ERRATA

Holders of the Department of Transportation and Works Specifications Book, dated March 2011 are advised to make the following corrections.

REVISIONS MARCH 2012

1. **Section 128** revised to require NLCSA Certificate of Recognition. Letter of Good Standing will no longer be accepted. Contractors must be COR Certified.

2. **Section 131** revised to include an omission of minimum diversion width not carried over from the 2008 Specifications to the 2011 Specifications.

3. **Section 136** revised to include standard Supplementary General Condition already addressing this item.

4. **Section 155** revised to update set overhaul rates for Extensions to Road Contracts.

5. **Section 190** revised to include updates to OHS Regulations and clarify resulting requirements of Safety Plans etc.. New forms developed for submission by Contractors on “Contractor Monthly OHS Performance Report” and “Traffic Control Signage Log”.

6. **Section 315 Selected Granular Base Course** Table 2 revised for ASTM Designations.

7. **Section 320 Tack Coat** revised the type of allowable products to be supplied for Tack Coat.

8. Section 330 Hot Mix Asphaltic Concrete, **Sub-Section 330.02.01.02 Crushed Aggregate** revised to allow an increase on percentage passing the 75 μm sieve to 10% for naturally occurring fine aggregate.

9. Section 330 Hot Mix Asphaltic Concrete, **Sub-Section 330.02.01.02.01 Coarse Aggregate** revise Table 1 for Micro Deval Requirements

10. Section 330 Hot Mix Asphaltic Concrete, **Sub-Section 330.02.01.02.02 Fine Aggregate** revise requirements for: natural occurring and blending sand proportion of fine aggregates; Table 2, Physical Requirements for Fine Aggregates; and Guidelines for Gradation of Fine Aggregates.

11. Section 330 Hot Mix Asphaltic Concrete, **Sub-Section 330.02.01.03 Blending Sand** revise the allowable limits on blending sand.

12. Section 330 Hot Mix Asphaltic Concrete, **Sub-Section 330.05.09.05.01 Joints** addition of minimum specified length of keyed joints.
13. Section 330 Hot Mix Asphaltic Concrete, **Sub-Section 330.06.02.05 Lot** revised to make adjustments to the specified lot size.

14. Section 330 Hot Mix Asphaltic Concrete, **Sub-Section 330.06.04.01 Establishing a Design Mix Formula (DMF)** revised to add certified laboratory requirements.

15. Section 330 Hot Mix Asphaltic Concrete, **Sub-Section 330.06.04.02 Requirements for Design Mix Formula** revisions to Air Void requirements.

16. Section 330 Hot Mix Asphaltic Concrete, **Sub-Section 330.06.04.05 Establishing a Job Mix Formula (JMF)** revision to quantities and carryover of unused base mix to surface mix.

17. Section 330 Hot Mix Asphaltic Concrete, **Sub-Section 330.06.05.05.05 Keyed Joints** addition of minimum specified length of keyed joints.

18. Section 330 Hot Mix Asphaltic Concrete, **Sub-Section 330.06.08.01 Quality Control Inspection Testing Plan** revise Table 10 for clarification of testing frequency and ASTM Standard References.

19. Section 330 Hot Mix Asphaltic Concrete, **Sub-Section 330.06.09.02 Asphalt Binder Content, Gradation and Air Voids** revise Table 13 and 14 for clarifications and notes with respect to Highway Classifications and asphalt mix types.

20. Section 330 Hot Mix Asphaltic Concrete, **Sub-Section 330.06.09.04.01 Material Application Rate (Rehabilitated Pavements)** add note on Table 17 for clarification.

21. **Section 403 Excavation for Foundations**, Update Basis for Payment to clarify measurement of excavation.

22. **Section 410 Select Bedding for Storm Sewers, Sub-Drains and Catch Basins Sub-Section 410.05.01**, Update Measurement for Payment to clarify minimum payment width not carried over from the 2008 Specifications to the 2011 Specifications.

23. **Section 421** revised to add additional requirements for use of High Density Polyethylene pipe.

