979); <sup>2</sup>McConnell (1980); <sup>3</sup>McConnell and Batterson (1987); <sup>4</sup>McConnell (1988); <sup>5</sup>Butler (1988); <sup>6</sup>Butler and McConnell (1989); <sup>7</sup>McConnell (1999); <sup>8</sup>McConnell (2000); <sup>9</sup>McConnell (2005); <sup>10</sup>McConnell et al. (2007); <sup>11</sup>McConnell and Ricketts (2008).

| Numeric<br>Suffix | Elements                                                                                                                                          | Method                                                          | Digestion/Preparation/<br>External Laboratory         |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------|
| 1. eg. Au1        | (Ag), As, Au, Ba, Br, Ca, Ce, Co, Cr,<br>Cs, Eu, Fe, Hf, La, Lu, Mo, Na, Nd,<br>(Ni), (Rb), Sb, Sc, Sm, (Sr), Ta, Tb,<br>Th, U, W, Yb, (Zn), (Zr) | Instrumental Neutron<br>Activation Analysis<br>(INAA)           | 5 to 10 g in shrink-wrapped vial/Becquerel or Actlabs |
| 2. eg. Fe2        | Al, (As), Ba, Be, Ca, Cd, Ce, Co, Cr,<br>Cu, Dy, Fe, K, La, Li, Mg, Mn, Mo,<br>Na, Nb, Ni*, P, Pb, Rb*, Sc,<br>Sr*, Ti, V, Y, Zn*, Zr*            | Inductively Coupled<br>Plasma-Emission<br>Spectrometry (ICP-ES) | HF-HClO <sub>4</sub> -HCl<br>(total digestion)        |
| 3. eg. Fe3        | Ag, Ba, Be, Cd, Cu, Co, Cu, Fe, Li,<br>Mn, Ni, Pb, Sr, Zn                                                                                         | Atomic Absorption<br>Spectrophotometry<br>(AAS)                 | HNO <sub>3</sub> -HCl (aqua regia)                    |
| 5. Mo5            | Мо                                                                                                                                                | Atomic Absorption<br>Spectrophotometry<br>(AAS)                 | HNO <sub>3</sub> /HCl/Al <sup>3+</sup>                |
| 6. Ag6            | Ag                                                                                                                                                | Atomic Absorption<br>Spectrophotometry<br>(AAS)                 | HNO <sub>3</sub>                                      |
| 8. U8             | U                                                                                                                                                 | Delayed Nuclear Activation                                      | Neutron Activation Services                           |
| 9. F9             | F                                                                                                                                                 | Ion-selective electrode                                         |                                                       |
| 25. eg. Cr25      | Cr and Zr                                                                                                                                         | Inductively Coupled<br>Plasma-Emission<br>Spectrometry (ICP-ES) | LiBO <sub>2</sub> fusion                              |
| 26. U26           | U                                                                                                                                                 | Neutron Activation                                              | Atomic Energy Canada Ltd.                             |
| 27. eg. Pt27      | Au, Pd and Pt                                                                                                                                     | Fire Assay-ICP-Mass<br>Spectrometry                             | Actlabs                                               |

#### Table 2. Analytical methods for lake-sediment samples

Note: (Element) indicates a lesser quality analysis. Use alternate analysis indicated by \*.

#### **DATA QUALITY**

To ensure the reliability of the analytical data, three means of determining data accuracy and precision were employed. During sample collection, pairs of sediment samples and pairs of water samples were obtained from lakes at the rate of approximately one per twenty sites. Analyses of these site duplicates give an appreciation of within-lake data variation. The duplicate samples were taken about 50 m apart.

| Numeric<br>Suffix           | Elements/Variables                                                                                                                                                       | Method                                                                                     | Preparation/External<br>Laboratory                           |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 1. eg. Few1                 | Ca, Fe, K, Mg, Mn, Na, Si, SO <sub>4</sub>                                                                                                                               | Inductively Coupled Plasma-<br>Emission Spectrometry <sup>1</sup>                          | Filtration (0.45 $\mu$ m) and HNO <sub>3</sub> acidification |
| 2. eg. Cuw2                 | Al, Ba, Be, Co, Cr, Cu, Li, Mo, Ni,<br>P, Pb, Sr, Ti, V, Y, Zn                                                                                                           | Inductively Coupled Plasma-<br>Emission Spectrometry-<br>ultrasonic nebulizer <sup>1</sup> | Filtration (0.45 $\mu$ m) and HNO <sub>3</sub> acidification |
| 3. eg. Cuw3                 | Al, As, Ba, Be, Cd, Ce, Co, Cr, Cs, Cu,<br>Dy, Er, Eu, Fe, Gd, Ho, In, La, Li, Lu,<br>Mn, Mo, Nd, Ni, Pb, Pr, Rb, Re, Se, Sm,<br>Sr, Tb, Th, Ti, Tl, Tm, U, V, Y, Yb, Zn | Inductively Coupled Plasma-<br>Emission Mass Spectrometry                                  | Filtration (0.45 $\mu$ m) and HNO <sub>3</sub> acidification |
| 9. Fw9                      | F                                                                                                                                                                        | Ion-selective electrode                                                                    |                                                              |
| 10. Uw10                    | U                                                                                                                                                                        | Fluorometry                                                                                | Bondar-Clegg                                                 |
| 12. Znw12                   | Zn                                                                                                                                                                       | Dithizone/colorimetric                                                                     |                                                              |
|                             | conductivity                                                                                                                                                             | Corning conductivity sensor                                                                |                                                              |
|                             | рН                                                                                                                                                                       | Corning combination pH electrode                                                           |                                                              |
|                             | heavy metals                                                                                                                                                             | Colorimetric                                                                               |                                                              |
| <sup>1</sup> Finch, C.J. (1 | 998)                                                                                                                                                                     |                                                                                            | _                                                            |

