IRON OXIDE-ALKALI ALTERATION WITHIN THE MORAN LAKE AREA OF LABRADOR: TIMING, GEOCHEMISTRY AND POTENTIAL REGIONAL ASSOCIATIONS

Greg Sparkes

Mineral Deposits Section

Geological Survey of Newfoundland and Labrador

Geological Survey

DEPOSIT MODELS:

Iron Oxide-Alkali Altered (IOAA) Systems

•Distribution of some 50+ uranium occurrences throughout the region of the CMB

• Mineralized environments have been subdivided into five main domains, namely : 1)Archean basement, 2)Moran Lake Group, 3)Post hill Group, 4)Aillik Group, 5)Bruce River Group

5

6

8

0

Tuff - Heggart Lk. Fm. 1870 1830 .3289 ²⁰⁶Pb 1790 1750 Z9 ²³⁸ U Ζ7 1710 Z6 .3015 Z8 Z5 1670 Ζ1 1630 Z₃ 1847 +12/-9 Ma Z4 ²⁰⁷Pb 4.24 4.56 235U GS14-123

	0 0.15 0.3 Kilometers			2742 D
			Legend	
_	Unconformity, defined	\diamond	Hematitic breccia	Rhyolite
	Unconformity, approximate		Mafic/Intermediate intrusive rocks	Bruce River Gp Brown Lake Fm.
	Contact: defined	Bruce Ri	iver Gp Sylvia Lake Fm.	Volcaniclastic Sandstone
	Contact; approximate		Plagioclase Porphyry	Bruce River Gp Heggart Lake Fm.
- ·	Contact; assumed		Volcaniclastic mudstone, sandstone	Conglomerate
	Thrust, high angle, defined		and conglomerate	Sandstone
	Thrust, high angle, approximate		Trachyte and rhyolite flows and volcaniclastic sediments	Moran Lake Gp Joe Pond Fm.
_	Fault, high angle, defined		Undivided basalt, andesite and	Pillow Basalt
	Fault, high angle, approximate		trachyandesite and volcaniclastic sediments	Moran Lake Gp Warren Creek Fm.
••••	Fault, high angle, assumed		Plagioclase-phyric andesite and tracyandesite	Siltstone Kanairiktok Intrusive Suite
			Andesite and basalt	Granite, granodiorite and tonalite

Geological contact


```
Fault
```


Bruce River Group

- Rhyolite, dacite, andesite ash-flow tuff, agglomerate Sylvia Lake Formation
- Conglomerate and volcaniclastic sandstone Brown Lake Formation
- Volcaniclastic sandstone, arkose and conglomerate; minor mafic flows and sills Heggart Lake Formation

Moran Lake Group

Shale and sandstone of shallow- to deep-water origin -Warren Creek Formation

Geological contact

Intrusive Rocks

Olivine gabbro and metamorphic equivalents (Michael gabbro); ca. 1460 to 1425 Ma Granite; ca. 1650 Ma Granite; ca. 1973 to 1891 Ma

Archean Basement Rocks

Tonalite gneiss, granitoid gneiss Granodiorite, tonalite and minor granite (Kanairiktok Intrusive Suite)

Amphibolite gneiss, mafic granulite gneiss

Uranium occurrences

Fault

*

•Distribution of some 50+ uranium occurrences throughout the region of the CMB

• Mineralized environments have been subdivided into five main domains, namely : 1)Archean basement, 2)Moran Lake Group, 3)Post hill Group, 4)Aillik Group, 5)Bruce River Group

	Alteration Facies	Breccia Type	Mineralization
	6. LT silicification (epithermal assemblages)	(Veins/stockworks)	Epithermal deposits
Shallow & Lower Temp.	5. LT K-Fe (K-feldspar / sericite- hematite-carbonate - chlorite- epidote-sulphides)	Hydrothermal	Hem-group IOCG ±U
(~350 C)	4. 'Felsite' or skarns (K-feldspar or clinopyroxene- garnet- sulphides)	Hydrothermal	Mag- to hem-group IOCG and skarns
	3. HT K-Fe (K-feldspar / biotite - magnetite-sulphides)	Hydrothermal	Mag-group IOCG (Cu, Au, Co, Bi,)
Early Deeper/Core High Temp.	2. Ca-Fe (±Na) (amphibole- magnetite ± apatite)	Structural and incipient hydrothermal	Iron oxide apatite (IOA) deposits
(~700°C)	1. Na (albite - scapolite)	Structural	After Corriveau et al. (2010)

SUMMARY:

- The Moran Lake region is host to extensive iron oxide-alkali alteration accompanied by hydrothermal brecciation
- This alteration system is accompanied by V, U, Cu and Ag enrichment, but not to the degree that would classify it as a typical IOCG deposit
- This system can be bracketed between *ca.* 1860 and 1665 Ma, with the new maximum age being some 200 Ma older than previously envisaged
- The new age bracket enables an overlap with albitite-hosted U mineralization elsewhere in the region and may highlight a link with a larger-scale IOAA system within the CMB

THANK YOU