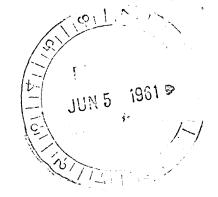

236 (123)


HUMPHREYS ENGINEERING COMPANY 910 AMERICAN NATIONAL BANK BUILDING DENVER 2 COLORADO

June 2, 1961

OUR REF. G-7972-HEC

CABLE ADDRESH HUMPHREYS"

YOUR REF. Lot 1508

Mr. W. H. Roxburgh Canadian Javelin Ltd., 680 - 5th Avenue New York City, N. Y.

Dear Bill:

I enclose tables summarizing the results of spiral tests made on the sample of Javelin ore ground at Lakefield when we were there last January. Our tests consisted of a 2-stage spiral test made on a small sample without cleaner tailing recirculation; a 2-stage spiral-sizer test also made on a small sample without cleaner tailing recirculation, and, a 3-stage continuous test in which the bulk of the sample was treated and all middling products were recirculated.

In the 2-stage spiral test we recovered 78.5% of the iron in a concentrate assaying 63.95% Fe and .21% Mn. In the spiralsizer test we recovered 79.5% of the iron in a concentrate assaying 62.87% Fe and .29% Mn. In the 3-stage spiral test we recovered 85.4% of the iron in a concentrate assaying 62.76% iron and .30% Mn.

We believe that the higher Fe recovery for the 3-stage test is in part due to the fact that middlings could be recirculated during the test run, and, in part due to the relatively low concentrate grade. This test is somewhat comparable to the tests made at Lakefield in which Fe recovery was approximately 80% in a concentrate assaying between 63-64% Fe - the better recovery for our test being largely attributable to use of three stages of concentration.

Use of the Humphreys counterflow sizer apparently offers no advantage in the treatment of this ore.

W. H. Roxburgh - Page 2- 6/2/61

The fact that +65% Fe concentrates were difficult to obtain - both at Lakefield and in our Denver tests - is quite largely explained if you examine our Table 4, which gives screen and sink-float data on the head sample as received. These data indicate that over 50% of the iron in the ore reports as sink product which is lower in grade than 64% Fe, and nearly 40% lower in grade than 60% Fe. Failure to make a higher grade is largely a matter of incomplete liberation at the grind which was as shown by Table 5 - essentially 100% through 20 mesh (Tyler).

I am expecting to leave town next week but will arrange for Tom to forward tables giving complete test data including feed rates and water flow rates.

Best personal regards.

Very truly yours,

HUMPHREYS ENGINEERING COMPANY

4-

Acces Incolation

Metallurgical Engineer

hs/g

encls - 5 tables cc-Lab Table No...l..

\$-

HUMPHREYS LABORATORY TEST

c :					1508		Test No.:	нт_К	
Date:	5/11/61			Lot No.:	1508			11 0 11	
Custom	101.	Javelin Limi						, 	
Ore:	Ju <u>lian iron o</u>	re wet groun	nd-to -	20 mesh in	a Hard	inge Casca	ide Mill	at	
Object	Lakefield, On	tario.	made t	o determine	proba	ble iron 1	recovery		
Object	concen	trate grade	for th	ree stages	of con	centratior	1.		
		WEIGHT			}	ł			
		DISTRIBUTION		Fe		n			
SAMPLE NO.	PRODUCTS		Assay	Distribution	Аввау	Distribution	Авзау	Distribution	
		%	%	%	<i>%</i>		•		
	Re-cleaner sp	iral							
K-2	conct.	54.8	62.76	85.4	0.30				
H-4	Rougher spira tail	45.2	13.02	14.6					
· Calc	ulated Head	100.0	40.28	100.0					
*H-1	Assay Head		41.51						
**A-1	Assay Head		41.25						
		-							
				4	4				
,									
					-				
Rer	narks: *H-1 head	was a sampl	.e taker	n off the f	eed bel	t at inte.	rvals du	iring the	
	test run	•	wt of	the sample	when re	eceived.	During t	this test	
	a roughe:	r middling,	and be	oth cleaner	and re	ecleaner t	ailings	were	
	rocircul	ated. gher feed ra							
6	Clea	aner "	" - Re	o.Conc.only	- 2014	± #/ Hr.			
-(`	Rec	leaner "	" C	1. 11 11	- 2256	5 #/Hr.			