#### Table 3. Analytical methods for lake-water samples

At the analytical stage, a sample split, or laboratory duplicate, was inserted within every batch of 20 samples and a standard of known composition was similarly included. For sediment, international reference standards composed of lake-sediment material were used, notably LKSD-1, LKSD-2, LKSD-3 and LKSD-4. For water, standards used consisted of both naturally occurring water and synthetic standards created in the laboratory to predetermined compositions. The results of these standards were monitored to ensure analytical accuracy and precision.

#### **DATA DESCRIPTION**

The data are included as Excel files on the CD. A selection of field data and all analytical lake-sediment data are in file "OF\_LAB\_1465\_field\_and\_lake\_sediment\_data.xls". Similar field data and all analytical water data are in file "OF\_LAB\_1465\_field\_and\_lake\_water\_data.xls". The variables are described and data formats explained for the Excel files in Appendices 3 and 4.

#### ACKNOWLEDGMENTS

Over the many years these surveys were conducted, several dozen students from Memorial University provided field and office support. Jim Butler conducted two of the surveys, Jerry Ricketts assisted in two and conducted another and Shirley McCuaig provided the field leadership in another. Chris Finch provided or coordinated many of the analyses. Another veteran, Wayne Tuttle, provided invaluable logistical support throughout the period. Martin Batterson reviewed the manuscript and Dave Leonard drafted the figure. All are thanked for their contributions.

#### REFERENCES

#### Butler, A.J.

1988: Detailed lake sediment surveys in Howell's River area for gold and associated elements. Government of Newfoundland and Labrador, Department of Mines, Mineral Development Division, Open File LAB/0771, 8 pages plus appendix.

#### Butler, A.J. and McConnell, J.W.

1989: Lake sediment survey of the Ashuanipi Complex, western Labrador, for gold and associated elements. Government of Newfoundland and Labrador, Department of Mines and Energy, Geological Survey Branch, Open File LAB/0841, 89 pages.

#### Finch, C.J.

1998: Inductively coupled plasma-emission spectrometry (ICP-ES) at the Geochemical Laboratory. *In* Current Research. Newfoundland Department of Mines and Energy, Geological Survey, Report 98-1, pages 179-193.

#### McConnell, J.W.

1978: Geochemical lake sediment, water, radiometric, rock and overburden surveys in Labrador: follow-up studies of 10 anomalous areas within the 1977 Uranium Reconnaissance Program lake survey. Government of Newfoundland, Department of Mines and Energy, Mineral Development Division, Open File LAB/0408, 28 pages.

1980: Detailed lake sediment, water and radiometric surveys of 14 base metal and uranium anomalies in Labrador. Government of Newfoundland and Labrador, Department of Mines and Energy, Mineral Development Division, Open File LAB/0224, 37 pages.

1988: Lake sediment and water geochemical surveys for rare-metal mineralization in granitoid terranes in Churchill Province, Labrador. Government of Newfoundland and Labrador, Department of Mines, Mineral Development Division, Open File LAB/0772, 107 pages. 1998: Geochemical mapping employing high-density lake sediment and water sampling in central Labrador (NTS 13N/2, 3, 6 and 7). Government of Newfoundland and Labrador, Department of Mines and Energy, Geological Survey, Open File 13N/0084, 50 pages.

2000: Geochemical mapping employing high-density lake-sediment and water sampling over four prospective base-metal terranes in central Labrador (parts of NTS 13E, K, L, M and N). Government of Newfoundland and Labrador, Department of Mines and Energy, Geological Survey, Open File LAB/1311, 80 pages.

2002: A pilot study of the distribution of platinum and palladium in lake sediment and soil in central Labrador (parts of NTS areas 13E, K, M and N). Government of Newfoundland and Labrador, Department of Mines and Energy, Geological Survey, Open File LAB/1362, 35 pages.

2005: Lake sediment and water survey for copper, nickel and platinum group elements over the Ossok Mountain Intrusive Suite, western Labrador [parts of NTS 23A, 23G and 23H]. Government of Newfoundland and Labrador, Department of Natural Resources, Geological Survey, Open File LAB/1397, 61 pages.

McConnell, J.W. and Batterson, M.J.

1987: The Strange Lake Zr-Y-Nb-Be-REE deposit, Labrador: A geochemical profile in till, lake and stream sediment and water. Elsevier Publishing, Journal of Geochemical Exploration, 29, pages 105-127.

McConnell, J.W. and Ricketts, M.J.

2008: A high-density lake-sediment and water survey in eastern Labrador [NTS map areas 13J/11, 13J/12, 13J/13, 13K/9, 13K/16, 13N/1, and 13O/4]. Government of Newfoundland and Labrador, Department of Natural Resources, Geological Survey, Open File LAB/1427, 238 pages.

