Comparison of magmatic rocks from Eastport – Burnside area vs Bonavista Peninsula, northwestern Avalon Zone, Newfoundland

Andrea Mills, Greg Dunning, Hamish Sandeman

Outline

- Introduction (west Avalon map units)
- Previous + recent work Bonavista ages, geochemistry
- Eastport area ages, geochemistry
- Comparison of Eastport vs Bonavista
 geochemistry and geochronology
- Implications for tectonomagmatic evolution and map units

Modified from Colman-Sadd et al., 1990; based on King (1988). ³

Background

ADEYTON GROUP CAMBRIAN BASIN: PALEOZOIC red & green shale, limestone, quartz arenite RF <541 Ma CROWN HILL FM. Р red sandstone & congl. 0 R () ROCKY HARBOUR FM. NEOPROTEROZOIC ETOWN (grey, green, red sandstone, siltstone and conglomerate) AV BULL R C 570 Ma ARM S FORMATION subaerial bimodal Σ volcanics CANNINGS COVE FM. ANGULAR UNCONFORMITY CONNECTING POINT GROUP LATE 0 CONNECTING POINT GROUP 610 Ma POINT (1000 marine turbidites SCG 620 Ma LOVE COVE GROUP 2000

- Stratigraphic interpretation in 2014 (after Mills, 2014; modified after Dec et al., 1992).
- Previous single age date on Bull Arm Fm (MG) = 570 Ma.
- Previous single age date on Love Cove Group = 620 Ma.
- Only Mid-Connecting Point Group = 610 Ma.
- All unpublished data; referred to in literature.

metres approx. New[oundland Labrador

(relatively) new U-Pb constraints from Bonavista Peninsula

 610±2 Ma; 613±3 Ma for mid-Connecting Point Gp tuffs. 605±2 Ma for crystal lithic tuff ir upper Connecting Point Group; 600±3 Ma for crystal tuff from the unconformably overlying, basal Musgravetown Group; • 592±2, 591±2 Ma for ash and lapilli tuff at western and eastern margin, respectively, of the main volcanic belt on Bonavista Peninsula (Plate Cove volcanic belt; PCvb);

580±1 Ma for glacial diamictite of the Trinity facies, Musgravetown Group.

<u>Age Data Refs</u>: Mills et al., 2016; 2017; Pu et al., 2016

Bull Arm Fm on Bonavista Peninsula

3 Types of Basalt (all previously mapped as BAF):
• Headlands (HB) – occurs above basal MG unconformity (600 Ma)

 Plate Cove volcanic belt – (PCvb) spatial association with 592-591 Ma tuffs

• Dam Pond (DP) – spatial association with glacial diamictite, dated elsewhere at 580 Ma.

• All have been previously assigned to Bull Arm Fm.

<u>Lithogeochem Refs</u>: Mills and Sandeman, 2015; 2017;Mills, 2019

All XREE plots are normalized to PM (after Sun and McDonough, 1989).

British Harbour basalts, southern Bonavista Peninsula, NE Random Island area

Located on southeastern Bonavista Peninsula, British Harbour area; Also Thoroughfare area, south of Ireland's Eye.
stratigraphically above immature, coarse red sandstone mapped as Crown Hill Fm (Normore, 2012).

55°14'

British Harbour basalts

Newfoundland

British Harbour basalts

- Cyclically interbedded basalt breccia and red siltstone to mudstone.
- Basalt clasts locally impinge or deflect underlying laminae.
- Strata-bound soft sediment deformation.
- Could this be a peri-glacial eruption?
- Stratigraphic position relative to Trinity diamictite uncertain
- Occur above redbeds mapped as Crown Hill Fm (Normore, 2012) – BUT not all redbeds are upper Musgravetown Group (see Mills, 2019).

Basalt breccia, south Bonavista Peninsula

Basalt breccia, south Bonavista Peninsula

OBJP01 dated at 579.24 \pm 0.17/0.30/0.69 Ma. B1552 dated at 579.63 \pm 0.15/0.29/0.68 Ma.

- Basalt breccia ~50 m above Trinity diamictite; chemically similar to OIB-like basalts at Dam Pond.
- The dated sample is from a pink ash tuff near the top of a 45 m succession of laminated siltstone; about 2 m below the basalt breccia.