24. Revise **Section 470 Construction and Adjustment of Manholes, Catch Basins, and Ditch Inlets** to revise the concrete strength requirement to 35MPa.

25. Revise **Section 480 Concrete Curb and Gutter** to revise the concrete strength requirement to 40MPa.

26. Revise **Section 481 Rock Embedded Concrete Gutter** to revise the concrete strength requirement to 40MPa.

27. Revise **Section 501** to correct references to the latest version of the Occupational Health & Safety Regulations. Also reference name change of Department of Government Services to Service NL.
28. Revise Section 530 Supply and Installation of Traffic Light Conduit to revise the concrete strength requirement to 40MPa.

29. Revise Section 540 Cast-in-Place Concrete Median Barrier to revise the concrete strength requirement to 40MPa.

30. Revise Section 541 Precast Concrete Traffic Barrier to revise the concrete strength requirement to 40MPa.

31. Revise Section 570 Installation of Concrete Sidewalk to revise the concrete strength requirement to 40MPa.

32. Revise Section 580 Signpost Installations to add requirements for cross bracing on Type A and Type B signs.

33. Revise Section 632 Hydrotech to correct a printing formatting issue with the 2011 version of the specification.

34. Revise Section 643 Salvage and Reinstallation of Guide Rail to add requirements to bend guide rail where required in the reinstallation process.

35. Revise Section 810 Use of Herbicides for Brush Control Operations to add requirements to check the treatment success rate of 95% as required in the treatment process and to holdback a portion of payment till the following season to ensure the success of the treatment.

36. Revise Section 903 Construction Specification for Piling to include new requirements for submission of Mill Test Certificates for H-Pile and Pipe pile materials.

37. Revise Section 903 Construction Specification for piling to include new requirements for splicing and weld inspection of steel piles.

38. Revise Section 904 Concrete Structures to permit the substitution of concrete mixes of higher 28 day compressive strength then those specified in the contract plans or specifications.

39. Revise Section 906 Prestressed Concrete Members to make mandatory the presence of a monostrand jack on site prior to the start of stressing operations.

40. Revise Section 906 Prestressed Concrete Members to require that all grouts used for grouting of post-tensioning cables shall be pre-packaged products and intended for that purpose.

41. Form 1000 page 1000-9 add to Section 10-1 a footnote to give a rate for a shouldering machine attachment to a Rubber Tired Front End Loader of $35.25 per hour.
42. Form 1122 update for revision for asphalt layer thicknesses to 60 mm Asphalt Base and 50 mm Asphalt Surface.

43. Form 1125 update for revision for asphalt layer thicknesses to 60 mm Asphalt Base and 50 mm Asphalt Surface.

44. Form 1127 update for revision for asphalt layer thicknesses to 60 mm Asphalt Base and 50 mm Asphalt Surface.

45. Form 1130 update for revision for asphalt layer thicknesses to 60 mm Asphalt Base and 50 mm Asphalt Surface.

46. Form 1134 update for revision for asphalt layer thicknesses to 60 mm Asphalt Base and 50 mm Asphalt Surface.

47. Form 1140 update for revision for asphalt layer thicknesses to 60 mm Asphalt Base and 50 mm Asphalt Surface.

48. Form 1200 revise to add new details for polyethylene pipe installations.

49. Form 1213 Typical Chain Link Fence End Features updated to revise the concrete strength requirement to 20 MPa.

50. Form 1214 Typical Chain Link Fence with Gates updated to revise the concrete strength requirement to 20 MPa.

51. Form 1218 Typical Post and Chain Gate Detail updated to revise the concrete strength requirement to 20 MPa.

52. Form 1220 Typical Concrete Collar at Concrete Culvert Extension updated to revise the concrete strength requirement to 35 MPa.