McConnell, J.W., Ricketts, M.J. and McCuaig, S.J.

2007: A high-density lake-sediment and water survey in NTS areas 13K/11 and 13K/14, central Labrador. Government of Newfoundland and Labrador, Department of Natural Resources, Geological Survey, Open File 13K/0292, 104 pages.

#### **APPENDIX 3**

Descriptions and formats of field and analytical variables for Excel file "OF-"LAB1465\_field\_and\_lake\_ sediment\_data.xls" on enclosed CD-ROM

### 1. List of Variables

| fldnum   | labnum | samptype | sampyear | subnum | sitedup | utmzone | utmeast |
|----------|--------|----------|----------|--------|---------|---------|---------|
| utmnorth | nts    | area_km2 | depth_m  | veg    | colour  | comp    | Ag1     |
| Ag3      | Ag6    | Al2      | As1      | As2    | Au1     | Au27    | Ba1     |
| Ba2      | Ba3    | Be2      | Be3      | Br1    | Cal     | Ca2     | Cd1     |
| Cd2      | Cd3    | Cel      | Ce2      | Col    | Co2     | Co3     | Cr1     |
| Cr2      | Cr25   | Cs1      | Cu2      | Cu3    | Dy2     | Eu1     | F9      |
| Fe1      | Fe2    | Fe3      | Ga2      | Hf1    | K2      | Lal     | La2     |
| Li2      | Li3    | LOI      | Lu1      | Mg2    | Mn2     | Mn3     | Mo1     |
| Mo2      | Mo5    | Na1      | Na2      | Nb2    | Nd1     | Ni1     | Ni2     |
| Ni3      | P2     | Pb2      | Pb3      | Pd27   | pH_sed  | Pt27    | Rb1     |
| Rb2      | Sb1    | Sc1      | Sc2      | Se1    | Sm1     | Sr1     | Sr2     |
| Sr3      | Ta1    | Tb1      | Th1      | Th2    | Ti2     | U1      | U26     |
| U8       | V2     | W1       | Y2       | Yb1    | Zn1     | Zn2     | Zn3     |
| Zr1      | Zr2    | Zr25     |          |        |         |         |         |

### 2. Description of Field and Lake-Sediment Analytical Variables

#### FIELD VARIABLES

| VARIABLE | DESCRIPTION                                                                                                         |
|----------|---------------------------------------------------------------------------------------------------------------------|
| fldnum   | Field number (fldnum is common to both water and sediment files and can be used to match /merge the two files)      |
| labnum   | Laboratory number (labnum is common to both water and sediment files and can be used to match /merge the two files) |
| samptype | Sample type                                                                                                         |
| sampyear | Year of sampling                                                                                                    |
| subnum   | Last 4 digits of fldnum                                                                                             |
| sitedup  | Site duplicate                                                                                                      |
| utmzone  | UTM zone number                                                                                                     |
| utmeast  | UTM easting (m)                                                                                                     |
| utmnorth | UTM northing (m)                                                                                                    |
| nts      | 1:50 000 scale NTS map                                                                                              |
| area_km2 | Lake area (km2)                                                                                                     |
| depth_m  | Sample depth (m)                                                                                                    |
| veg      | Vegetation around lake                                                                                              |
| colour   | Sediment colour                                                                                                     |
| comp     | Sediment composition                                                                                                |

### ANALYTICAL VARIABLES

| VARIABLE | NAME       | DESCRIPTION                           |
|----------|------------|---------------------------------------|
| Agl      | silver     | ppm; INAA                             |
| Ag3      | silver     | ppm; Aqua Regia/AA                    |
| Ag6      | silver     | ppm; HNO <sub>3</sub> ; AA            |
| Al2      | aluminum   | wt.%; HC1O <sub>4</sub> -HF-HCl; ICP  |
| As1      | arsenic    | ppm; INAA                             |
| As2      | arsenic    | ppm; HC1O₄-HF-HCl; ICP                |
| Au1      | gold       | ppb; INAA                             |
| Au27     | gold       | ppb; FA-ICP-MS; Actlabs               |
| Ba1      | barium     | ppm; INAA                             |
| Ba2      | barium     | ppm; HC1O <sub>4</sub> -HF-HCl; ICP   |
| Ba3      | barium     | ppm; Aqua Regia/AA                    |
| Be2      | beryllium  | ppm; HC1O <sub>4</sub> -HF-HCl; ICP   |
| Be3      | beryllium  | ppm; Aqua Regia/AA                    |
| Br1      | bromine    | ppm; INAA                             |
| Cal      | calcium    | wt.%; INAA                            |
| Ca2      | calcium    | wt.%; HC1O <sub>4</sub> -HF-HCl; ICP  |
| Cd1      | cadmium    | ppm; INAA                             |
| Cd2      | cadmium    | ppm; HC1O <sub>4</sub> -HF-HCl; ICP   |
| Cd3      | cadmium    | ppm; Aqua Regia/AA                    |
| Cel      | cerium     | ppm; INAA                             |
| Ce2      | cerium     | ppm; HC1O <sub>4</sub> -HF-HCl; ICP   |
| Col      | cobalt     | ppm; INAA                             |
| Co2      | cobalt     | ppm; HC1O <sub>4</sub> -HF-HCl; ICP   |
| Co3      | cobalt     | ppm; Aqua Regia/AA                    |
| Cr1      | chromium   | ppm; INAA                             |
| Cr2      | chromium   | ppm; HC1O <sub>4</sub> -HF-HCl; ICP   |
| Cr25     | chromium   | ppm; LiBO <sub>2</sub> fusion; ICP-ES |
| Cs1      | cesium     | ppm; INAA                             |
| Cu2      | copper     | ppm; HC1O <sub>4</sub> -HF-HCl; ICP   |
| Cu3      | copper     | ppm; Aqua Regia/AA                    |
| Dy2      | dysprosium | ppm; HC1O <sub>4</sub> -HF-HCl; ICP   |
| Eu1      | europium   | ppm; INAA                             |
| F9       | fluoride   | ppm; ion-selective electrode          |
| Fe1      | iron       | wt.%; INAA                            |
| Fe2      | iron       | wt.%; HC1O <sub>4</sub> -HF-HCl; ICP  |
| Fe3      | iron       | wt.%; Aqua Regia/AA                   |
| Ga2      | gallium    | ppm; HC1O <sub>4</sub> -HF-HCl; ICP   |
| Hf1      | hafnium    | ppm; INAA                             |
| K2       | potassium  | wt.%; HC1O <sub>4</sub> -HF-HCl; ICP  |
| La1      | lanthanum  | ppm; INAA                             |
| La2      | lanthanum  | ppm; HC1O <sub>4</sub> -HF-HCl; ICP   |