Test Engineer: H. Snedden T. J. Ferree

] 21 .•

Table No...2

\$-

HUMPHREYS LABORATORY TEST

Date:	4/20/61	Lot No.:	1508	Test No.: D-F-G

Customer: Canadian Javelin Limited

Ore: Julian iron ore wet ground to -20 mesh in a Hardinge Cascade Mill at Lakefield, Ontario

Object of Test: To determine if the Humphreys counterflow sizer offers an advantage in concentration of this ore at this grind.

	WEIGHT DISTRIBUTION				Fe		Comp	osite	٩		Mn	
Sample No.	PRODUCTS			Assay	Distri	bution	Аззау	Distri	bution	Авзау	Dis	tribution
			%	%		%	Fe	Wgt	Fe	%		
F-2	Sizer U'flow		22.0	64.6		34.8			70 5	. 29		
G-2	Cl.Sp.Conct.		29.6	61.6		44.7)62.87)	51.0	79.5			
G-4	" "Tail		13.1	25.55		8.2	25.55	13.1	8.2			
D-4.	Ro.Sp. 1 Sand Tail		24.7	9.85		6.0)	05 0	12.3			
D-4.	Ro.Sp. 2 Slime Tail		10.6	24.15		6.3)14.14	35.5	12.3			
Calc	ulated Head		100.0	40.78		100.0	40.73	100.) 100.	<u>0</u>		
<u>A-1</u>	Assay Head			41.25			41.25					
		•		 								
					<u> </u>		•			· ·		
										-		
Ren	narks: Roughor Cleaner	feed r	ate (new ore	e) 3	502 #/						
	Cleaner	51201-	-spira									
	If G-4, the cl overall spiral	eaner	spira	l taili	.ng, c	ould h	nave be	en rec eased	circul to ab	ated t	the	
						~ ~ ~ ~ ~ ~						<u></u>
										Gradda		

Test Engineer:

