MINERAL OCCURRENCE DATA SYSTEM

G.J. Stapleton, J.L. Smith and H.M. Rafuse
Mineral Deposits Section

ABSTRACT

The Mineral Occurrence Data System (MODS) is the principal repository for geological information on the Province’s mineral resources and comprises summaries of data on more than 6500 mineral occurrences. It offers fast and easy access to the data and is searchable from the Geological Survey’s website (http://www.nr.gov.nl.ca/nr/mines/Geoscience/index.html).

INTRODUCTION

The Mineral Occurrence Data System (MODS) is the principal repository for geological information on the Province’s mineral resources, and is a two-part infobase consisting of a mineral occurrence database and a collection of mineral occurrence maps (Stapleton et al., 2000). The MODS comprises summaries of data on known mineral occurrences, and is designed to offer fast and easy access to relevant information. It contains more than 6500 mineral occurrence descriptions, covering all of Newfoundland and Labrador. The main delivery point for the MODS data is the Geological Survey of Newfoundland and Labrador website (http://www.nr.gov.nl.ca/nr/mines/Geoscience/index.html). Clients are able to search the database using either the ‘Mineral Deposit (MODS) Index Search Form’ or ‘Resource Atlas’.

MINERAL OCCURRENCE DATABASE

MODS (ORACLE)

The MODS data is housed within the Oracle database management system; however, data entry is achieved using an application of MS-Access database software (Stapleton et al., 2005); MS-Access connects to the Oracle database using object database connectivity technology. In addition to increasing the security of the MODS data, Oracle will be the common database platform for all of the Geological Survey’s databases, which will enable more efficient sharing of information between the databases. The MODS internet application is dynamically linked to the Oracle™ database, giving clients same-day access to updated information.

DELIVERY MECHANISMS

GeoScience OnLine

Most MODS users access it via the internet from the Geological Survey’s website. Detailed MODS data can be queried and viewed in a map environment in conjunction with other geoscientific datasets online, using the Geoscience Atlas map viewer. During the past year, same-day access to new MODS data was achieved.

MapInfo™ and ArcView™

Selected fields (Table 1) from the mineral occurrence database are also available on CD-ROM as part of the Geoscience Atlas of Newfoundland (Davenport et al., 1999a) and the Geoscience Atlas of Labrador (Davenport et al., 1999b). Both operate as ‘turn key’ systems on personal computers in MapInfo™ and ArcView™ formats. These publications enable clients to better visualize georeferenced data in broader geoscientific contexts. Updated MODS GIS datasets are available for download from the Geoscience Atlas.

MINERAL OCCURRENCE MAPS

Mineral occurrence maps on geological bases have been published at 1:250 000 scale, and selected areas have been published at 1:50 000 and 1:100 000 scales. An industrial minerals map for insular Newfoundland, at 1:1 000 000 scale, on a coloured geological base, is also available. These maps provide the location, minerals present and status of each occurrence. Mineral occurrence locations are also plotted on 1:50 000-scale topographic maps and are available for viewing at the Geological Survey’s offices in St. John’s, NL.

The MODS project has also published six, on demand, thematic mineral occurrence maps on geological bases. These are, Epigenetic Gold and Related Mineralization, Newfoundland; Copper and Associated Mineralization, Newfoundland; Zinc–Lead and Related Mineralization, Newfoundland; Mississippi Valley Type Lead–Zinc Miner-
All maps are available, upon request, from the Geological Survey’s Geoscience Publications and Information Section.

LINKS TO COMMODITY SERIES REPORTS PROJECT

Since the late 1990s, the Geological Survey has produced several ‘Commodity Series Publications’, which are short summaries of particular commodities and emphasis on their geological settings and exploration potential. The primary information base for developing such reports is the MODS, and work continued in 2010 on rare metals. The publication is currently in its final editing stages. The reports on molybdenum and tungsten, as well as one on iron ore, are still in the development stages.

DATA ENTRY AND EDIT: UPDATE

The record levels of mineral exploration in recent years continues to generate a tremendous amount of new information and keeping MODS current represents a challenge. Systematic updates by NTS map sheets continued on NTS 2D (east-central Newfoundland), 11O (southwest Newfoundland), and 13J (Central Mineral Belt, Labrador) and 3D, 3E, 13A, 13B, 13G, 13H, 13I (eastern Labrador). Province-wide updates in areas of recent high-exploration activity were completed by accessing press releases and mineral-industry assessment reports as they came into the public domain. Areas updated in this manner include NTS 1N, 2C, 2E, 12A, 12B, 12H and 12I (Newfoundland) and 13K, 14C, 14D, 14F, 23A and 23J (Labrador) (Figures 1, 2).

The MODS personnel, working with the Mineral Development Division and the Department of Education produced a map and list of the Province’s historical mining operations for inclusion in the ‘Newfoundland and Labrador Heritage, Culture and Identity’ textbook. The text book is part of the Newfoundland and Labrador high school social studies curriculum.

MODS USERS

The MODS is used by mineral-exploration company personnel and consultants, independent prospectors, personnel and students of academic organizations and the general public. It is also used daily by government geologists in land-use planning. Advice is given to various government departments through the Interdepartmental Land Use Committee referral process on establishing wilderness areas,
hydro developments, provincial and national parks, cottage developments, water reservoirs, etc., so that, where possible, these developments proceed in areas of low mineral potential.

The MODS data are made available to various federal government agencies such as the Minerals and Metals Sector and the Geological Survey of Canada of Natural Resources Canada, and the Mineral Deposits Subgroup of the Canadian Geoscience Knowledge Network (Stapleton and Smith, 2004).

Figure 1. Systematic versus non-systematic updates for insular Newfoundland.
ACKNOWLEDGMENTS

The authors would like to acknowledge the work of Tara Crewe, Jenette Walsh and Luke Madigan and thank them for making significant contributions to the project during the past year.

Figure 2. Systematic versus non-systematic updates for Labrador.
REFERENCES

Davenport, P.H., Nolan, L.W., Butler, A.J., Wagenbauer, H.A. and Honarvar, P.

Davenport, P.H., Nolan, L.W., Wardle, R.J., Stapleton, G.J. and Kilfoil, G.J.

Stapleton, G.J. and Smith, J.L.

Stapleton, G.J., Smith, J.L. and Parsons, W.K.

Stapleton, G., Smith, J.L., Pollock, J.C. and Way, B.C.