| VARIABLE | NAME             | DESCRIPTION                           |
|----------|------------------|---------------------------------------|
| Li2      | lithium          | ppm: HC10,-HF-HC1: ICP                |
| Li3      | lithium          | ppm: Aqua Regia/AA                    |
| LOI      | loss-on-ignition | wt % loss-on-ignition                 |
| Lul      | lutetium         | npm <sup>.</sup> INAA                 |
| Mg2      | magnesium        | wt % HC10HF-HCl ICP                   |
| Mn2      | manganese        | ppm: HC1Q,-HF-HC1: ICP                |
| Mn3      | manganese        | ppm: Aqua Regia/AA                    |
| Mol      | molybdenum       | ppm. INAA                             |
| Mo2      | molybdenum       | ppm; HC10,-HF-HC1 <sup>·</sup> ICP    |
| Mo5      | molybdenum       | ppm: $HNO_/HCI/A13+/AA$               |
| Nal      | sodium           | wt % INAA                             |
| Na2      | sodium           | wt.%: HC10,-HF-HC1: ICP               |
| Nb2      | niobium          | ppm: HC10 <sub>4</sub> -HF-HC1: ICP   |
| Nd1      | neodymium        | ppm: INAA                             |
| Ni1      | nickel           | ppm: INAA                             |
| Ni2      | nickel           | ppm: HC10 <sub>4</sub> -HF-HC1: ICP   |
| Ni3      | nickel           | ppm: 4M HNO <sub>2</sub> -1M HC1: AAS |
| P2       | phosphorous      | ppm: HC1O <sub>4</sub> -HF-HC1: ICP   |
| Pb2      | lead             | ppm; HC10 <sub>4</sub> -HF-HC1; ICP   |
| Pb3      | lead             | ppm: Aqua Regia/AA                    |
| Pd27     | palladium        | ppb; FA-ICP-MS; Actlabs               |
| pH sed   | рН               | pH of sediment by indicator paper     |
| Pt27     | platinum         | ppb; FA-ICP-MS; Actlabs               |
| Rb1      | rubidium         | ppm; INAA                             |
| Rb2      | rubidium         | ppm; HC1O <sub>4</sub> -HF-HCl; AAS   |
| Sb1      | antimony         | ppm; INAA                             |
| Sc1      | scandium         | ppm; INAA                             |
| Sc2      | scandium         | ppm; HC1O <sub>4</sub> -HF-HCl; ICP   |
| Se1      | selenium         | ppm; INAA                             |
| Sm1      | sumarium         | ppm; INAA                             |
| Sr1      | strontium        | ppm; wt.%; INAA                       |
| Sr2      | strontium        | ppm; HC1O4-HF-HCl; ICP                |
| Sr3      | strontium        | ppm; Aqua Regia/AA                    |
| Ta1      | tantalum         | ppm; INAA                             |
| Tb1      | terbium          | ppm; INAA                             |
| Th1      | thorium          | ppm; INAA                             |
| Th2      | thorium          | ppm; HC1O <sub>4</sub> -HF-HCl; ICP   |
| Ti2      | titanium         | ppm; HC1O <sub>4</sub> -HF-HCl; ICP   |
| U1       | uranium          | ppm; INAA                             |
| U26      | uranium          | ppm; neutron activation; AECL         |
| U8       | uranium          | ppm; NAS; nuclear activation          |
| V2       | vanadium         | ppm; HC1O <sub>4</sub> -HF-HCl; ICP   |
| W1       | tungsten         | ppm; INAA                             |

| VARIABLE | NAME      | DESCRIPTION                           |
|----------|-----------|---------------------------------------|
| Y2       | yttrium   | ppm; HC1O₄-HF-HCl; ICP                |
| Yb1      | ytterbium | ppm; INAA                             |
| Zn1      | zinc      | ppm; INAA; Actlabs                    |
| Zn2      | zinc      | ppm; HC1O₄-HF-HCl; ICP                |
| Zn3      | zinc      | ppm; Aqua Regia/AA                    |
| Zr1      | zirconium | ppm; INAA                             |
| Zr2      | zirconium | ppm; HC1O₄-HF-HCl; ICP                |
| Zr25     | zirconium | ppm; LiBO <sub>2</sub> fusion; ICP-ES |