53. Form 1222 Slotted Weir Baffle Details updated to revise the concrete strength requirement to 35 MPa.

54. Add Form 1227 Height of Fill Table for Dual Wall Corrugated Polyethylene Pipe

55. Add Form 1228 Height of Fill Table for Closed Profile Wall Polyethylene Pipe

56. Add Form 1234a HDPE Flexible Pipe Embedment and Backfill Earth Excavation Detail

57. Add Form 1234b HDPE Flexible Pipe Embedment and Backfill Rock Excavation Detail

58. Add Form 1234c HDPE Pipe Flexible Embedment in Embankment Detail

59. Forms 1240 through to 1257 for Manholes, Catch Basins, and Ditch Inlets updated to revise the concrete strength requirement to 35 MPa.
60. Form 1283 Concrete Encased Duct Banks updated to revise the concrete strength requirement to 40 MPa.

61. Form 1284 Electrical Junction Box updated to revise the concrete strength requirement to 40 MPa.

62. Form 1286 Foundation for Post Top Traffic Light updated to revise the concrete strength requirement to 40 MPa.

63. Form 1287 Foundation for Cantilevered Traffic Light updated to revise the concrete strength requirement to 40 MPa.

64. Form 1288a Foundation for Traffic Controller updated to revise the concrete strength requirement to 40 MPa.

65. Add Form 1289 Cast in Place Concrete Median Barrier which was omitted from the 2011 Specifications by not being carried over from the 2008 Specifications.

66. Form 1290 revise to add requirements for cross bracing on Type A signs.

67. Form 1291 revise to add requirements for cross bracing on Type B signs.
SECTION 120
PURCHASE OF LUMBER
Whenever the Contractor is required to purchase lumber for use on this contract he must use lumber that has been manufactured in the Province of Newfoundland when such lumber is available in suitable quality.

SECTION 121
MOVEMENT OF CONTRACTOR'S PLANT
Whenever it becomes necessary to transport Contractor's plant, machinery or materials, the Contractor shall have no claim against the Department for any cost or delay that may be incurred or occasioned by reason of the condition of any road, bridge, or any natural obstruction.

SECTION 122
LINES AND GRADES
All lines and grades shall be furnished by the Engineer on the offset stakes. Slope stakes will be placed as required by the Engineer.

For contracts involving the construction of structures, the Engineer will furnish the road centerline, centerline of one bearing and a bench mark.

Whenever necessary the Contractor's operations shall be suspended to permit the placing of stakes and the setting of grades. Every effort will be made to make such suspensions as brief as practicable, but the Contractor shall not be allowed any compensation for such suspensions.

The Contractor shall give the Engineer ample notice of the time and places where the lines and grades will be needed. All stakes, marks, etc., shall be carefully preserved by the Contractor and in the case of their destruction or removal by him, or his employees, such stakes or marks, etc., shall be replaced by the Engineer at the Contractor's expense.

The Contractor shall be responsible for transferring the lines and grades from the offset stakes.

SECTION 123
STORAGE FACILITIES
The Contractor shall supply proper storage facilities at his own expense and shall be responsible for the care of all materials until placed in the works.

SECTION 124
NOTICES BY CONTRACTOR
All necessary notices to waterworks, gas, electric light or power, cable television, telephone or telegraph companies, owners or occupants of property, or other interested parties shall be given by the Contractor at least two weeks in advance of the work, except where the serving of such notice is the express duty of the Department. One copy of all such notices shall be forwarded by registered mail to Engineer/Architect of the Department.

SECTION 125
WAGES OF FLAGPERSON
Where flagpersons are required for the control and direction of traffic, either in accordance with Section 715 "Flagperson's Operations", or as requested by the Engineer, then the Contractor shall be compensated at the contract price for flagperson hours.

March 2012
Measurement for payment will be the number of hours, rounded to the nearest half hour, that each flagperson works as required by the Engineer. No payment will be made for meal periods unless the flagperson actually works through the meal periods.

Payment at the contract price for flagperson hours shall be compensation in full for all costs to provide the flagperson; including wages, board and lodging, U.I.C., premiums, etc., and profit.

