Final Well Report

Revision:	Version 0
Operating Company:	Vulcan Minerals Inc. (Investcan Energy
	Corp)
Hole Name:	Flat Bay Test Hole #2
Rig:	Duralite 800
Field:	Flat Bay
Location:	Western Newfoundland, Canada
Date:	March 20, 2009
Revised On:	N/A

Prepared by:	Reviewed by:		
David Walsh	Patrick Laracy, P.Geo.		
Vulcan Minerals	Vulcan Minerals		
Date:	Date:		

Table of Contents

1.0	Introduction	6
2.0	General Information	6
2.1	Map	6
2.2	Difficulties and Delays	8
3.00	Drilling Operations	10
3.1	Elevation	10
3.2	Total Depth	10
3.3	Spud Date	10
3.4	Date Drilling Completed	10
3.5	Rig Release Date	10
3.6	Well Status	10
3.7	Hole Sizes and Depth	10
3.8	Bit Records	11
3.9	Casing and Cementing Record	11
3.10	Side-tracked Hole	11
3.11	L Drilling Fluid	11
3.12	2 Fluid Disposal	11
3.13	B Fishing Operations	11
3.14	1 Well Kicks	11
3.15	Formation Leak – Off Tests	12
3.16	5 Time Distribution	12
3.17	7 Deviation Plot	12
3.18	Suspension Program	12
3.19	9 Well Schematic	14
3.20) Fluid Samples	14
3.21	L Composite Well Record	14
4.00	Geology	16
4.1	Drill Cuttings	16
42	Cores	16

	4.3	Lithology	16
	4.4	Stratigraphic Column	16
	4.5	Biostratigraphic Data	16
5.0) Wel	l Evaluation	18
	5.1	Downhole Logs	18
	5.2	Other Logs	18
	5.3	Synthetic Seismogram	18
	5.4	Vertical Seismic Profile	18
	5.5	Velocity Surveys	18
	5.6	Formation Stimulation	18
	5.7	Formation Flow Tests	18
6.0	Oth	er Data	20
	6.1	Mud Loggers Report	20
	6.2	Directional and Deviation Survey	20
	6.3	Final Legal Survey	20
	6.4	Core Photos	20
	6.5	Core Analysis Report	20
	6.6	Fluid Analysis Report(s)	20
	6.7	Oil, Gas and Water Analysis Report(s)	20
	6.8	Geochemical, Biostratigraphic, Petrological, Palynogical Paleontological Reports	20
	6.9	Well Termination Report	20
Аp	pendic	is	
Ар	pendix	I Authority to Drill Well	21
Ар	pendix	II Daily Reports	27
Ар	pendix	III Bit Record	38
Ар	pendix	IV Composite Well Record	1 0
Ар	pendix	V Stratigraphic Column	12
Ар	pendix	VI Core Box Depths	14
Ар	pendix	VII Lithological Descriptions	16
Ар	pendix	VIII Legal Survey	51
Ар	pendix	IX Core Photos	54
αA	pendix	X Core Analysis Report	50

Appendix XI Well Termination Record	62
List of Figures	
Figure 1. Well location.	. 7
Figure 2 Deviation Plot	13

1.0 Introduction

Flat Bay Test Hole #2 was operated by Vulcan Minerals Inc. - Investcan Energy Corp. Joint Venture and drilled by Logan Drilling Limited utilizing a Duralite 800 Core Drilling Rig. The test hole was spudded on February 14, 2009 and the rig was subsequently released February 22, 2009 upon completion of the hole.

The purpose of the hole was to acquire reservoir information in regards to the commercial viability of a hydrocarbon bearing formation identified in the Flat Bay area from the previous drilling at Flat Bay #1 and Flat Bay #3 wells. In particular, oriented and preserved core is desired to measure and/or determine reservoir parameters such as in-situ fluid contents and physical properties, rock properties such as porosity, permeability and any related information available from laboratory analysis regarding reservoir properties of the cored interval. Other wells drilled within the basin by Vulcan Minerals Inc. (i.e. Flat Bay #1) had encountered significant oil in a relatively thick sequence of sandstone and conglomerate (Fishell's Brook Formation).

As predicted the hole penetrated a thin interval of gypsum, a thick sequence of anhydrite and into the target reservoir formation, a thin interval of Ship Cove limestone followed by conglomerate and sandstone of the Anguille Group. Hydrocarbon shows, varying from excellent to minor, were detected throughout the entire reservoir section. Live oil was observed weeping out around clast boundaries and some sections of coarse grained matrix. Because of the relatively low porosity/permeability of the core, oil would weep from the core many hours after the core was retrieved. Some core had no obvious oil shows when taken from the core barrel but wept oil later. As a result the reservoir sections may contain more significant oil than originally described upon core retrieval.

2.0 General Information

The drill site is located within the former gypsum quarry located 6.8 km west on route 403. The hole is located on the north side of the tailings pile approximately 100 m northwest of Well FB#3. Stephenville, the regional service center for the area is approximately 30 km from the site.

2.1 Map

Figure 1.

Figure 1. Well location.

Well Name

Vulcan - Investcan Flat Bay Test Hole #2

Exploration Permit

The well was drilled on exploration Permit 96 – 105 under the authority of Drilling Program Approval (DPA) # 2009-116-01 and Authority to Drill a Well (ADW) # 2009-116-01-01, both issued on February 10, 2009 (Appendix I).

Location Co-ordinates

The NAD 27 UTM co-ordinates of the well are as follows:

Northing: 5360126.450 m N Easting: 384337.292 m E

Elevation: 43.64 m

The survey was carried out by R. Davis Surveys Ltd. of Stephenville Crossing using differential GPS surveying equipment and techniques (Appendix VIII).

2.2 Difficulties and Delays

Difficulties encountered while drilling were as follows:

- Minor rig up delays prior to drilling out surface casing
- Minor delays waiting on parts to repair drill rig

Vulcan Minerals Inc. Flat Bay Test Hole #2

Drilling Operations **3.00**

3.00 Drilling Operations

A summary of the daily drilling operations are contained in Appendix II – Daily Drilling Reports.

3.1 Elevation

Elevations for the entire hole were measured from the bottom edge of the surface casing and are above mean sea level as follows:

```
Ground - 43.54 m
Casing – 43.64 m
```

3.2 Total Depth

The following depths are measured from the top of casing:

```
Total drilled depth – 213.5 m
Total Vertical Depth – 150.9 m
```

3.3 Spud Date

The well was spudded February 13, 2009 at 20:00 hrs.

3.4 Date Drilling Completed

The well ceased drilling on February 21, 2009 at 21:30 hrs.

3.5 Rig Release Date

The drilling rig was released on February 22, 2009 @ 00:00 hrs.

3.6 Well Status

The well was abandoned at 213.5m. The hole was completely filled with cement while the rods were pulled out of the hole from 213.5 to surface. The casing was cut 1 m below ground level. The well head was then marked by a large boulder. A location rod will be emplaced at the site.

3.7 Hole Sizes and Depth

The following depths are measured from top of surface casing and hole sizes are outside diameters (O.D. (mm)).

Hole Section Size (mm) Depth (m)

Surface	91.7 (NW)	30	
Main	75.7 (NQ)	213.5	

3.8 Bit Records

The surface hole was drilled with one 91.7 mm (NW) diamond casing shoe bit. The main hole was drilled with two 75.7 mm (NQ) diamond-drilling bits. Depths in and out of each bit as well as type and serial # are outlined in Appendix III.

3.9 Casing and Cementing Record

The proposed HQ core was impractical, NW casing could not be installed due to caving down hole. The drilling program was switched to NW shoe bit, advanced with NW core. This may be the preferred drilling method for future test holes. The casing used for the surface/conductor pipe was NW casing, 88.9 mm – 12.8 kg/m3 with a NW shoe placed at 30 m. Thirty meters (10 joints) of NW casing set in hole (Appendix XI).