### GUIDE TO MEANING OF NUMERIC FIELD VARIABLE VALUES

| VARIABLE | NUMERIC VALUE                                          | MEANING                                                                                                                                  |
|----------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| samptype | 2<br>5<br>7                                            | lake sediment only<br>lake sediment and water<br>lake water                                                                              |
| sitedup  | 0<br>1<br>2                                            | routine single sample<br>1st of site dup. pair<br>2nd of site dup. pair                                                                  |
| veg      | 1<br>2<br>3<br>4<br>5<br>6<br>7                        | forest<br>bog<br>mixed bog & forest<br>barren (>25% rock)<br>burned<br>rock and forest<br>tundra (<25% rock)                             |
| colour   | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>10<br>13<br>14 | tan-yellow<br>brown<br>brown, jelly-like<br>chocolate-brown<br>greenish brown<br>green<br>grey<br>black<br>orange<br>grey-brown<br>other |
| comp     | 1<br>2                                                 | clastic, fine grained clastic, coarse grained                                                                                            |

| VARIABLE | NUMERIC VALUE | MEANING                                           |
|----------|---------------|---------------------------------------------------|
|          | 3<br>4<br>5   | organic ooze<br>granular oganic<br>organic, peaty |

## 3. Data formats of field and analytical variables

84 variables and 6601 cases

#### **Field Data Variables**

| VARIABLE         | VARIABLE TYPE | COLUMN WIDTH | NO. DECIMALS |
|------------------|---------------|--------------|--------------|
| Ø 4              | NT            | 7            | 0            |
| lahawaa          | Numeric       | 1<br>7       | 0            |
|                  | Numeric       | /            | 0            |
| samptype         | Numeric       | 1            | 0            |
| sampyear         | Numeric       | 4            | 0            |
| subnum           | Numeric       | 4            | 0            |
| sitedup          | Numeric       |              | 0            |
| utmzone          | Numeric       | 2            | 0            |
| utmeast          | Numeric       | 6            | 0            |
| utmnorth         | Numeric       | 7            | 0            |
| nts              | String        | 5            |              |
| area_km2         | Numeric       | 8            | 2            |
| depth_m          | Numeric       | 5            | 1            |
| veg              | Numeric       | 1            | 0            |
| colour           | Numeric       | 2            | 0            |
| comp             | Numeric       | 1            | 0            |
| Analytical Varia | blog          |              |              |
| Analytical valla | inies         |              |              |
| Ag1              | Numeric       | 5            | 1            |
| Ag3              | Numeric       | 3            | 2            |
| Ag6              | Numeric       | 5            | 1            |
| Al2              | Numeric       | 5            | 2            |
| As1              | Numeric       | 5            | 1            |
| As2              | Numeric       | 3            | 0            |
| Au1              | Numeric       | 5            | 1            |
| Au27             | Numeric       | 5            | 1            |
| Bal              | Numeric       | 5            | 0            |
| Ba2              | Numeric       | 5            | 0            |
| Ba3              | Numeric       | 5            | 0            |
| Be2              | Numeric       | 4            | 1            |
|                  |               |              |              |

VARIABLE VARIABLE TYPE COLUMN WIDTH NO. DECIMALS

| Br1  | Numeric | 5 | 1 |
|------|---------|---|---|
| Cal  | Numeric | 4 | 1 |
| Ca2  | Numeric | 5 | 2 |
| Cd1  | Numeric | 5 | 1 |
| Cd2  | Numeric | 4 | 1 |
| Cd3  | Numeric | 4 | 1 |
| Cel  | Numeric | 5 | 0 |
| Ce2  | Numeric | 4 | 0 |
| Co1  | Numeric | 5 | 0 |
| Co2  | Numeric | 4 | 0 |
| Co3  | Numeric | 4 | 0 |
| Cr1  | Numeric | 5 | 0 |
| Cr2  | Numeric | 4 | 0 |
| Cr25 | Numeric | 3 | 0 |
| Cs1  | Numeric | 5 | 1 |
| Cu2  | Numeric | 4 | 0 |
| Cu3  | Numeric | 4 | 0 |
| Dv2  | Numeric | 5 | 1 |
| Eu1  | Numeric | 5 | 1 |
| F9   | Numeric | 5 | 0 |
| Fe1  | Numeric | 5 | 2 |
| Fe2  | Numeric | 6 | 2 |
| Fe3  | Numeric | 5 | 2 |
| Ga2  | Numeric | 4 | 0 |
| Hf1  | Numeric | 5 | 1 |
| K2   | Numeric | 5 | 2 |
| Lal  | Numeric | 5 | 0 |
| La2  | Numeric | 4 | 0 |
| Li2  | Numeric | 5 | 1 |
| Li3  | Numeric | 3 | 0 |
| LOI  | Numeric | 4 | 1 |
| Lu1  | Numeric | 6 | 2 |
| Mg2  | Numeric | 5 | 2 |
| Mn2  | Numeric | 6 | 0 |
| Mn3  | Numeric | 6 | 0 |
| Mo1  | Numeric | 5 | 1 |
| Mo2  | Numeric | 5 | 1 |
| Mo5  | Numeric | 4 | 0 |
| Na1  | Numeric | 6 | 2 |
| Na2  | Numeric | 5 | 2 |
| Nb2  | Numeric | 3 | 0 |
| Nd1  | Numeric | 3 | 0 |
| Ni1  | Numeric | 5 | 0 |

