Origin of sedimentary hosted high-grade iron ore deposits

Old models, new ideas and implications for exploration in the Labrador Trough

James Conliffe
Geological Survey of Newfoundland and Labrador
Sedimentary hosted high-grade iron ore deposits

- Sedimentary hosted iron ore deposits account for ~ 90% of current iron production worldwide.
- Most production comes from high-grade (> 55% Fe) iron ore deposits hosted in Precambrian iron formations.

From Bekker et al., 2010
Ideas driven by demand

- 1890s to 1940: Development of early genetic models
- 1940s to 1990s: Global Expansion
- 1990s to 2010s: Development and refinement of new models

From Mudd (2010)
Genesis of high-grade iron ore deposits

• Numerous genetic models proposed since the late 19th century
 – Supergene
 – Hydrothermal (Hypogene)
 – Syngenetic
 – Supergene-metamorphic
 – Supergene modified hypogene
Genesis of high-grade iron ore deposits

• **Supergene (iron ore) deposit:** Mineral deposit or enrichment formed near to or at the surface, commonly by descending groundwater (*supergene fluids*)

• **Hypogene (iron ore) deposit:** Mineral deposit formed below the surface, usually associated with mostly ascending, “warm” water rich fluids (*hypogene/hydrothermal fluids*)

• **Hydrothermal fluids:** Water-rich fluids at higher temperature than ambient rock temperature
 – Magmatic-hydrothermal, meteoric, metamorphic, basinal brines........
1890s to 1940s

Development of early genetic models
• Geological mapping throughout the late 1800’s and early 1900’s identified iron formations throughout the Lake Superior region

• A number of competing models proposed for the enrichment of primary iron formations (~30% Fe) to form high-grade ore bodies
From the 1840s to the 1960s more than 3 billion tonnes of iron ore were mined from sedimentary-hosted high grade iron ore deposits in Michigan, Minnesota and Ontario.

This abundant source of iron ore coupled with new steelmaking processes helped fuel rapid industrial expansion in North America and Europe.
Supergene lateritic enrichment (Leith, 1903; van Hise and Leith, 1911)

- Early geological investigations showed that high-grade iron ore deposits in the Lake Superior region formed due to the oxidation and leaching of the primary iron formation (Leith, 1903; van Hise and Leith, 1911) due to circulation of large volumes of fluids.

- These authors argued that enrichment was associated with downward percolation of groundwater after exposure of the iron formation.
 - Complete dissolution of chert bands leaving a residue of high-grade (>60 wt% Fe) iron ore.
Hypogene enrichment
(Gruner, 1930, 1932, 1937)

• Supergene model challenged based on a number of factors
 – Inability of groundwater to remove large volumes of silica
 – Difficulties in circulating large volumes of oxygenated groundwater through the iron formation

• Gruner (1930, 1932, 1937) argued that the geological features of the ore bodies were better explained by ascending hydrothermal fluids

John Gruner
University of Minnesota
Hypogene enrichment (Gruner, 1930, 1932, 1937)

- Gruner (1930): Iron enrichment and leaching associated with ascending magmatic fluids
 - Lack of intrusions associated with ore bodies
- Gruner (1937): orebodies formed from meteoric waters heated by "igneous emanations"
 - Unable to identify an adequate source of fluids

Supergene lateritic enrichment model accepted by most authors as most likely genetic model
1940s to 1980s

A global perspective
The post war years

- Exhaustion of high-grade ore bodies in the US and increased demand for steel after WW2 drove worldwide exploration and development of new mines
 - Western Australia: Massive ore bodies discovered in the 1950s, exports began in the 1960s
 - Sishen Mine (South Africa): Mining operations began in 1953
 - Ore deposits in Carajás region (Brazil) discovered in 1960s
 - High-grade iron ore deposits in the Labrador Trough entered production in 1954
The post war years

• Early exploration models assumed the supergene lateritic enrichment model of Leith (1903) applied to all high-grade iron ore deposits

 — *Discovery outcrop of high-grade hematite/goethite and drill!*

• Geological observations contradicting these models were largely ignored

• Once mining began it became clear that this caused problems in predicting metallurgical properties, lump fines rations, Fe Grades and phosphorous content

• In the late 1970s major mining companies, government and academia in Western Australia sponsored a major research project into the origin of these deposits, under the direction of Dr Richard Morris
Supergene mimetic enrichment (Morris, 1980, 1985)

• Deposit classified based on mineralogy
 – Martite goethite ore: Most common in Western Australia
 – Martite- microplaty hematite ores (± residual goethite): Common worldwide, including Labrador Trough

• Model of deep-seated supergene mimetic enrichment proposed (Morris, 1980)
 – Unlike previous models involve mimetic replacement of gangue minerals by goethite, forming martite-goethite ores
 – Late stage metamorphism and dehydration of goethite forms martite-microplaty hematite ores
Supergene mimetic enrichment
(Morris, 1980, 1985)
1990s to 2010s
Development and refinement of new models
• Massive increase in demand for iron ore, driven by Chinese economy

• Resurgence of interest in the origin of sedimentary hosted high-grade iron ore deposits
Hypogene enrichment

• Return of the Hypogene/Hydrothermal Model

 – **General Papers:** Beukes et al. 2003; Gutzmer et al., 2006, 2008; Dalstra and Rosiere, 2008; Lobato et al., 2008
 – **Australia:** Li et al., 1993; Barley et al., 1999; Taylor et al., 2001; Thorne et al., 2003; Angerer and Hagemann, 2010
 – **South Africa:** Netshiozwi, 2002; Lobato et al, 2008
 – **Brazil:** Spier et al., 2003; Dalstra and Guedes, 2004; Rosiere and Rios, 2004; Figueiredo et al., 2008, 2013; Hensler et al., 2014
 – **India:** Beukes et al., 2008; Roy and Venkatesh, 2008
 – **West Africa:** Cope et al., 2008
 – **North America:** Morey, 1999
Leaching of silica and carbonates, oxidizing fluids, mobility of iron

High volume of fluid flow

Strong structural control

Magmatic, deep basinal or meteoric fluids

Wide range in alteration styles and tectonic settings
Recognition that high grade iron ore deposits can form due to a variety of processes.