The NW casing was cemented with 0.1 m³ of Class A Portland Cement at a density of 1820 kg/m³, no cement returns were observed at surface, additional cement was poured from surface to stabilize the top of the casing. Cement was tagged in the casing at 28 m.

3.10 Side-tracked Hole

Not applicable (N/A)

3.11 Drilling Fluid

The drilling fluids consisted of fresh water and drilling polymers (PolyPlus). Entirety of the hole was drilled with fluid densities approximately equal to fresh water 1000 kg/m3.

3.12 Fluid Disposal

Approximately 2800L of drilling fluid contained in mud tanks following drilling completion were transported to Pasadena for processing and disposal at Pardy's Waste Management and Industrial Services in compliance with government regulations.

3.13 Fishing Operations

No fishing operations were conducted on this particular well.

3.14 Well Kicks

There were no kicks encountered during drilling of test hole.

3.15 Formation Leak – Off Tests

There was no Formation Leak – Off Tests performed during drilling of hole.

3.16 Time Distribution

<u>Activity</u>	Total Hours
Drilling	85
Rig Up / Down	12
Rig Repairs	12
Circulating	5
Tripping	2
Cementing	5
Wait on Cement	12
Drill Out Cement	2
Survey	2
Casing Preparation	2
BOP Rig Up / Tests	2
Wait on Parts	73
Stand By	0

3.17 Deviation Plot

Two directional / deviation surveys were conducted at various intervals in the well utilizing a conventional down hole magnetic survey compass - reflex instrument. All surveys measured within 1 degree of deviation and within 4 degrees of azimuth – straight hole (Figure 2).

<u>Depth (meters)</u>	Deviation (degrees)	Azimuth (degrees)
100	-44.0	291.5
213	-44.3	293.4

3.18 Suspension Program

Not applicable

Figure 2. Deviation Plot.

3.19 Well Schematic

A detailed well schematic containing pertinent well bore information is attached (Appendix XI).

3.20 Fluid Samples

No formation fluid samples were taken.

3.21 Composite Well Record

A composite Well Record is included as Appendix IV.

Vulcan Minerals Inc. Flat Bay Test Hole #2

Geology

4.00

4.00 Geology

4.1 Drill Cuttings

No cuttings were taken because entire hole from bedrock surface to total depth was cored.

4.2 Cores

The entire hole from bedrock surface to total depth was cored. Practically one hundred percent core recovery was achieved. All drill core is stored at Vulcan Minerals Inc. storage warehouse in Stephenville, Newfoundland and Labrador. All core boxes are numbered sequentially and marked with respective depth intervals (Appendix VI).

4.3 Lithology

A detailed description of drill core was compiled and is included in Appendix VII. Robert Cuthbert and David Walsh of Vulcan Minerals Inc. provided geological descriptions of all drill cores.

4.4 Stratigraphic Column

A stratigraphic column chart is attached as Appendix V.

4.5 Biostratigraphic Data

No biostratigraphic analysis has been carried out on core samples.

Vulcan Minerals Inc. Flat Bay Test Hole #2

Well Evaluation

5.00

5.0 Well Evaluation

5.1 Downhole Logs

There were no downhole logging operations conducted.

5.2 Other Logs

There were no other downhole logging operations conducted.

5.3 Synthetic Seismogram

Not applicable

5.4 Vertical Seismic Profile

Not applicable

5.5 Velocity Surveys

Not applicable

5.6 Formation Stimulation

Not applicable

5.7 Formation Flow Tests

Not applicable

Vulcan Minerals Inc. Flat Bay Test Hole #2

Other Data

6.00

6.0 Other Data

6.1 Mud Loggers Report

Not applicable

6.2 Directional and Deviation Survey

See 3.17.

6.3 Final Legal Survey

The final legal survey as carried out by R. Davis Surveys Ltd. is contained in Appendix VIII.

6.4 Core Photos

Core photos are contained in Appendix IX.

6.5 Core Analysis Report

Core analysis report is contained in Appendix X.

6.6 Fluid Analysis Report(s)

Not Applicable.

6.7 Oil, Gas and Water Analysis Report(s)

Not Applicable.

6.8 Geochemical, Biostratigraphic, Petrological, Palynogical Paleontological Reports

The stratigraphic control of this well is considered excellent with 100% core recovery and geological descriptions of lithologies intersected paired with known lithological data from offset wells.

6.9 Well Termination Report

A well termination program is included in Appendix XI of this report.

Appendix I Authority to Drill Well

Government of Newfoundland and Labrador

Department of Natural Resources

February 10th, 2009

Mr. Patrick Laracy, President Vulcan Minerals Inc. 333 Duckworth Street St. John's, NL, A1C 1G9

Dear Mr. Laracy:

RE: Drilling Program Approval and Authority to Drill a Well for Vulcan Minerals – Flat Bay Test Hole #2 and Flat Bay Test Hole #3

Please find attached the following executed documents:

- (1) Drilling Program Approval (DPA 2009-116-01);
- (2) Authority to Drill a Well (ADW 2006-116-01-01); and
- (3) Authority to Drill a Well (ADW 2006- 116-01-02).

These documents contain attached conditions. Please ensure that they are prominently displayed at the wellsite at all times.

Thank you for your interest in western Newfoundland and good luck with your exploration efforts.

Yours sincerely,

Keith Hynes, P. Eng.

Kirk Hynes

Director

Petroleum Engineering

Government of Newfoundland and Labrador Department of Natural Resources Energy Branch

DRILLING PROGRAM APPROVAL - APPLICATION

Pursuant to sections 8 and 9 of the Petroleum and Natural Gas Act(1), Vulcan Minerals Inc.
as operator on behalf of , holding a
subsisting licence, permit or lease issued pursuant to the Petroleum Regulations(2), namely; 96-105 & 03-106
(licence, permit, or lease #)
hereby applies for approval to conduct a drilling program using the drilling rig Logan Drilling Limited, Duralite 800
and equipment and procedures described in the detailed program dated . January 14, 2009
The undersigned operator's Representative hereby declares that, to the best of the operator's knowledge, the
information contained herein and in the attached detailed program is true, accurate and complete.
Operator's Representative Frenchist. Date: January 19/09
Operator's Representative / Funder.
APPROVAL
Pursuant to sections 8 and 9 of the Petroleum and Natural Gas Act, the operator named in the Application is hereby
authorized to conduct the proposed drilling program subject to the following conditions:
additionized to conduct the proposed arming program subject to the ronowing conductors.
1. This Drilling Program Approval shall, unless otherwise extended or terminated, expire upon the 28 day of Feb , 20 [1]
2. This Authorization shall be prominently displayed at the well site at all times during which operations are being conducted;
3. Evidence of financial responsibility, as required pursuant to Section 14 of the Petroleum Drilling Regulations (3).
shall be provided by the operator to the Minister of Natural Resources;
4. The operator shall use the equipment and procedures described in the detailed program dated Z February Z009
unless a change in the equipment or procedures is approved in writing by the Director; and
5. The operator shall comply with such other conditions as are appended to this Approval.
1. Late 2 2902-10
Signed: W too be Effective Date: 289762-10
Drilling Program Approved No. 2009-116-01
(1) - (R.S.N.L. 1990, c. P-10)
(2) - CNR 1151/96
(3) - CNR 1150/96

Revised January 2007 FRM-64

OPA1150a.wpd

SCHEDULE "A"