| Ni2    | Numeric | 4 | 0 |
|--------|---------|---|---|
| Ni3    | Numeric | 4 | 0 |
| P2     | Numeric | 5 | 0 |
| Pb2    | Numeric | 3 | 0 |
| Pb3    | Numeric | 4 | 0 |
| Pd27   | Numeric | 7 | 1 |
| pH_sed | Numeric | 3 | 1 |
| Pt27   | Numeric | 7 | 1 |
| Rb1    | Numeric | 5 | 0 |
| Rb2    | Numeric | 3 | 0 |
| Sb1    | Numeric | 6 | 2 |
| Sc1    | Numeric | 5 | 1 |
| Sc2    | Numeric | 5 | 1 |
| Se1    | Numeric | 5 | 1 |
| Sm1    | Numeric | 5 | 1 |
| Sr1    | Numeric | 4 | 2 |
| Sr2    | Numeric | 4 | 0 |
| Sr3    | Numeric | 4 | 0 |
| Ta1    | Numeric | 5 | 1 |
| Tb1    | Numeric | 5 | 1 |
| Th1    | Numeric | 5 | 1 |
| Th2    | Numeric | 3 | 0 |
| Ti2    | Numeric | 5 | 0 |
| U1     | Numeric | 5 | 1 |
| U26    | Numeric | 5 | 1 |
| U8     | Numeric | 6 | 2 |
| V2     | Numeric | 4 | 0 |
| W1     | Numeric | 5 | 1 |
| Y2     | Numeric | 3 | 0 |
| Yb1    | Numeric | 5 | 1 |
| Zn1    | Numeric | 4 | 0 |
| Zn2    | Numeric | 4 | 0 |
| Zn3    | Numeric | 5 | 0 |
| Zr1    | Numeric | 5 | 0 |
| Zr2    | Numeric | 4 | 0 |
| Zr25   | Numeric | 5 | 0 |

#### **APPENDIX 4**

Descriptions and formats of field and analytical variables for Excel file "OF-"LAB1465\_field\_and\_lake\_water\_data.xls" on enclosed CD-ROM

### 1. List of Variables

| fldnum   | labnum | samptype | sampyear | subnum | sitedup | utmzone | utmeast  |
|----------|--------|----------|----------|--------|---------|---------|----------|
| utmnorth | nts    | area_km2 | depth_m  | veg    | conduct | pH_w    | hvymtl_w |
| Alw2     | Asw2   | Asw3     | Baw2     | Baw3   | Bew2    | Bew3    | Caw1     |
| Cdw3     | Cew3   | Cow2     | Cow3     | Crw2   | Crw3    | Csw3    | Cuw2     |
| Cuw3     | Dyw3   | Erw3     | Euw3     | Fw9    | Few1    | Few3    | Gdw3     |
| How3     | Inw3   | Kw1      | Law3     | Liw2   | Liw3    | Luw3    | Mgw1     |
| Mnw1     | Mnw3   | Mow2     | Mow3     | Naw1   | Ndw3    | Niw2    | Niw3     |
| Pw2      | Pbw2   | Pbw3     | Prw3     | Rbw3   | Rew3    | Sew3    | Siw1     |
| Smw3     | SO4w1  | Srw2     | Srw3     | Tbw3   | Thw3    | Tiw2    | Tiw3     |
| Tlw3     | Tmw3   | Uw10     | Uw3      | Vw2    | Vw3     | Yw2     | Yw3      |
| Ybw3     | Znw12  | Znw2     | Znw3     |        |         |         |          |

### 2. Description of Field and Lake-Water Analytical Variables

#### FIELD VARIABLES

| VARIABLE | DESCRIPTION                                                                                                                |
|----------|----------------------------------------------------------------------------------------------------------------------------|
| fldnum   | Field sample number (fldnum is common to both water and sediment files and can                                             |
|          | be used to match /merge the two files)                                                                                     |
| labnum   | Laboratory sample number (labnum is common to both water and sediment files and can be used to match /merge the two files) |
| samptype | Sample type                                                                                                                |
| sampyear | Year of sampling                                                                                                           |
| subnum   | Last 4 digits of fldnum                                                                                                    |
| sitedup  | Site duplicate                                                                                                             |
| utmzone  | UTM zone number                                                                                                            |
| utmeast  | UTM easting (m)                                                                                                            |
| utmnorth | UTM northing (m)                                                                                                           |
| nts      | 1:50 000-scale NTS map                                                                                                     |
| area_km2 | Lake area (km2)                                                                                                            |
| depth_m  | Sample depth (m)                                                                                                           |
| veg      | Vegetation around lake                                                                                                     |
|          |                                                                                                                            |