H. D. Snedden T. J. Ferree

Table No.³

HUMPHREYS LABORATORY TEST

Date:	4/18/61	Lot No.:	1508	Test No.: D-F
			~~~~	

Customer: Canadian Javelin Limited

Ore: Julian iron ore wet ground to -20 mesh in a Hardinge Cascade mill at Lakefield, Ontario.

Object of Test: To permit estimation of iron recovery and concentration grade to be expected from two stages of spiral concentration.

		WEIGHT DISTRIBUTION	Fe		Cor	Composites			Mn		
SAMPLE NO.	PRODUCTS		Assay	Distribution	Assay	Distr	ibution	Аззау	Distributio		
		%	% ·	%	Fe	Wgt	Fe	C/ /0			
E-2	Cl.Sp.Cpnct.	48.9	63.95	78.5	63.95	48.9	78.5	.21			
· E-4	Cl.Sp.Tail	15.8	22.70	9.0	22.70	15.8	9.0				
D-4.1	Ro.Sp. Sand Tail	24.7	9.85	6.1)							
D-4.2	Ro.Sp. Slime Tail	10.6	24.15	) 6.4)	14.14	35.3	12.5				
Calcul	ated Head	· 100.0	39.85	100.0	39.85	100.0	100.0				
A	Assay Head		41.25		41.25						
					•						
									-		
Rem	mks: Rougher f Cleaner	eed rate (n	ew ore)		7 #/Hr 9 #/Hr						
I	f = 4, the clea	ner spiral	tail, c	ould have 1	been re	ecircu	lated	the ov	erall		
S	piral iron reco	very would	have be	en increase	ed to a	about	85%.	,			
Č –				<del>ит в анн ни и посто</del> составляется и станую и составляется и составляется и составляется и составляется и состав				4	1		
				Test E	ngineer:	H. Sn T. J.	edden Ferre	e			
				•	<b>&gt;</b>				•		

#### Table No.⁴

### HUMPHREYS LABORATORY TEST

X	0/02/25				
🧹 le:	3/31/61	Lot No.:	1508	The of BT	
•		20.11011	1000	Test No.: B	
	_				
Customen	Condian Trant -	• • •			

Customer: Canadian Javelin Limited

# Ore: Julian ore wet ground in a Hardinge Cascade Mill at Lakefield, Ontario

# Object of Test: Heavy liquid separation with screen analysis on the sink to permit estimation of mineral liberation.

		WEIGHT DISTRIBUTION		Fe				Com	posite	9
NO. PRODUCTS		%	Авзау	Assay Distribution		say Distribution		Авзау		tribution %
			%	%	 			% Fe		Fe
B-2.3	3 -14+20 sink	0.2	55.75	0.3	)					
. 4	4 -20+28 "	2.7	58.75	4.0				-		
5	5 -28+35 "	6.7	62.00	10.5	3	 				
6	6 -35+48 "	10.4	60.60	15.9	5					ţ
7	-48+65 ''		63.25	17.8	5	·				
8	-65+100 "	8.6	64.85	14.0	)	osite	sink	62.87		96.0
9	-100+150 ''		65.45	11.4	5					50.0
10	-160+200 "		66,15	8.7	)					
11	-200+325 "		65.30	7.9	))				*	
12	-325 "		56.45	5.5	X					,
<u>B-4</u>	Float		3.98	4.0			Float	3.98	20	
Calc	ulated Head	100.0		100.0	<u> </u>	+	1040			
<u>A-1</u>	Assay Head		41.25						100.0	100.0
Rem	arks: The tes	st indicates					<u> </u>			

Remarks: The test indicates that enough iron mineral is still tocked with gangue to prevent making a high grade concentrate except at a sacrifice in recovery.

**Test Engineer:** 

T. J. Ferree

			이 이 것 같아. 아이 말했다	Table No. ⁵		а, Э		
			HUMPHRE	YS LABORAT	ORY TEST	¢		
Date:	3/31/61			Lot No.:	1508		Test No.:	A
Custome	r: Canadi:	an Javelin	Limited					~