TO

DRILLING PROGRAM APPROVAL #2009-116-01 OTHER CONDITIONS

- 1. Notwithstanding condition # 4 of the Approval (see previous page), the Operator shall comply with the requirements of the *Petroleum Drilling Regulations* (the Regulations) unless the Operator has received written approval from the Director to deviate from the Regulations.
- 2. It is a condition of approval of this DPA, that the Operator ensure that the insurance policy No. AMWCA099363 is in effect for the duration of these operations. Upon receipt of the attachments to the Certificate of Insurance which detail the Amount of Coverage, the Policy Conditions and Policy Exclusions, the Operator will supply same to the Director without delay.
- 3. Pursuant to Section 154 of the Regulations, the director shall release to the public, general information including the name, classification, location, identity of the drilling contractor and rig used by the Operator, depth and operational status of the drilling program.
- 4. It is a condition of approval of this DPA that the Operator, pursuant to Section 52(2)(a) of the *Petroleum Regulations*, (CNR1151/96) provide to the director on a weekly basis a benefits monitoring report as well as a cost summary report showing AFE costs, costs to date and variances for all major cost categories.
- 5. Prior to commencement of any drilling operations, the Operator must have on site a finalized Contingency / Emergency Response Plan meeting the requirements of Section11 of the Regulations. As per communications regarding this plan, all leaks are reportable and all spills in excess of 70 liters are reportable.
- 6. The core acquired under this DPA shall be submitted to the Director upon expiration of Exploration Permit 96-105.
- 7. The detailed program referenced in Approval condition #4 attached consists of the following documents supplied by the Operator:

Title	Date Issued	Date Revised	Revision
Authority to Drill Test Holes	14 January 2009	2 February 2009	Version 1.1
Emergency Response Plan	5 September 2006	10 February 2009	N/A

February 10th, 2009

Government of Newfoundland and Labrador Department of Natural Resources Energy Branch

AUTHORITY TO DRILL A WELL - APPLICATION

			um and Natural Gas A 96) Vulcan Minerals		P-10) and in comp	oliance with section 29 of the as operator,
hereby applie	es for Authority to	Drill a Wel	l to be known as Flat	Bay Test Holes #2		
using the equ	ipment and proces	dures descri	bed in the well progra	m dated January 14	,20	09
Permit, Licer	ace or Lease to wh	ich this Pro	gram applies:	96-105 & 03-106		
Area: Bay S	t, George				CO-OI	RDINATES
Field/Pool: I	lay Bay			Long:		UTM (N A D 27) Northing: 5 360 103
Drilling Rig	Duralite 800			Lat:		Easting: 384 283
Rig Type: D	iamond Core Expl	loration Rig		ELEY	ATION	DEPTH
				C RT C K	3 F RF	T.D.: 200 m
Drilling Con	tractor: Logan Dri	illing Limita	xd	G.L.:	***************************************	TVD: 150 m
	FS	TIMATES	SECOND SERVICES		TARGET	HORIZONS
Cand Data S	ebruary 1, 2009		I Cost:\$100 000			
Spud Date.	ebidary 1, 2009	Wei	1 C051.3 100 000	Spout Falls For	mation, Fischell's I	Brook Conglomerate
Days on Loc	ation: 7					
			EVALU	ATION PROGRAM	1	
Ten-metre sample intervals: Conventional cores at: Continuous Core				us Core		
Five-metre sample intervals:			Logs and Tests:	Oriented core, detailed core and formation fluid		
Canned sample intervals:						
			CASING AND	CEMENTING PRO	OGRAM	
O.D. (mm)	Weight (kg/m)	Grade	Setting Depth (m)		Cementin	g Program
88.9	12.8	NW	40	Type G cement		
			<u> </u>			
Other Equi	pment:					
The undersig	ned operator's Re	presentative	hereby declares that,	to the best of the Re	presentative's knov	vledge, the information contrained
herein and in	the attached deta	iled program	n is true, accurate and	complete.		1 - 19
Signed:	Path)	1-7	araus.		Date: C	Jan 19/09.
	Operator's/	7	tive Ruch of	_4		
332h		ul Danassaa	s has jurisdiction under	THORIZATION	line Damiletiane ("sha Dagalatings")
						undertake the proposed well
			llowing conditions:	inca in the Approxim	on is numbered to	underware me proposed wen
				sita at all times durit	ng which operation	s are being conducted;
			all be submitted to the			
			ditions of the Drilling			
above well i	s to be drilled;					
4. No chang	e in the well prog	ram hereby	approved may be mad	e unless it is first app	roved by the direc	tor in writing;
5. This Aut	norization is condi	tional on th	e operator commencin	g drilling within 120	days of the effecti	ve Authorization date; and
6. The open	ator shall comply	with such of	ther conditions as are a	ppended to this Auth	orization.	
Signed:	Wfood	+		Effective	e Date: 20	19-02-16.
	o Drill a Well No.	7000-1	11-01-01			Revised: March, 2008 FRM-63

SCHEDULE "A" TO

AUTHORITY TO DRILL A WELL #2009-116-01-01

OTHER CONDITIONS

- 1. The Operator shall, prior to commencement of major site operations, ensure that an approved Operator's representative is on site to supervise all site operations.
- 2. Notwithstanding condition #3 of the Authorization (see previous page), the Operator shall comply with the requirements of the *Petroleum Drilling Regulations*, (CNR 1150/96) (the Regulations) unless the Operator has received written approval from the Director to deviate from the Regulations.
- 3. The Operator shall ensure that the test hole is drilled in a prudent and reasonable manner, consistent with good oilfield practices and with due consideration for the safety of personnel, property and the environment.
- 4. The Operator shall be liable for its actions and the actions of its agents, contractors, employees and any others acting under the Operator's authority in drilling the test hole.
- 5. The Operator's liability for the actions of its agents, contractors, employees and any others acting under the Operator's authority in drilling the test hole does not limit any liability that those agents, contractors, employees or others acting under the Operator's authority may have to the Operator.
- 6. The Operator shall ensure that all necessary approvals have been acquired from other government agencies and other rights holders, in respect of access to and use of land for the purpose of the drilling operations, and disposal of all materials.
- 7. The Operator shall attorn to the jurisdiction of the courts of the Province of Newfoundland and Labrador.
- 8. As per section 142(b) of the Regulations, 24 hour notice shall be provided to the Director prior to spud-in.
- 9. A summary report of all operations performed during drilling (daily drilling report and daily geological report) shall be submitted on a daily basis via email to mikestoyles@gov.nl.ca.
- 10. A termination record signed by the operator's representative must be submitted within 21 days of the rig release date. Down-hole schematic and digital images showing the final condition of the site are to be included.
- 11. Prior to the end of drilling operations, the Operator shall provide a legal survey of the site acceptable to the Director to confirm the location of the well.

Feb 10th, 2009

Government of Newfoundland and Labrador Department of Natural Resources Energy Branch

AUTHORITY TO DRILL A WELL - APPLICATION

			oleum and Natural Gas A 50/96) Vulcan Minerals		0. c. P-10) and in compl	iance with section 29 of the , as operator,	
hereby applies for Authority to Drill a Well to be known as Flat Bay Test Holes #3							
using the equipment and procedures described in the well program dated January 14 ,20 09							
Permit, Licence or Lease to which this Program applies: 96-105 & 03-106							
Area: Bay St. George					CO-ORDINATES		
Field/Pool: I	Flay Bay			Long:		UTM (N A D 27) Northing: 5 360 001	
Drilling Rig: Duralite 800						Easting: 384 425	
Rig Type: Diamond Core Exploration Rig					ELEVATION	DEPTH	
Drilling Contractor: Logan Drilling Limited					KB [RF m	T.D.: 200 m TVD: 150 m	
ESTIMATES					TARGET	HORIZONS	
Spud Date: February 1, 2009 Well Cost: \$100 000							
Days on Location: 7					Spout Falls Formation, Fischell's Brook Conglomerate		
EVALUATION PROGRAM							
Ten-metre sample intervals:					Conventional cores at: Continuous Core		
Five-metre sample intervals:					Oriented core, detailed core and formation fluid		
Canned sample intervals:					Logs and Tests: analysis		
CASING AND CEMENTING PROGRAM							
O.D. (mm)	Weight (kg/m)	/eight (kg/m) Grade Setting Depth (m) Cementing Program					
88.9	12.8	NW	40	Type G cement			
Other Equipment:							
The undersigned operator's Representative hereby declares that, to the best of the Representative's knowledge, the information contrained							
herein and in the attached detailed program is true; accurate and complete.							
Signed: Faith January Date: Jan 19/89. Operator's Representative, 1							
/ Yhen of AUTHORIZATION							
Whereas the Minister of Natural Resources has jurisdiction under the Petroleum Drilling Regulations, ("the Regulations").							
In accordance with section 32 of the Regulations, the operator named in the Application is authorized to undertake the proposed well							
program described above subject to the following conditions:							
This Authorization shall be prominently displayed at the well sita at all times during which operations are being conducted;							
2. Copies of all logs and well test data shall be submitted to the director by the operator promptly after their aquistition;							
3. The operator shall comply with all conditions of the Drilling Program Approval No. Z009 - 116-0\ under which the above well is to be drilled:							
No change in the well program hereby approved may be made unless it is first approved by the director in writing;							
No change in the well program nercoy approved may be made unless it is first approved by the director in writing; This Authorization is conditional on the operator commencing drilling within 120 days of the effective Authorization date; and							
The operator shall comply with such other conditions as are appended to this Authorization.							
111 6							
Signed: Effective Date: FRM-63 Revised: March, 2008 FRM-63							