Often multiple overprinted enrichment events.

“Consensus on formation processes........has not been reached and a strong and healthy debate still rages”
High-grade iron ore deposits in the Labrador Trough
• More than 80 high-grade iron ore occurrences in linear belt along Labrador-Québec border

• Intermittently mined since 1954
Blue Ores
Hematite ± goethite, martite
Dominantly soft and friable, minor hard ore

Red Ores
Red hematite ± goethite, clay minerals
Replacement of Ruth Formation shales

Yellow Ores
High goethite content
Replacement of Fe-silicates and Fe-carbonates

Rubble Ores
Angular fragments of hematite in goethite matrix
Detrital ore deposit
• Strong stratigraphic and structural control
 – Blue Ores from Middle Iron Formation
 – Yellow Ores from Lower Iron Formation (silicate-carbonate iron formation: SCIF)
 – Red Ores from Ruth Formation shales
 – Deposit located in syncline and homoclines, commonly cut by high-angle reverse faults
• Early studies concluded that deposits formed due to the supergene lateritic processes
 – Downward percolation of groundwater and subsequent leaching of silica, forming enriched residual iron ore deposits (Stubbins et al., 1961; Gross, 1968)
• Considerable variation in metallurgy, Fe-grade, structural setting and relative proportion of ore types between individual ore bodies
• Geochemical analysis consistent with multiple, overprinting enrichment phases
Enrichment likely a multistage process with superimposed hypogene and supergene enrichment

Supergene Lateritic Enrichment
- Goethite-rich “duricrust” above some deposits
- Secondary goethite and Mn-Oxides in vugs and pores
- Some ore bodies decrease in grade and degree of leaching with depth
- Most enrichment syn- to post-deformation, ore bodies commonly in fault contact with unaltered iron formation
- Significant Fe enrichment and depletion of Al in red ores
- REE profiles in some blue ores
- Presence of hard lenses and layers, w. microplaty hematite

Supergene Mimetic Enrichment
- Abundant martite-goethite ore (especially in yellow ores)
- Goethite pseudomorphing Fe-silicates and Fe-Carbonates
- Leached, Fe-depleted, silica-rich cap over some ore bodies (e.g. Knob Lake)
- Goethite generally paragenetically late, cannot explain all supergene features
- Hematite-rich ores require metamorphism (80 to 100°C) after enrichment; no evidence of post enrichment burial and lower ores (yellow ores) still goethite rich

Hypogene Enrichment
- Explains lenses and layers of hard, microplaty hematite
- Hypogene enrichment documented from Eastern Labrador Trough in similar structural settings
- REE data, remobilization of some “immobile” elements
- Oxidized altered iron formation recorded between some ore bodies (w. iron remobilization)
- No carbonate protore
- Cannot explain goethite-rich ores of friable ore (requires supergene modification)
- Evidence obscured by later supergene alteration
1900 Ma

1877.8 ± 1.3 Ma: Deposition of Sokoman Iron Formation

1820 to 1770 Ma: Hudsonian Orogeny

Possible hypogene alteration and enrichment in MIF similar to eastern Labrador Trough (Conliffe, 2015)

? Ma: Supergene mimetic alteration

Percolation of groundwater and formation of electrochemical convection cells

Enrichment forming martite-goethite ores

300 Ma

250-200 Ma: Reactivation of faults during Mesozoic opening of the North Atlantic

Normal faulting and formation of grabens

200 Ma

150 Ma

Detrital iron deposits (e.g. canga) deposited in grabens due to erosion of exposed ore bodies

100 Ma

~ 100 Ma: Deposition of lacustrine clays close to top of detrital ore deposit in Redmond 1

50 Ma

? Ma: Late-stage weathering

Deposition of goethite and Mn-oxides in vugs and pore spaces.

Formation of Mn-rich ores

Formation of duricrusts above ore bodies
Farley and McKeon (2015)

- $(U$-$Th)/^{21}Ne$ and $^{4}He/^{3}He$ ages of hematite samples
- Late stage (lateritic??)

772 ± 41 Ma
(@ $150 \pm 70^\circ C$)

453 ± 14 Ma
(@ $\sim 60^\circ C$)

- Dehydration of goethite??
- Episodic or continuous process??

From Farley and McKeon (2015)
Geological and geochemical studies have shown that high-grade iron ore deposits in the Labrador Trough have a wide range of characteristics, consistent with a complex and multistage enrichment of both hypogene and supergene processes.

Future work required to relative importance of hypogene or supergene processes

- Geochronology of goethite and hematite (± monzonite, apatite etc.)
- In-situ geochemistry of hematite, goethite
• Exploration should not be limited to deposits that outcrop on the surface (Supergene Lateritic)

• Potential for deposits below leached and silica-rich zones (Supergene Mimetic) or close to low-grade oxidized iron formation (Hypogene)

• Geophysics used to identify targets (high gravity, low magnetics)

Positive results of ground gravity north of Timmins area announced by Cap-Ex (December 2105): Numerous DSO targets which require drilling to test
THANKS TO
Department of Natural Resources
Alex Calon, Garrett Martin, Wayne Tuttle, Tim van Nostrand
Staff at McGill Subarctic Research Station