Ore:	Canadian	Javelin's	Julian or	e received	from Lake:	field Res	search	•
Object of	f Test: Scr	een analysi	s of a sp	lit of the	head samp	Le, mæde	by wet	screening

Screen analysis of a split of the head sample, made by wet on 325 mesh followed by dry screening in Tyler Rotap.

Ĩ		WEIGHT DISTRIBUTION				ł		
NO.	PRODUCTS		Assay Distribution		Азвау	Distribution	Assay	Distribution
nawa (anakara) (anakara) Marana (anakara) (anakara)		%						
-1.1	+10 mesh	-						
-1.2	-10+14	_						
-1.3	-14+20	0.2						
-1.4	-20+28	2.5						
-1.5	-28+35	8.4			3			
-1.6	-35+48	15.4					-	
-1.7	-48+65	20.1						
-1.8	-65+100	17.0						
-1.9	-100+150	12.3					-	
-1.10	-150+200	8.9						
-1.11	-200+325	7.3						
-1.12	-325 mesh	7.9						
	Head	100.0						
Ren	narks: None o	f these scree	en proc	lucts wer	e assayed	for iron.		
				46	•		•	

Test Engineer: T. J. Ferree

	(A)		(B)			
Size, Fyler mesh	Wt.gn.	Wt.X	Nt . gr.	Wt. %		
+ 20	1.0	0.4	1.1	0.4		
35	27.7	10.7	28.1	10.6		
- 48	36.1	14.0	36,9	13.9		
65	47.1	18.2	48,9	18.4		
100	46,7	18.1	48.3	18,2		
200	47.4	18,4	49,1	18.5		
325	22.8	8.8	23.4	8.8		
- 325	27.3	11.4	28.4	11.2		
Total	256.1	100.0	264 .2	100.0		
Original weight	258.2		265.6			

#### TABLE 7E SCREEN ANALYSES OF SWECO SCREEN UNDERSIZE - RUN NO. 6

#### TABLE 8 SCREEN ANALYSES OF SNECO SCREEN OVERSIZE (Recycle)

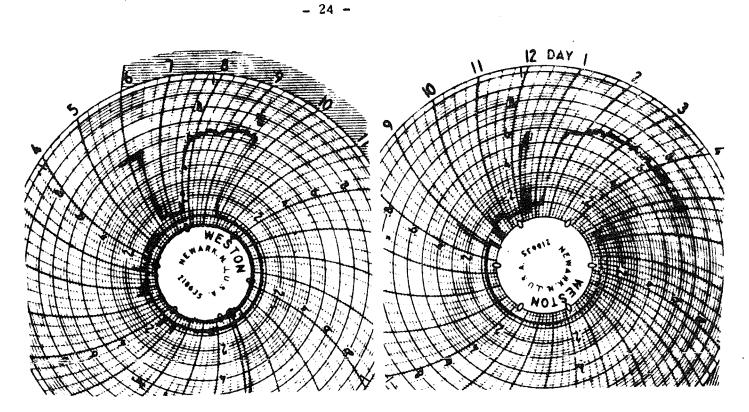
Size,	Weight % Retained					
ches or Mesh	Runs 2, 3	BIRS 4, 5				
+ 1 [#]	3.0	10.5				
3/4	23,5	28.2				
3/4" 1/2" 1/4" 6	29.1	25.7				
1/4"	21.6	18.7				
6	7.8	6 <b>.9</b>				
10	4.6	3.8				
20	3,8	2.6				
- 20	6,6	4.1				

1.

Product	Run No. 2			Run No. 3			Run No. 4			Run No. 5		
	Long tor per hr.	us Wt. %	Assay % Fe	Long ton per hr.	15 Wi .%	Assay % Fe	Long tor per hr.	18 <u>Wt.%</u>	Assay % Fe	Long tor per hr.	Wt .%	As
Screen U/S Ro. middlings Cl. tailings	2,54 0.17 0.28	84.95 5.68 9.37	39.64 23.37 24.18	2.70 0.25 0.33	82.32 7.62 10.06	39.10 25.82 25.99	2.68 0.26 0.35	81.46 7.90 10.64	39.28 35.37 30.16	2.71 0.17 0.32	84.69 5.31 10.00	35 26 36 3. 25 2
Ro. feed (calc	.)2.99	100.00	37,27	3.28	100.00	36,77	3.29	100.00	38.00	3,20	100.00	38 07
Ro.feed(sample	d)3,33	al and a feature of the solution of the soluti	36,00	3.56	n den anderen an anderen ander en anderen	37.32	3.54		38.00	3.36		40

TABLE 10

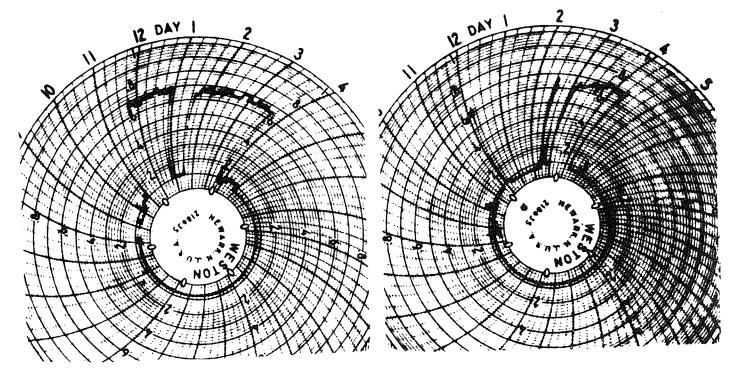
COMPARISON BETWEEN ACTUAL AND CALCULATED CLEANER FEED


	Run No.2			Run No. 3			Run No. 4			Run No. 5			
Product	Long tor per hr.		Assay % Fe	Long ton per hr.	is Wt "%	Assay % Fe	Long ton per hr.	wt.7	Assay % Fe	Long ton per hr.	wt.%	A 5. %	
Ro.concentrate Cl.middlings	2.65 0.08	97.07 2.93	56.10 50.82	1.47 0.12	92.45 7.55	57.55 45.28	1.59 0.07	95.78 4.22	58.19 61.35	1.56 0.08	95.12 4.88	57 61	