SCHEDULE "A" TO

AUTHORITY TO DRILL A WELL #2009-116-01-02

OTHER CONDITIONS

- 1. The Operator shall, prior to commencement of major site operations, ensure that an approved Operator's representative is on site to supervise all site operations.
- 2. Notwithstanding condition #3 of the Authorization (see previous page), the Operator shall comply with the requirements of the *Petroleum Drilling Regulations*, (CNR 1150/96) (the Regulations) unless the Operator has received written approval from the Director to deviate from the Regulations.
- 3. The Operator shall ensure that the test hole is drilled in a prudent and reasonable manner, consistent with good oilfield practices and with due consideration for the safety of personnel, property and the environment.
- 4. The Operator shall be liable for its actions and the actions of its agents, contractors, employees and any others acting under the Operator's authority in drilling the test hole.
- 5. The Operator's liability for the actions of its agents, contractors, employees and any others acting under the Operator's authority in drilling the test hole does not limit any liability that those agents, contractors, employees or others acting under the Operator's authority may have to the Operator.
- 6. The Operator shall ensure that all necessary approvals have been acquired from other government agencies and other rights holders, in respect of access to and use of land for the purpose of the drilling operations, and disposal of all materials.
- 7. The Operator shall attorn to the jurisdiction of the courts of the Province of Newfoundland and Labrador.
- 8. As per section 142(b) of the Regulations, 24 hour notice shall be provided to the Director prior to spud-in.
- 9. A summary report of all operations performed during drilling (daily drilling report and daily geological report) shall be submitted on a daily basis via email to mikestoyles@gov.nl.ca.
- 10. A termination record signed by the operator's representative must be submitted within 21 days of the rig release date. Down-hole schematic and digital images showing the final condition of the site are to be included.
- 11. Prior to the end of drilling operations, the Operator shall provide a legal survey of the site acceptable to the Director to confirm the location of the well.

Feb 10th, 2009

Appendix II Daily Reports

Date: Friday 13, February 2009 (0000 hrs – 24000 hrs)

Hole Number: Flat Bay Test Hole #2 (FBTH#2)

UTM Nad 27 Zone 21 5360131 m N, 0384310 m E

Elevation: Surface (approximately) 43 m (asl)

Casing (approximately) 43.2 m (asl)

Weather: Overcast, light wind (30km/hr), temperature -10°C

 $\textbf{Depth Start:} \qquad 0 \ m$

Depth End: 0 m

Drilling Fluid: N/A (Not applicable)

Bit: N/A

Survey: N/A

Lithology: N/A

Formation: N/A

Operations: Unloading drill rig and rigging up

Comments: Transport truck arrived on site, drilling rig and ancillary equipment unloaded and transported to

the location of FBTH#2. Drill rig set up and levelled, water lines run, flare pit constructed and tank installed. Light plant, site trailer, generator, porta-potty and remote heater delivered and

installed.

Date: Saturday 14, February 2009 (0000 hrs – 24000 hrs)

Hole Number: Flat Bay Test Hole #2 (FBTH#2)

UTM Nad 27 Zone 21 Azumith: 270 degrees 5360131 m N, 0384310 m E Inclination: 45 degrees

Elevation: Surface (approximately) 43 m (asl)

Casing (approximately) 43.2 m (asl)

Weather: Snow (heavy at times) 40 cm accumulation, light wind (30km/hr), temperature -5°C

Depth Start: 0 m

Depth End: 30 m (drilled) **TVD:** 21.2 m (actual)

Drilling Fluid: Water with some water based polymer for increased viscosity and hole stability.

Bit: Casing Shoe (Fordia CN-ST-5-1C4, serial # 77712-10)

NQ Core Bit (Fordia NWL 4-6, serial # 69920-7)

Survey: N/A

Lithology: 0 - 26 m Overburden, cobbles and boulders of various lithology, silty-sand matrix.

26 - 30 m Gypsum, white to light grey, massive to nodular, some thin, light to medium grey,

irregular laminations

Formation: Codroy Road Formation (Gypsum)

Operations: NQ size core to casing point, ream hole open, install NW casing to 30 m. Prepare to cement

casing in hole.

Comments: Bedrock (Gypsum) encountered at 26 m. Due to length of casing (3 m sections), bedrock cored

and reamed to 30 m to install casing. 10 lengths of NW casing with shoe bit installed in hole,

reamed through several tight spots.

Date: Sunday 15, February 2009 (0000 hrs – 24000 hrs)

Hole Number: Flat Bay Test Hole #2 (FBTH#2)

UTM Nad 27 Zone 21 Azumith: 270 degrees 5360131 m N, 0384310 m E Inclination: 45 degrees

Elevation: Surface (approximately) 43 m (asl)

Casing (approximately) 43.2 m (asl)

Weather: Overcast, light flurries, light wind (15km/hr), temperature -1°C

Depth Start: 30 m

Depth End: 30 m (drilled) **TVD:** 21.2 m (actual)

Drilling Fluid: Water with some water based polymer for increased viscosity and hole stability.

Bit: Casing Shoe (Fordia CN-ST-5-1C4, serial # 77712-10)

NQ Core Bit (Fordia NWL 4-6, serial # 69920-7)

Survey: N/A

Lithology: 26 - 30 m Gypsum, white to light grey, massive to nodular, some thin, light to medium grey,

irregular laminations.

Formation: Codroy Road Formation (Gypsum)

Operations: Cement casing in hole at 30 m. 3 bags of cement mixed to 1820 kg/m³, including 30% excess.

Cement job finished at 0300 hrs.

Waiting on cement and some drilling equipment.

Comments: Cement pumped through casing, no returns to surface. Cement poured from surface around

surface casing. Cement settled and setup just below grade.

Date: Monday 16, February 2009 (0000 hrs – 24000 hrs)

Hole Number: Flat Bay Test Hole #2 (FBTH#2)

UTM Nad 27 Zone 21 Azumith: 270 degrees 5360131 m N, 0384310 m E Inclination: 45 degrees

Elevation: Surface (approximately) 43 m (asl)

Casing (approximately) 43.2 m (asl)

Weather: Sunny with cloudy periods, light wind (10km/hr), temperature -6°C

Depth Start: 30 m

Depth End: 30 m (drilled) **TVD:** 21.2 m (actual)

Drilling Fluid: N/A.

Bit: N/A

Survey: N/A

Lithology: 26 - 30 m Gypsum, white to light grey, massive to nodular, some thin, light to medium grey,

irregular laminations.

Formation: Codroy Road Formation (Gypsum)

Operations: Waiting on drilling equipment.

Comments: Flare line and gas monitoring equipment installed.