New[oundland Labrador

Geochemistry of Bull Arm Fm on Bonavista Peninsula – felsics

- Occur mainly within PCvb
- 3 distinct petrochemical groups:
- Main group
- High Ce group
- Highly fractionated group
- Complex spatial pattern
- Chronological order unclear; no direct age constraints

PCvbF1

Y Lu

Y Lu

Lu

PCvbF3

PCvbF2

Developing lithostratigraphic interpretation for Bonavista Peninsula

Ca. 580? Ma Dam Pond basalt – OIB-like

- Ca. 580? Ma British Hr basalt alkaline WP
- Ca. 590s Ma Plate Cove volcanics transitional
- Ca. 600 Ma Headland basalt calc-alkaline

NewToundland

Labrador

Eastport area

Age-based, petrogenetic groups:

- E-F1: incl. 620 Ma LCG
- E-F2: incl. 589 Ma "LCG"
- E-F3: no age constraint;
 Petrochemically similar to
 572 Ma Louil Hills granite
 E-F4: incl. 569 Ma (refined from 570 Ma) "BAF" rhyolite

Mafic lithogeochemistry: • E-M1, E-M2, E-M3: no age constraints

Map modified from O'Brien, 1993 and O'Brien et al., 1996

Isthmus area

Banded rhyolite at Isthmus (Doe Hills area) dated at 605±1.2 Ma.
Overlain by fine to coarse siliciclastics, pyroclastics; in turn overlain (to the east; gap in section) by basalt.

• Lithogeochem samples include 4 rhyolites, 3 basalts

Felsics – Tectonic Discrimination

Newfoundland Labrador

Eastport Felsics

19

Geochemistry of Eastport mafics

All mafics – tectonic discrimination

All mafics – Pearce, 2008 plots

22

All Felsics

Newfoundland Labrador

Marconformity

Eastport-Burnside interpreted stratigraphy

- Calc-alkaline rocks are the oldest.
- Love Cove schists are transitional (flatter XREE patterns; smaller negative Nb anomalies).
- Possible unconformity above Love Cove schist? (Younce, 1970; O'Brien, 1987).
- E-M2a and 2b apparently above Love Cove shists and below alkaline (extensional) rocks (E-M3, E-F3 anE-F4).
- Magmatic shift (decrease in subduction component) by 589 Ma.
- Whole-sale extension by 572 Ma, but may have commenced earlier (no age constraint on E-M3 – but similar to British Hr basalts – possibly ca 580 Ma?). 24

Summary (1)

Newfoundland Labrador

- Transition from arc-influenced to extensional volcanics at Bonavista Peninsula occurs post 600 Ma and pre-592 Ma; same transition evident at Eastport – Burnside area, loosely bracketed between 620 Ma and 572 Ma.
- Transitional volcanics at Bonavista = Plate Cove belt; at Eastport Burnside = EF-2 (includes 589 Ma schist) and E-M2; 605 Ma rhyolite and overlying basalts at Isthmus.
- Extensional volcanism at Eastport post-dates ca. 589 Ma E-F2 group and includes E-M3 (similar to British Harbour basalts).
- Extensional magmatism at Bonavista includes British Harbour (Within Plate) basalts and Dam Pond (OIB-like) basalts. The latter are spatially associated with Trinity diamictite; the former overlie red sandstone and conglomerate mapped as Crown Hill Formation at SE Bonavista (Normore, 2012). Ca. 580 Ma??
- NW Avalon is structurally (and stratigraphically) complex; the role of ENE-trending faults may be more important than traditionally viewed.
- Multidisciplinary (lithostratigraphy, lithogeochemistry, geochronology) approach to bedrock mapping is critical; more detailed geophysics (!).

Summary (2)

Relevance to exploration?
Possible porphyry-style min. at Butler's Pd (620 Ma host); epithermal-porphyry min. at Lode Star ca. 605-603 Ma; low sulfidation systems at 580 Ma Manuels River vlc suite; 575-570 Ma epithermal min. in Marystown Gp.; low sulf at Big Easy (570-565 Ma) And in Long Hr Gp (~565 Ma).

• More accurate maps and stratigraphy to help identify rocks similar to known deposits. Detailed bedrock geology, northwestern Avalon Zone

48°59' N

54°6' W

48°56' N

48°18' N

52°44' W

52°41' W

• N- to NNE-trending faults dominate map

- ENE-and NW-trending faults may be important.
- Improved gp coverage would help improve our regional understanding.

55°14' W/ 47°31 48°1'

53°23' W

Acknowledgements

- David Haynes, field assistance
- Everett Saunders and Rick Verge, boatmen
- Gerry Hickey, logistical support
- Terry Sears and Kim Morgan, map preparation
- Greg Sparkes, discussions re: regional U-Pb constraints and hosts to known mineralization