#### ANALYTICAL VARIABLES

#### VARIABLE NAME

DESCRIPTION

| conduct  | conductivity | water conductivity (µS); Corning meter    |
|----------|--------------|-------------------------------------------|
| pH_w     | pH of water  | pH of water; Corning meter                |
| hvymtl_w | heavy metals | ppb; colorimetric                         |
| Alw2     | aluminum     | ppb; ICP-USN                              |
| Asw2     | arsenic      | ppb:ICP-USN-H <sub>2</sub> O <sub>2</sub> |
| Asw3     | arsenic      | ppb; ICP-MS direct                        |
| Baw2     | barium       | ppb; ICP-USN                              |
| Baw3     | barium       | ppb; ICP-MS direct                        |
| Bew2     | beryllium    | ppb; ICP-USN                              |
| Bew3     | beryllium    | ppb; ICP-MS direct                        |
| Caw1     | calcium      | ppm; ICP-ES                               |
| Cdw3     | cadmium      | ppb; ICP-MS direct                        |
| Cew3     | cerium       | ppb; ICP-MS direct                        |
| Cow2     | cobalt       | ppb; ICP-USN                              |
| Cow3     | cobalt       | ppb; ICP-MS direct                        |
| Crw2     | chromium     | ppb; ICP-USN                              |
| Crw3     | chromium     | ppb; ICP-MS direct                        |
| Csw3     | cesium       | ppb; ICP-MS direct                        |
| Cuw2     | copper       | ppb; ICP-USN                              |
| Cuw3     | copper       | ppb; ICP-MS direct                        |
| Dyw3     | dysprosium   | ppb; ICP-MS direct                        |
| Erw3     | euridyium    | ppb; ICP-MS direct                        |
| Euw3     | europium     | ppb; ICP-MS direct                        |
| Fw9      | fluoride     | ppb; ion-selective electrode              |
| Few1     | iron         | ppb; ICP-ES                               |
| Few3     | iron         | ppb; ICP-MS direct                        |
| Gdw3     | gadolinium   | ppb; ICP-MS direct                        |
| How3     | holmium      | ppb; ICP-MS direct                        |
| Inw3     | indium       | ppb; ICP-MS direct                        |
| Kw1      | potassium    | ppm; ICP-ES                               |
| Law3     | lanthanum    | ppb; ICP-MS direct                        |
| Liw2     | lithium      | ppb; ICP-USN                              |
| Liw3     | lithium      | ppb; ICP-MS direct                        |
| Luw3     | lutetium     | ppb; ICP-MS direct                        |
| Mgw1     | magnesium    | ppm; ICP-ES                               |
| Mnw1     | manganes     | ppb; ICP-ES                               |
| Mnw3     | manganes     | ppb; ICP-MS direct                        |
| Mow2     | molybdenum   | ppb; ICP-USN                              |
| Mow3     | molybdenum   | ppb; ICP-MS direct                        |
| Naw1     | sodium       | ppm; ICP-ES                               |
| Ndw3     | neodymium    | ppb; ICP-MS direct                        |
|          |              |                                           |

| VARIABLE | NAME         | DESCRIPTION                    |
|----------|--------------|--------------------------------|
| Niw2     | nickel       | ppb; ICP-USN                   |
| Niw3     | nickel       | ppb; ICP-MS direct             |
| Pw2      | phosphorous  | ppb; ICP-USN                   |
| Pbw2     | lead         | ppb; ICP-USN                   |
| Pbw3     | lead         | ppb; ICP-MS direct             |
| Prw3     | praseodymium | ppb; ICP-MS direct             |
| Rbw3     | rubidium     | ppb; ICP-MS direct             |
| Rew3     | rhenium      | ppb; ICP-MS direct             |
| Sew3     | selenium     | ppb; ICP-MS direct             |
| Siw1     | silicon      | ppm; ICP-ES                    |
| Smw3     | samarium     | ppb; ICP-MS direct             |
| SO4w1    | sulphate     | ppm; ICP-ES                    |
| Srw2     | strontium    | ppb; ICP-USN                   |
| Srw3     | strontium    | ppb; ICP-MS direct             |
| Tbw3     | terbium      | ppb; ICP-MS direct             |
| Thw3     | thorium      | ppb; ICP-MS direct             |
| Tiw2     | titanium     | ppb; ICP-USN                   |
| Tiw3     | titanium     | ppb; ICP-MS direct             |
| Tlw3     | thallium     | ppb; ICP-MS direct             |
| Tmw3     | thulium      | ppb; ICP-MS direct             |
| Uw10     | uranium      | ppb; fluorometry; Bondar-Clegg |
| Uw3      | uranium      | ppb; ICP-MS direct             |
| Vw2      | vanadium     | ppb; ICP-USN                   |
| Vw3      | vanadium     | ppb; ICP-MS direct             |
| Yw2      | yttrium      | ppb; ICP-USN                   |
| Yw3      | yttrium      | ppb; ICP-MS direct             |
| Ybw3     | ytterbium    | ppb; ICP-MS direct             |
| Znw12    | zinc         | ppb; dithizone/colorimetric    |
| Znw2     | zinc         | ppb; ICP-USN                   |
| Znw3     | zinc         | ppb; ICP-MS direct             |