Date: Tuesday 17, February 2009 (0000 hrs – 24000 hrs)

Hole Number: Flat Bay Test Hole #2 (FBTH#2)

UTM Nad 27 Zone 21 Azumith: 270 degrees 5360131 m N, 0384310 m E Inclination: 45 degrees

Elevation: Surface (approximately) 43 m (asl)

Casing (approximately) 43.2 m (asl)

Weather: Sunny with cloudy periods, light wind (10km/hr), temperature -8°C

Depth Start: 30 m

Depth End: 44 m (drilled) **TVD:** 31 m (actual)

Drilling Fluid: Water with some water based polymer for increased viscosity and hole stability.

Bit: NQ Core Bit (Fordia NWL 4-6, serial # 69920-7)

Survey: N/A

Lithology: 26 – 34.1 m Gypsum, white to light grey, massive to nodular, some thin, light to medium grey,

irregular laminations.

34.1 – 44 m Anhydrite, greyish blue, massive microcrystalline, to entrolithic

Formation: Codroy Road Formation (Anhydrite)

Operations: Coring NQ.

Comments: Tagged cement in casing at 28 m. Pressure test casing at 1000 kPa for 5 minutes. Drill out

cement and start coring NQ.

Date: Wednesday 18, February 2009 (0000 hrs – 24000 hrs)

Hole Number: Flat Bay Test Hole #2 (FBTH#2)

UTM Nad 27 Zone 21 Azumith: 270 degrees 5360131 m N, 0384310 m E Inclination: 45 degrees

Elevation: Surface (approximately) 43 m (asl)

Casing (approximately) 43.2 m (asl)

Weather: Overcast, light wind (20km/hr), temperature -15°C

Depth Start: 44 m

Depth End: 81 m (drilled) **TVD:** 57 m (actual)

Drilling Fluid: Water with some water based polymer for increased viscosity and hole stability.

Bit: NQ Core Bit (Fordia NWL 4-6, serial # 69920-7)

Survey: N/A

Lithology: 34.1 – 81 m Anhydrite, greyish blue, massive microcrystalline. Thin zones (1 to 2 m thick) of

finely laminated limestone from 53 to 66 m drilled depth.

Formation: Codroy Road Formation (Anhydrite)

Operations: Coring NQ.

Comments: Hydraulic motor on drill failed early morning. Motor replaced, and resume coring NQ by late

afternoon.

Date: Thursday 19, February 2009 (0000 hrs – 24000 hrs)

Hole Number: Flat Bay Test Hole #2 (FBTH#2)

UTM Nad 27 Zone 21 Azumith: 270 degrees 5360131 m N, 0384310 m E Inclination: 45 degrees

Elevation: Surface (approximately) 43 m (asl)

Casing (approximately) 43.2 m (asl)

Weather: Light snow, high wind (60km/hr), temperature -5°C

Depth Start: 81 m

Depth End: 141 m (drilled) **TVD:** 99 m (actual)

Drilling Fluid: Water with some water based polymer for increased viscosity and hole stability.

Bit: NQ Core Bit (Fordia NWL 4-6, serial # 69920-7)

Survey: Depth 100 m

Azimuth 291° (270° corrected for magnetic declination)

Inclination -44°

Lithology: 81 - 134 m Anhydrite, greyish blue, massive microcrystalline. Thin zones (1 to 2 m thick) of

finely laminated limestone from 121 to 131 m drilled depth.

134 - 141 m Limestone, light brown, thinly laminated, wavy and irregular, some anhydrite nodules

along bedding planes.

Formation: Ship Cove Formation

Operations: Coring NQ.

Comments: Started oriented core at 132 m.

Daily Report: 8

Date: Friday 20, February 2009 (0000 hrs – 24000 hrs)

Hole Number: Flat Bay Test Hole #2 (FBTH#2)

UTM Nad 27 Zone 21 Azumith: 270 degrees 5360131 m N, 0384310 m E Inclination: 45 degrees

Elevation: Surface (approximately) 43 m (asl)

Casing (approximately) 43.2 m (asl)

Weather: Cloudy with sunny breaks, moderate wind (30km/hr), temperature -7°C

Depth Start: 141 m

Depth End: 153 m (drilled) **TVD:** 108 m (actual)

Drilling Fluid: Water with some water based polymer for increased viscosity and hole stability.

Bit: NQ Core Bit (Longyear, AlphaBit 7, serial # 144345-7)

Survey: Depth 100 m

Azimuth 291° (270° corrected for magnetic declination)

Inclination -44°

Lithology: 134 - 142 m Limestone, light brown, thinly laminated, wavy and irregular, some anhydrite nodules

along bedding planes.

142 - 153 m Conglomerate; multi-coloured; pebble to cobble sized, sub-rounded, clasts; supported in a sandy to silty matrix. First six metres is blocky and fractured. Oil weeping out of core around

clast boundaries.

Formation: Spout Falls Formation, Fischell's Brook Conglomerate

Operations: Coring NQ.

Comments: Down for 12 hour for rig repair. Pull out of hole to change bit. Drilling fluid system changed

over to "closed system", return fluid re-circulated back down the hole.

Daily Report: 9

Date: Saturday 21, February 2009 (0000 hrs – 24000 hrs)

Hole Number: Flat Bay Test Hole #2 (FBTH#2)

UTM Nad 27 Zone 21 Azumith: 270 degrees 5360131 m N, 0384310 m E Inclination: 45 degrees

Elevation: Surface (approximately) 43 m (asl)

Casing (approximately) 43.2 m (asl)

Weather: Overcast with light snow, high wind (40 - 60 km/hr), temperature -8°C

Depth Start: 153 m

Depth End: 213.5 m (drilled) **TVD:** 150.9 m (actual)

Drilling Fluid: Water with some water based polymer for increased viscosity and hole stability.

Bit: NQ Core Bit (Longyear, AlphaBit 7, serial # 144345-7)

Survey: Depth 213 m

Azimuth 293° (272° corrected for magnetic declination)

Inclination -44°

Lithology: 153 – 213.5 m Conglomerate; multi-coloured; pebble to cobble sized, sub-rounded, clasts;

supported in a sandy to silty matrix. Oil weeping out around clast boundaries, various intervals

throughout section.

Formation: Spout Falls Formation, Fischell's Brook Conglomerate

Operations: Abandon hole.

Comments: Cored hole to 213.5 m, total depth. Survey; abandon hole with three cement pours on way out of

hole, total of 30 bags of cement. Topped up cement when all rods out of hole. Preparing to move

drill rig to next hole.

Appendix III Bit Record

Bit Record Flat Bay Test Hole #2

Bit Number	Size (mm)	Type (Serial #)	Depth In (mRC)	Depth Out (mRC)	Meterage (m)	Hours (h)	ROP (m/hr)	Pulled Condition
1	91.7	Fordia CN- ST-5-1C4	0	30	30	16	1.9	Stayed in hole
2	75.7	Fordia 4-6 (69920-7)	0	164	164	51	3.2	Diamond surface worn out
3	75.7	AlphaBit 7 (144345-7)	164	213.5	49.5	17	2.9	Good