Cl.feed(calc.)	2.73	100.00	55.95	1.59	100.00	56,62	1.66	100.00	58,32	1.64	100.00	58	5 / 
Cl.feed(sampled	1)1.62	ara, pizzar, ĝi Adraŭio 4 postor D-Adda	59,10	1.61		55,90	1.80		58,45	1.37		58	

23 ---

DIDNS 2 3 4 AND 5

			TABL	<u>E 11</u>	SAMPLING	DATA	RUNS 2, 3,	4 AND 5	an and the design of the second state of the second state of the second state of the second state of the second			
Run No.2 Sample	Diam. Ins,	Barrel Data Area sq.ins.	Tare wt.1bs	Depth Ins.	Pulp Weight lbs.net	Sample Volume Cu,ins,	Volume Imp.Gals.	Solids Dry wt. 1bs.	No.of samples 5	Secs. per sample	To:31 86:55 f1:50 50.	
Head (Screen U/S) Cleaner conc. Rougher tailing Rougher feed Rougher middling Rougher conc. Cleaner feed Cleaner middling Cleaner tailing	\$	*	24.5 24.5 39.5 22.5 24.0 24.0 25.5	*	154.0 63.5 353.0 178.5 4.61 122.0 46.5 1.43 153.0	2,610 891 10,140 4,010 1,655 827 4,330	9.44 3.22 36.68 14.50 0.31 5.99 2.99 0.07 15.65	79.0 40.6 44.1 41.4 2.12 82.5 20.1 0.94 8.75	5 5 2 2 5 2 5 5	10 10 10 10 10 10 10 10		
Run No. 3 Head (Screen U/S) Cleaner conc. Rougher tailing Rougher feed Rougher middling Rougher concentrat Cleaner feed Cleaner middling	¢	₫ <b>₽</b>	22.5 26.5 43.0 25.0 24.0 24.0 25.0	\$	142.5 87.5 464.0 165.0 6.15 76.0 46.5 2.31 213.0	2,290 1,210 12,130 3,690 1,146 861 5,730	8.28 4.37 43.88 13.35 0.40 4.14 3.11 0.11 20.72	84.0 55.8 52.0 44.4 3.05 45.8 20.1 1.55 12.45	5 6 2 2 5 2 2 6	10 10 10 10 10 10 10 10 10		
Cleaner tailing Run No.4 Head (Screen U/S) Cleaner conc. Rougher tailing Rougher feed Rougher middling Rougher concentrat Cleaner feed Cleaner middling Cleaner tailing	1.8.0 18.0 22.5 18.0 te 18.0 18.0 18.0	254 254 398 254 254 254 254 254	20.5 25.0 43.0 24.5 35.0 23.0 23.0	6.25 3.0 21.5 15.75 4.25 7.0 18.0	99.5 53.0 327.5 177.5 5.75 64.5 78.0 1.24 171.0	$1,590 \\762 \\8,560 \\4,000 \\1,080 \\1,780 \\4,570 $	5.75 2.76 30.96 14.47 0.34 3.91 6.44 0.05. 16.53	50.0 35.3 37.5 44.0 3.24 39.5 22.4 0.93 8.62	3 4 2 2 4 2 2 4 2 4	10 10 10 10 10 10 10 10 10	- - - - - - - - - - - - - - - - - - -	
Run No.5 Run No.5 Head (Screen U/S) Cleaner conc. Rougher feed Rougher feed Rougher middling Rougher concentra Cleaner feed Cleaner middling Cleaner tailing	18.0 18.0 22.5 18.5		32.0 31.0 40.0 23.0 23.5 23.0 23.0 22.0	8.75 4.0 30.75 15.25 5.5 3.35 21.25	$143.0 \\ 74.0 \\ 473.0 \\ 175.0 \\ 3.72 \\ 94.0 \\ 43.5 \\ 1.63 \\ 205.0 \\ 1$	2,220 1,015 12,240 4,100 1,430 901 5,400	0.22 5,35 3.26 0.08	84.3 43.3 54.0 41.8 2.16 58.1 17.0 1.02 9.98	5 6 6 2 2 6 2 2 5	10 10 10 10 10 10 10 10 10		


* Information not retained Note: Middling samples filtered and filtrate weight plus wet cake weight added to get pulp weight. Run No. 6 - Dry weight of sample = 19.3 lbs (6 cuts taken)



NUM NO. 1

Į

EST NO. 2 AND 8



MON NO. 6

-----

NO. 4 AND 5

# Pigure 2 - Electris car sharts

-----