### GUIDE TO MEANING OF NUMERIC FIELD VARIABLE VALUES

| VARIABLE | NUMERIC VALUE | MEANING                                                                 |
|----------|---------------|-------------------------------------------------------------------------|
| samptype | 2<br>5<br>7   | lake sediment only<br>lake sediment and water<br>lake water only        |
| sitedup  | 0<br>1<br>2   | routine single sample<br>1st of site dup. pair<br>2nd of site dup. pair |

| VARIABLE | NUMERIC VALUE | MEANING            |
|----------|---------------|--------------------|
| veg      | 1             | forest             |
|          | 2             | bog                |
|          | 3             | mixed bog & forest |
|          | 4             | barren (>25% rock) |
|          | 5             | burned             |
|          | 6             | rock and forest    |
|          | 7             | tundra (<25% rock) |

## 3. Data formats of field and analytical variables

84 variables and 6601 cases

### Field Data Variables

| VARIABLE        | VARIABLE TYPE | COLUMN WIDTH | NO. DECIMALS |
|-----------------|---------------|--------------|--------------|
| fldnum          | Number        | 7            | 0            |
| labnum          | Number        | 7            | 0            |
| samptype        | Number        | 1            | 0            |
| sampvear        | Number        | 4            | 0            |
| subnum          | Number        | 4            | 0            |
| sitedup         | Number        | 1            | 0            |
| utmzone         | Number        | 2            | 0            |
| utmeast         | Number        | 6            | 0            |
| utmnorth        | Number        | 7            | 0            |
| nts             | String        | 5            |              |
| area km2        | Number        | 8            | 2            |
| depth m         | Number        | 5            | 1            |
| veg             | Number        | 1            | 0            |
| colour          | Number        | 2            | 0            |
| comp            | Number        | 1            | 0            |
| conduct         | Number        | 6            | 2            |
|                 |               |              |              |
| Analytical Vari | ables         |              |              |
| pH w            | Number        | 3            | 1            |
| hvvmtl w        | Number        | 3            | 0            |
| Alw2            | Number        | 4            | 0            |
| Asw2            | Number        | 3            | 0            |
| Asw3            | Number        | 5            | 3            |
| Baw2            | Number        | 4            | 1            |
| Baw3            | Number        | 4            | 1            |
| Bew2            | Number        | 5            | 2            |
|                 |               |              |              |

| Bew3 | Number | 5 | 3 |
|------|--------|---|---|
| Caw1 | Number | 6 | 2 |
| Cdw3 | Number | 5 | 3 |
| Cew3 | Number | 5 | 3 |
| Cow2 | Number | 5 | 1 |
| Cow3 | Number | 4 | 2 |
| Crw2 | Number | 5 | 1 |
| Crw3 | Number | 4 | 2 |
| Csw3 | Number | 5 | 3 |
| Cuw2 | Number | 4 | 1 |
| Cuw3 | Number | 4 | 2 |
| Dyw3 | Number | 5 | 3 |
| Erw3 | Number | 5 | 3 |
| Euw3 | Number | 5 | 3 |
| Fw9  | Number | 4 | 0 |
| Few1 | Number | 6 | 0 |
| Few3 | Number | 6 | 2 |
| Gdw3 | Number | 5 | 3 |
| How3 | Number | 5 | 3 |
| Inw3 | Number | 5 | 3 |
| Kw1  | Number | 4 | 2 |
| Law3 | Number | 5 | 3 |
| Liw2 | Number | 5 | 1 |
| Liw3 | Number | 5 | 3 |
| Luw3 | Number | 5 | 3 |
| Mgw1 | Number | 6 | 2 |
| Mnw1 | Number | 4 | 1 |
| Mnw3 | Number | 4 | 2 |
| Mow2 | Number | 5 | 1 |
| Mow3 | Number | 4 | 2 |
| Naw1 | Number | 6 | 2 |
| Ndw3 | Number | 5 | 3 |
| Niw2 | Number | 4 | 0 |
| Niw3 | Number | 5 | 2 |
| Pw2  | Number | 4 | 0 |
| Pbw2 | Number | 4 | 1 |
| Pbw3 | Number | 5 | 3 |
| Prw3 | Number | 5 | 3 |
| Rbw3 | Number | 5 | 3 |
| Rew3 | Number | 5 | 3 |
| Sew3 | Number | 5 | 3 |
| Siw1 | Number | 5 | 2 |
| Smw3 | Number | 5 | 3 |

### VARIABLE VARIABLE TYPE COLUMN WIDTH NO. DECIMALS

| SO4w1 | Number | 5 | 2 |
|-------|--------|---|---|
| Srw2  | Number | 5 | 1 |
| Srw3  | Number | 4 | 1 |
| Tbw3  | Number | 5 | 3 |
| Thw3  | Number | 5 | 3 |
| Tiw2  | Number | 5 | 1 |
| Tiw3  | Number | 5 | 3 |
| Tlw3  | Number | 5 | 3 |
| Tmw3  | Number | 5 | 3 |
| Uw10  | Number | 4 | 2 |
| Uw3   | Number | 5 | 3 |
| Vw2   | Number | 3 | 1 |
| Vw3   | Number | 4 | 2 |
| Yw2   | Number | 5 | 1 |
| Yw3   | Number | 5 | 3 |
| Ybw3  | Number | 5 | 3 |
| Znw12 | Number | 3 | 0 |
| Znw2  | Number | 6 | 1 |
| Znw3  | Number | 5 | 2 |