Appendix IV Composite Well Record

Flat Bay Test Hole #2, February 2009

Position: projection NAD 27: 384337.292-mE, 5360126.450-mN, Casing + 43.64-m

All depths are MD Casing

All depths	are MD Casing										The state of the s
Donath		1.20 alama	ROF			Drilling Data			DF & Cementing		D
Depth	Lithology	Lithology	0 ROP	Scheme							Remarks
	Description	Column	(min/m) 10		Deviation:	Bit:	Comments:	Drilling Fluid:	Cement:	Comments:	
0	Overburden 0m to 27.5m			ım 12.8-kg/m @ 30-m		#1. 0 m to 30 m 91.7 mm NW Casing Shoe: Fordia CN-ST-5-1C4; meterage: 30 m; 16 hrs; ROP: 1.9 m/h #2. 0 m to 30 m 75.5 mm NQ Core: Fordia 4-6 (s/n 69920-7); meterage: 21 m; 10 hrs; ROP: 2.1 m/hr		Type: Water based polymer (Poly Plus); MW ~1000-kg/m3	One stage cement job. Pump 0.3-m³ H ₂ O preflush. Pump 0.1-m³ Class A 1820 kg/m³ cement slurry.	* 30% open hole excess * 0.03-m³ cement topped up at surface * Tag TOC at 28-m	
25	Gypsum 27.5m to 35.1m			88.9-m		#3. 30 m to 44 m 75.5 mm NQ Core: Fordia 4-6 (s/n 69920-7); meterage: 14 m; 8 hrs; ROP: 1.8		Type: Water based polymer (Poly Plus); MW ~1000-kg/m3			
50 75	Codroy Road Formation,					m/hr #4. 44 m to 90 m 75.5 mm NQ Core: Fordia 4-6 (s/n 69920-7); meterage: 46 m; 12 hrs; ROP: 3.8 m/hr	Wait on parts, repair				
100	Anhydrite				Deviation -44.0 degrees Azimuth 291.5 degrees		Wait on parts, repair				
125	Ship Cove				@ 100 m Reflex	#5. 90 m to 141 m 75.5 mm NQ Core: Fordia 4-6 (s/n 69920-7); meterage: 51 m; 15 hrs; ROP: 3.4 m/hr					
150	134.7m to 141.74m					#6. 141 m to 164 m 75.5 mm NQ Core: Fordia 4-6 (s/n 69920-7); meterage: 23 m; 6 hrs; ROP: 3.8 m/hr	Wait on parts, repair				
- - -	Spout Falls Formation					#7. 164 m to 213.5 m 75.5 mm NQ Core: AlphaBit 7 (s/n 144345-7); meterage: 49.5 m; 17 hrs; ROP: 2.9 m/hr	Trip to change bit				
	165m to										
- - - 225 - -					Deviation -44.3 degrees Azimuth 293.4 degrees @ 213 m Reflex				Abandonment Cement, 3 stages from 213.5 m to surface; pump 0.8 m3 class		Reach TD; intersect 72 m of Spout Fall's Formation, Fischell's
Remarks:	Licence 96-105		1		eb 13, 2009 @ 20:00	Rig Release: Feb 22, 2009 @ 00:00		_			
	Rig: Logan Drill	ing Inc. Duralit	te 800		onal Hours: 214.00	Percentage Operational NPT: 50.0%					

Appendix V Stratigraphic Column

			Flat Bay Test Hole #2			
Age	Depth (m)	Lithology	Description	Unit	Oil Show	Porosit y
	0.0		Overburden, glacial till or fill material, consisting of cobbles, boulders with a matrix of sand and clay.			
	25.0		Gypsum: White, nodular with thin irregular wisps of calcareous mudstone (micrite) surrounding nodules. 27.6 - 28 m, soft unconsolidated calcareous clay.			
	50.0		Anhydrite: Steel blue, massive, suggary texture; thin (cm) irregular, light brown wisps and laminations of micrite.			
Visean	75.0		Limestone: light brown to tan, thin beds to laminated at 70° to Core Axis (CA); some vuggy porosity with calcite crystal growth; petroliferous odour.	Codroy Road Formation		
	100.0		Anhydrite: Steel blue, massive, suggary texture; thin (cm) irregular, increasing amounts of light brown wisps and laminations of micrite with depth.	Codr		
	125.0		Limestone: Light gray beds of to 1 cm thick with thin medium to dark gray organic rich? Laminations. Small (mm) nodules of anhydrite in organic laminations. Petroliferous odour. Sharp basal contact at 60° to core axis.	Ship Cove		
an	150.0		Conglomerate: Rounded to sub-rounded, point supported, pebble to cobble size, clasts of micrite/limestone/dolostone, igneous, and quartz arenite; coarse sand matrix with calcareous cement; blocky core from 146 - 148 m, rare slick en sided surfaces @ 50° to	Spout Falls Formation - Fischells Brook Cong.		12.3 11.1
Tournaisian	175.0		CA (147.5 m); porosity visually estimated at 5-10%.	alls Formation - Fis	_	13.7 8.3
	200.0			Spout Fa		2.4 8

Appendix VI Core Box Depths

Core Box Depths

Flat Bay Test Hole #2

Box #	Start depth	End Depth (m)
1	27.50	31.95
2	31.95	36.10
3	36.10	40.35
4	40.35	44.70
5	44.70	48.95
6	48.95	53.30
7	53.30	57.55
8	57.55	61.98
9	61.98	66.42
10	66.42	70.65
11	70.65	74.92
12	74.92	79.22
13	79.22	83.69
14	83.69	87.90
15	87.90	92.32
16	92.32	96.67
17	96.67	101.06
18	101.06	105.45
19	105.45	109.75
20	109.75	114.18
21	114.18	118.46
22	118.46	122.82
23	122.82	127.16
24	127.16	131.47
2 5	131.47	135.68
26	135.68	139.98
27	139.98	144.03
28	144.03	148.30
29	148.30	152.33
30	152.33	156.62
31	156.62	160.90
32	160.90	165.10
33	165.10	169.30
34	169.30	173.39
35	173.39	177.50
36	177.50	181.52
37	181.52	184.93
38	184.93	189.90
39	189.90	196.20
40	196.20	201.10
41	201.10	205.32
42	205.32	209.50
43	209.50	213.50

Appendix VII Lithological Descriptions

	Dept	h (m)	Thickness	Description	Lincotion	Davasitu	Oil/see show	Dook avality
From		То	(m)	Description	Lineation	Porosity	Oil/gas show	Rock quality
				Overburden, glacial till or fill material, consisting of				
	0	27.5	27.5	cobbles, boulders with a matrix of sand and clay.				
27.5 -	35.1	m, Codroy	Road Format	tion, Gypsum unit				
				Gypsum: White, nodular with thin irregular wisps of				
				calcareous mudstone (micrite) surrounding nodules.				
	27.5	35.1	7.6	27.6 - 28 m, soft unconsolidated calcareous clay.				Consolidated
35.1 -	134.	7 m, Codroy	Road Forma	ation, Anhydrite unit	_			
				Anhydrite: Steel blue, massive, sugary texture; thin (cm)				
	35.1	53	17.9	irregular, light brown wisps and laminations of micrite.				Consolidated
				It was a second by the form of the second by the second se				
				Limestone: light brown to tan, thin beds to laminated at				
	5 2	545	4.5	70° to Core Axis (CA); some vuggy porosity with calcite	70% 64			6
	53	54.5	1.5	crystal growth; petroliferous odour.	70° CA			Consolidated
				Anhydrite: Steel blue, massive, sugary texture; thin (cm)				
	54.5	63.9	0.1	irregular, light brown wisps and laminations of micrite.				Consolidated
	54.5	03.3	J. 4	integular, light brown wisps and laminations of micrice.				Consolidated
				Limestone: light brown to tan, thin beds to laminated at				
				70° to Core Axis (CA); some vuggy porosity with calcite				
	63.9	66.1	2.2	crystal growth; petroliferous odour.	70° CA			Consolidated
				Anhydrite: Steel blue, massive, sugary texture; thin (cm)				
				irregular, increasing amounts of light brown wisps and				
	66.1	121.41	55.31	laminations of micrite (15-20%).				Consolidated
				Anhydrite: Steel blue, massive, sugary texture; thin beds				
				of light brown limestone dipping at 55° to CA. Small				
12	21.41	123.2	1.79	(mm) nodules of anhydrite along bedding plane.	55° CA			Consolidated
				Anhydrite: Steel blue, massive, sugary texture with wisps				
1	123.2	129	5.8	of micrite throughout.				Consolidated

