Zinc Mineralization in Western Newfoundland: Exploration Challenges and New Opportunities

James Conliffe and Robert King

Natural Resources

Zn and Pb Occurrences

- Epigenetic, stratabound, carbonate-hosted sulphide bodies
 - Sphalerite, galena, iron oxides and carbonates
- Open-space fillings of breccias and fractures and/or replacement of host dolostone
- Found in carbonate platforms adjacent to orogenic belts
- Individual deposits rarely exceed 2 million tons @ < 10% Zn+ Pb
- Occur in clusters termed "districts" containing multiple ore bodies, scattered over hundreds to thousands of square kilometres.

from Bradley & Leach (2003)

B. Post-deformation MVT

3. MVT mineralization

- Product of regional scale movement of warm saline aqueous solutions, commonly during compressional tectonics
- In most cases fundamental structural control, on location of ore bodies

Exploration challenges

- Small deposits, irregular shaped ore bodies
- Poor geophysical signature (magnetics, gravity, IP), but potential for discoveries based on subtle signatures
- Weak alteration footprint
 - Extensive dolomitization and disseminated sulphides may indicate proximity to ore bodies
 - From ore to barren host rock over < 1m

Why explore for MVT deposits?

- Global demand for zinc rising, production declining
- Relatively high grade deposits
- Simple processing (mineralogy dominantly sphalerite and dolomite)
- Small mine footprint and environmentally friendly
 - Outflow from Daniels Harbour Mine used in fish hatchery

Zn mineralization on the Great Northern Peninsula

- Deposit discovered in 1963
- Mine operational from 1975 to 1990
- Total production of 7.2 Mt at 8.9% Zn

- >15 individual ore bodies mined
 - From 100 m to 4.6 km in length
 - Underground (~80%) and open pit
 (~20%) mining
 - Majority of ore mined from L zone
 - 4.2 Mt at 8.4% Zn
- Highly irregular sinuous ore bodies, sub-parallel to faults
- Some ore bodies spatially associated with karst breccias

- Mineralization hosted in pseudobreccia beds (secondary dolomite replacing host rocks) and in fractures connecting mineralized beds
- Sphalerite occurs at top of beds
- Multiple generations of sphalerite precipitation, other sulphides rare (minor pyrite)
- Geology and mineralization described in detail by Lane (1990)

- Ore generation epigenetic during deep burial
- Influx of metal-bearing hydrothermal fluids during fracturing and faulting
- Timing of mineralization enigmatic, but likely associated with thrusting during the Acadian Orogeny (reactivation of Taconic faults)
 - Postdates burial and emplacement of allochthon by \sim 60 Ma (Bradley and Leach, 2003)

Lessons learned from exploration

- Ore bodies are generally small and discontinuous
- Abrupt contact between high-grade ore and barren pseudobreccia over < 2 m common
- Deposits discovered by till geochemical studies and bedrock exposures, no "blind" orebodies discovered
- Geophysics has not proved useful in discovering ore bodies
 - Detailed gravity studies may aid in discovery of ore bodies (e.g. Polaris Deposit)
 - Seismic study can identify structures suitable for crustal scale fluid flow
- New discoveries require detailed knowledge of geology, closely spaced drilling programs and some degree of luck!

Zn mineralization on the Great Northern Peninsula

- Numerous Zn (±Pb) occurrences
 in Hare Bay/Pistolet Bay areas
- Mineralization hosted in similar setting to Daniels Harbour Deposit 5173
- Exploration in 1970's and 1980's focused on geochemical anomalies
 - Round Pond Deposit
 - (~ 0.4 Mt @ 2% Zn)
 - Salmon River Prospect
 - Twin Ponds Prospect

Round Pond Deposit

- Discovered in 1970, drilling in 1971, 1975 and 1983
- Based on soil geochemistry anomalies
- Two main mineralized zones
 - Main Zone (400,000t @ 2% Zn)
 - Phillips Zone (98,000t @ 1.5% Zn)
- Numerous sphalerite showing in surrounding area

Round Pond Deposit

- Crackle breccia, and dolomite fragments cemented by sphalerite and dolomite
 - "Snow-on-the-roof" textures
 - Minor galena and pyrite
- Grab samples up to 24.46% Zn (at Phillips Prospect)
- Drilling shows presence of mineralized pseudobreccia at depth

Salmon River Prospect

- Located ~15 km south of Round Pond Deposit
- Discovered based on soil geochemistry anomalies
- Numerous sphalerite showings
- Main occurrence at Salmon River #6 (Frying Pan Pond)
- Drilling in the 1970's unable to intercept mineralization at depth

Salmon River #6

- Mineralized pseudobreccia exposed in series of trenches
- Extensive pseudobreccia developed
- Zinc mineralization sporadic, but grab samples of sphalerite rich pseudobreccia have 10.49 to 20.04 wt. % Zn

Salmon River #6

- Multiple generations of sphalerite mineralization
 - Early red sphalerite, with dolomite and calcite cement
 - Late yellow sphalerite in quartz-orthoclase
 - dolomite cement

Twin Ponds Prospect

- Located ~12 km north of Round Pond Deposit close to Highway 430
- Discovered in 1970's based on soil geochemistry anomalies
- Mineralization occurs in trench south of highway (Wade Showing) and in outcrops along highway
- Grab samples with 5.65 wt % Zn (Wade Showing) and 6.73 to 11.96 wt % Zn (Highway Showings)

Twin Ponds Prospect

- Mineralization similar to Round Pond Deposit
 - Sphalerite lining dolomite clasts in crackle breccia
 - Mineralized pseudobreccia stratigraphically below crackle breccia along highway

Zn mineralization on the Great Northern Peninsula

Other occurrences

- A number of other sphalerite
 occurrences located along strike from
 known deposits and prospects
 - North Boat Harbour
 - Watts River
 - Hidden Pond
- Moderate to well developed pseudobreccias recorded in a linear belt with > 60 km strike length

Current Research

- Geochemical and isotopic studies underway (BSc thesis by Robert King)
 - Bulk geochemistry
 - Electron microprobe analysis
 - Sulphur isotopes
 - Lead isotopes
 - SEM-MLA analysis

Develop genetic model for these occurrences, and compare with Daniels Harbour Deposit

Bulk Geochemistry

Sphalerite Geochemistry

- Significant variations between occurrences
- Fe and Cd related to temperature and fluid source: implications for genetic model

Sulphur Isotopes

- Data from Round Pond and Salmon River similar to Daniels Harbour
- Lower δ^{34} S in sphalerite due to alteration

Sulphur Isotopes

 Positive values related to thermochemical sulphate reduction (TSR) of seawater sulphate?

Lead Isotopes

- Pb derived from Grenvillian basement?
- Vertical trend? Fractionation?

Genetic model

Zn mineralization on the Great Northern Peninsula

- Polymetallic (Cu-Ag-Pb-Zn) mineralization in brecciated St. George Group dolomites in White Arm Window (metamorphosed)
- Deeper equivalent of MVT mineralization?

Zn mineralization on the Great Northern Peninsula

- Known occurrences on in Hare Bay and Pistolet Bay areas have many similarities to Daniels Harbour Deposit
- Exploration for "blind" orebodies difficult but potential exists for future discoveries
 - 60 km of moderate to well developed pseudobreccias
- Research continuing on developing genetic model to aid exploration and development of new exploration targets

Thanks to

Gerry Hickey, Roland Crossley, Wayde Guinchard, Peter Rogers, Tom McLennon, Newfoundland Helicopters, Chris Moran, Chris Finch, John Hinchey and Zsuzsanna Magyarosi