Dep	th (m)	Thickness	Description	Linastian	Donositu	Oil/gos show	Dook avality
From	То	(m)	Description	Lineation	Porosity	Oil/gas show	Rock quality
			Limestone: light brown to tan, thin wavy beds and				
			laminations of anhydrite at 50° to Core Axis (CA);				
129	131	2	petroliferous odour; rubble zone at 129.35 m.	50° CA			Consolidated
			Anhydrite: Steel blue, massive, sugary texture; thin wispy				
131	134.7	3.7	and irregular beds/laminations of light brown limestone.				Consolidated
134.7 - 14	1.74 m, Ship	Cove Forma	tion				
			Limestone: Light gray beds of to 1 cm thick with thin				
			medium to dark gray organic rich? Laminations. Small				
			(mm) nodules of anhydrite in organic laminations.			petroliferous	
			Petroliferous odour. Sharp basal contact at 60° to core			(+) sulphur	
134.7	141.54	6.84	axis.	50° CA		odour	Consolidated
			Micrite: greenish gray, very fine grained, thin bedded to				
141.54	141.74	0.2	laminated, irregular contact down to.				Consolidated
141.74 -	, Spout	Falls Forma	tion, Fischell's Brook Conglomerate				
			Conglomerate: Greenish gray; sub-angular to angular,				
			pebble sized, clasts of limestone, dolostone and igneous			minor oil show	
			clasts; matrix of fine to coarse sand, low porosity (1-3%			on grain	
141.74	142.04	0.3	estimated)		1-3%	boundaries	Consolidated
			Conglomerate: alternating pebble and cobble/boulder			oil weeping	
			conglomerate; medium to coarse sand matrix, porosity 5-			from clast	
			10%, oil weeping out from pebble conglomerate zones			boundaries in	
142.04	143.93	1.89	with coarse matrix.		5-10%	pebble cgl.	Consolidated
			Conglomerate: Rounded to sub-rounded, point				
			supported, pebble to cobble size, clasts of				
			micrite/limestone/dolostone, igneous, and quartz				
			arenite; coarse sand matrix with calcareous cement;				
			blocky core from 146 - 148 m, rare slick en sided surfaces			oil weeping	
			@ 50° to CA (147.5 m); porosity visually estimated at 5-			from clast	
			10%; some oil weeping out at clast boundaries			boundaries in	
143.93	148	4.07	(approximately 10% of core).	50° CA	5-10%	pebble cgl.	Blocky

Dep	th (m)	Thickness	Description	Linaation	Donositu	Oil/gos show	Dook avality
From	То	(m)	Description	Lineation	Porosity	Oil/gas show	Rock quality
						Good oil show,	
			Sandstone: coarse sandstone; some cobble sized clasts;			oil bleeding	
			calcareous cement; porosity estimated at 8-12%; good			out of	
148	148.3	0.3	oil show over entire section.		8-12%	sandstone	Consolidated
			Conglomerate: Pebble to cobble conglomerate, point to				
			matrix supported; medium to coarse grained sand			Good oil show,	
			matrix, calcareous cement, blocky broken core, porosity			oil bleeding	
			visually estimated at 5-10%, possibly higher due to			out of matrix	
			blocky core; oil weeping out from pebble conglomerate			in pebble cgl	
148.3	150.5	2.2	zones.		5-10%	zone	Blocky
			Conglomerate: Cobble conglomerate, matrix supported;				
			medium to coarse grained sand matrix, calcareous				
			cement, consolidated core, breaks along large clast				
			boundaries, porosity visually estimated at 3-5%; minor				
			oil weeping around moderate sized cobble clast			very minor oil	
150.5	153.55	3.05	boundaries.		3-5%	show at base	Consolidated
						Good oil show,	
			Conglomerate: Pebble conglomerate, matrix supported;			oil weeping	
			coarse grained sand matrix, consolidated; good oil show,			out of matrix	
			weeping out of matrix and around clast boundaries;			and clast	
153.55	155.85	2.3	porosity visually estimated at 8-12%.		8-12%	boundaries.	Consolidated
			Conglomerate: Cobble to pebble conglomerate, matrix to				
			point supported; medium to coarse grained sand matrix,				
			calcareous cement, consolidated core, breaks along large			very minor oil	
			clast boundaries, porosity visually estimated at 3-5%;			show around	
			rare oil weeping around moderate sized cobble clast			some clast	
155.85	169.3	13.45	boundaries (3-5%).		3-5%	boundaries	Consolidated

Dep	th (m)	Thickness	Description	Lineation	Davasitu	Oil/see show	Deal, avalitu
From	То	(m)	Description	Lineation	Porosity	Oil/gas show	Rock quality
			Conglomerate: Cobble to pebble conglomerate, matrix to point supported; medium to coarse grained sand matrix,			Oil show adjacent to	
			calcareous cement; blocky core, rubbly @ 170.8 m,			vugs from	
			porosity visually estimated at 4-6%; large open vug with			169.7 - 169.8	
			some calcite crystal growth at 169.7 - 169.8 m, oil			m; minor oil	
			bleeding out from and adjacent to vug; oil weeping			show from	
			around clasts in pebble conglomerate from 171 - 171.2			171.0 - 171.2	
169.3	174.5	5.2			4-6%	m	Blocky
			Sandstone: medium to coarse sandstone; porosity				
			visually estimated at 10-15%, oil weeping out at base of			oil show at	
174.5	174.7	0.2	section.		10-15%	base of section	Consolidated
			Conglomerate: Pebble conglomerate, matrix to point				
			supported; coarse grained sand matrix with pebble sized			Good oil show,	
			clasts; good oil show, oil bleeding out of matrix and			oil bleeding	
174.7	175.5	0.8	around clast boundaries.		8-12%	out of matrix.	Consolidated
			Conglomerate: Pebble to cobble conglomerate, rounded				
			to sub-rounded, point to matrix supported; medium to				
			coarse sand matrix, matrix weakly fizzes with acid,				
			porosity visually estimated at 4-6%; light petroliferous				
175.5	189.5	14	odour, some oil weeping out from clast boundaries.		4-6%	rare	Consolidated
			Conglomerate: Pebble sized clasts; coarse to very coarse				
			sand sized grains; Poor recovery from 189.5 - 192.5,				
			rubbly core, some loose sand grains, irregular fractures,				
			driller reported low head pressure through this zone,			Odour, rare oil	
			probably fault zone, however no obvious slick en sided			at clast	
189.5	192.5	3	surfaces.		fractured	boundaries	Blocky
			Conglomerate: Pebble and cobble conglomerate; coarse				
			grained sand matrix; no visible oil or odour; porosity				
192.5	213.5	21	visually estimated at 3-5%. End of Hole		3-5%	rare	Consolidated

Appendix VIII Legal Survey

Confidential

MTM, NAD	MTM, NAD83, ZONE 3				UTM, NAD83, ZONE 21	NE 21		UTM, NAD27, ZONE 21	ONE 21	
POINT #	POINT # NORTHING	EASTING	ELEV. DESC.		NORTHING	EASTING	ELEV	NORTHING	EASTING	ELEV
1	5362261.793	298354.05	25.87	25.87 CM84G4148	5361866.032 382530.02	382530.02	25.87	5361647.393	382471.398	25.87
4	5360608.033	5360608.033 300400.255	46.89 FBTH#3	FBTH#3	5360172.762	5360172.762 384543.191	46.89	5359954.12	384484.551	46.89
9	5360737.377	300335.05	45.73 FB#3	FB#3	5360303.338	384480.541	45.73	5360084.697	384421.902	45.73
80	5360777.474	300249.629		43.64 FBTH#2	5360345.092	384395.93	43.64	5360126.45	384337.292	43.64
10	10 5360891.886	300344.843	42.49 FB#1	FB#1	5360457.604	5360457.604 384493.351	42.482	5360238.964	384434.713	42.49

Confidential

STEPHENVILLE CROSSING, NL

MAR. 3, 2009

Appendix IX Core Photos

Plate 1. 27.50 - 53.30 metres

Plate 2. 53.30 - 74.92 metres.

Plate 3. 74.92 - 96.67 metres.

Plate 4. 96.67 - 118.46 metres.

Plate 5. 118.46 - 139.98 metres.

Plate 6. 139.98 - 160.90 metres.

Plate 7. 160.90 - 181.52 metres.

Plate 8. 181.52 - 205.32 metres.

Plate 9. 205.32 - 213.50 metres.

Appendix X Core Analysis Report

TABLE 1
WELLS: FLAT BAY TEST HOLE # 2; FLAT BAY TEST HOLE # 3
FLAT BAY AREA, SHIP COVE / SPOUT FALLS FORMATION
SUMMARY OF MAIN PARAMETERS OF CORE SAMPLES SELECTED

Sample	Depth	Depth	Grain Density	Porosity	Air Permeability	Water Saturation	Oil Saturation	Gas Saturation	
ID	(m)	(ft)	(kg/m)	(fraction)	(mD)	(fraction)	(fraction)	(fraction)	Comments
					Walls	Flat Bay Test Hole	#2		
	440.40	450.05	0700	0.000				0.000	
1	140.10	459.65	2700 2700	0.033	0.003	0.353 0.117	0.440		crystalline limestone
2	140.78 143.30	461.88		0.065	0.002	0.117	0.383		crystalline limestone
3		470.14	2850	0.009	0.001		0.214		calcite dolomite , Hg Bulk
4	145.30	476.71	2620	0.004	0.000	0.130	0.210		Hg Bulk
5	148.77	488.09	2620	0.027	0.039	0.040	0.763		irregular size grains calcite
6	153.35	503.12	2670	0.071	0.112	0.290	0.386		irregular size grains
/	153.65	504.10	2680	0.045	0.118	0.376	0.201		irregular size grains
8	154.75	507.71	2680	0.030	0.123	0.711	0.289		irregular size grains
9	175.00	574.15	2660	0.137	3.73	0.298	0.148		fine grains
10	175.25	574.97	2660	0.097	2.44	0.415	0.140		fine grains
11	175.40	575.46	2670	0.083	0.456	0.450	0.117		fine to medium grains
12	176.10	577.76	2630	0.011	0.430	0.503	0.013		very fine sandstone / infill fracs
13	200.77	658.69	2640	0.009	0.024	0.860	0.008		from individual meters
14	210.16	689.50	2730	0.080	0.100	0.563	0.047		from individual meters
16	163.08	535.04	2670	0.111	0.539	0.386	0.101	0.513	fine to medium grains, from individual meters
			•		Well:	Flat Bay Test Hole	#3		
1	198.62	651.64	2710	0.038	0.002	0.144	0.294	0.562	limestone
2	199.55	654.69	2700	0.039	0.050	0.319	0.423	0.258	limestone bedded
3	200.00	656.17	2700	0.015	0.001	0.145	0.248	0.607	Hg bulk
4	200.88	659.06	2710	0.010	0.000	0.595	0.184	0.221	limestone
5	201.68	661.68	2680	0.059	0.037	0.346	0.346	0.309	calcite sandstone
6	202.59	664.67	2840	0.016	0.000	0.214	0.280	0.506	calcite dolomite
7	202.69	664.99	2700	0.046	0.067	0.188	0.452	0.361	mix sandstone /calcite nodule
8	207.48	680.71	2700	0.047	0.067	0.301	0.321		mix sandstone /calcite nodule
9	209.32	686.75	2710	0.032	0.064	0.407	0.301		mix sandstone /calcite nodule
10	209.66	687.86	2670	0.069	0.129	0.281	0.292		mix sandstone /calcite nodule
11	211.92	695.28	2640	0.008	0.000	0.256	0.526	0.218	sandstone
12	246.64	809.19	2670	0.149	4.74	0.339	0.131	0.529	fine sandstone
13	248.08	813.91	2660	0.103	1.28	0.363	0.233	0.404	fine calcite nodule
14	248.36	814.83	2670	0.095	0.768	0.317	0.194	0.489	fine calcite nodule
15	239.15	784.61	2660	0.061	0.100	0.481	0.051	0.469	from individual meters

Appendix XI Well Termination Record

Government of Newfoundland and Labrador Department of Natural Resources Energy Branch

WELL TERMINATION RECORD

WELL DATA

Well Name:	Flat Bay Test	Hole #2		A CONTRACTOR OF THE CONTRACTOR			CO-OR	DINA	IIS
Operator:	Vulcan Miner	als Inc.	· · · · · · · · · · · · · · · · · · ·	L	ong:				ITM (NAD27)
Drilling Rig :	Duralite 800	11100,001		L	st.:			Northin	
	Datanic 000				- 3/7/2	ELEVATI	ON	Easting	: 384337.292 DEPTH
Rig Type:	Core Drill				RT			M.D.:	213.5
Drilling Contr	actor : Logan Drillin	g Limited		G	L.:	43.64		T.V.D. :	150.9
							FOR INT	ERNAL	USEONLY
Spud Date:	February 14, 2009								n 154 (5) of the Petroleum
T.D. Date:	February 21, 2009			D	rilling	Regulations	, the rig releas	e date is	deemed to be:
Rig Release I	Date: February 22.	2009				<u></u>	22, 2	7.85	~
Well Termin	stion Date: Febr	uary 21, 2009						_00	
Purpose of	Termination:	Suspension		idonment			Other:		
1	T		CASIN	IG AND CEI	AICIA	ING PRO			
O.D. (mm)	WEIGHT (kg/r	n) GRADE	SETTING	DEPTH (m)			CEMENTIN	IG DET	AILS
88.9	12.8	NW	30		0.1 r	n3, 1820 kg/i	m3. Type A		
					<u> </u>				
									·
				PLUGGIN	G PI	ROGRAM	······································	West and the second	
Approval of	the following p	rogram was ob	tained by (person)	ober	t Cuthbert			
from (perso	n)					of	the Departme	ent of Na	tural Resources by means of
as per Auth	ority to Drill a W	ell Application			da	ted 2009-	02-10		
Турс	of Plug	Inter	val	Felt/Pre	ssure	Tested		Cemen	t and Additives
Cement		0-213,5 m		observed at	surfa	ce	0.8 m3. 1820	<u>ka/m3, T</u>	Type A
,									
Lost Circul	ation/Overpres	sure Zones:	Vone enco	untered				····	
	Downho	le Completion	/Suspensi	on Equipme	it (De	scribe Belov	w and Attach	Sketch	of Wellbore)
Cement fro	m surface to TD	- see attached	sketch						
	off 1 m below gr			nce weather i	mpro	ves.			
- Address - Addr						···			
				DECLA					
The undersi	gned OPERATO amed well, the	R'S REPRESENT above information	ITATIVE he tion is true,	ereby declare accurate and	com	on the basis plete.	of personal kn	owledg	e of operations undertaken at
Name Ro	bert Cuthbert				Title	Geologist ((Vulcan Minera	als Inc.)	
Signed	VATE				Dat	e March 20,	2009		
L				ACKNOW	LEDO	SEMENT			
	ω .	ild la	1	1		Ann.	1 2 2	nno	
Acknowled	ged by/	100 10	yn	F	Date	= 17/11	12,2	007	
		Directo							

Revised January 2007 FRM-62

UTM NAD 27, Zone 21 Coordinates N 5360126.450 m E 0384337.292 m Casing Elevation: 43.64 m Azimuth: 180 degrees Inclination: -45 degrees Hole 91.7 mm Casing 88.9 mm 29.8 mGL Cement - Class "A" Surface to 29.8 mGL (Ground Level) 75.7 mm hole Cement - Class "A" from Surface to 213.5 mCL (Casing Level) 213.5m TD @ 213.5 m TVD @ 150.5 m Abandonment Operations February 21, 2009

Vulcan Minerals Inc. Flat Bay Test Hole #2 Abandonment Configuration Scale: Not to Scale

Drawn By: R. Cuthbert **Date:** March 11, 2009

Drawing #: FBTH#2 Abandon

Revision: 0