Contractors are advised that only employees who have received proper training can be claimed for under this section. Flagpersons shall be equipped with either 2-way or 3-way radios for communications only. Flagpersons shall not be permitted to use any cellular devices during hours of operation unless it is deemed an emergency. Flagpersons seen using cellular devices for any other purposes will be requested to leave site and shall be replaced immediately.

SECTION 126
HARMONIZED SALES TAX
Contractors are advised that government is not exempt from the Harmonized Sales Tax (HST). The total tender price quoted by the Contractor on the tender form shall include the HST in accordance with the HST amount shown separately at the end of the unit price table. HST is not to be included with the individual unit prices in the unit price table. The Dept. Of Works, Services and Transportation will pay the HST to the Contractor with each regular progress billing.

SECTION 128
CERTIFICATE OF RECOGNITION
The Contractor shall within 14 days of award of the contract, and prior to commencement of the work, provide a Letter of Good Standing, clearly stating Certificate of Recognition from the Newfoundland and Labrador Construction Safety Association (NLCSA), Certificate of Recognition (COR) Program. The Contractor must remain in good standing with the COR program for the full duration of the contract.

At anytime during the term of the Contract, when requested by the Owner, the Contractor shall provide such evidence of compliance, via letter of good standing, stating Certificate of Recognition from the NLCSA by any or all of his or her Subcontractors.
SECTION 130

PROTECTION AGAINST NEGLIGENCE AND DAMAGE

The Contractor shall at all times carry on the work in a manner that will create the least interference with traffic consistent with the faithful performance of the work. He shall not close any portion of the highway except by written order of the Engineer, and when such closure is so authorized, the Contractor shall furnish, erect, and maintain at his own expense, such barriers, lights, and notices, and employ such security and flag persons as are required by Section 715 "Flag person Operations" or as the Engineer may direct. He shall use all proper precautions by good and efficient barriers, notices, lights, and security, for the prevention of accident, and he shall indemnify and save harmless the Minister from all suits and action for damages and costs to which they may be put by reason of injury to persons or property resulting from negligence, carelessness or any other cause whatsoever in the performance of the work, in guarding the same, or from any improper material used in construction, or by or on account of any act or omission of said contractor or his agent or/and sub-contractor, employee, or workman. The Contractor shall assume all damage liability to persons or properties caused by reason of his operations on this contract. The Contractor shall at his own expense save from injury all trees adjoining the highway unless the engineer shall otherwise direct, and shall handle carefully and satisfactorily replace at his own expense all fences which it may be necessary to remove in order to carry on the work.

Before commencing work, the Contractor shall establish extent and exact location of all known existing underground services including pipelines, cables, structures and other obstructions in the area of work and notify the Engineer in writing of findings. The Contractor shall proceed with caution in the performance of the work to protect all known underground services and be responsible for all associated repairs when such underground services are broken or otherwise damaged as a result of the Contractor’s operations, either directly or indirectly.

Where underground services must be removed or relocated as directed by the Engineer, then the removal or relocation shall be carried out and paid in accordance with the appropriate specification and contract item on the Unit Price Table for that work. Should there not be a contract item for the removal or relocation of the particular type of structure encountered, then the removal or relocation will be paid for in accordance with the provisions of Section 150 “Force Account”.

The Contractor is reminded of the requirements of Section 124 “Notices By The Contractor”.

SECTION 131

ROAD OR BRIDGE DIVERSIONS

Where the work involves a diversion or diversions from the existing highway alignment, the Contractor shall be responsible for the maintenance of the existing road and bridges until the completion of the work. The contractor shall be aware of the requirements of Division 7 and the Traffic Control Manual for Roadway Work Operations. Diversions shall be approved prior to their installation. The specified minimum width of the top of a one lane diversion shall be 5.5 meters.

However, should the Contractor establish that his equipment does not use the existing road and bridges, then maintenance of the existing road and bridges will be the responsibility of the Department.

SECTION 132

DISCONTINUATION OF WORK

Where the work is discontinued, and will not be resumed until after an extended period, or until the next working season, then the Contractor shall, when so directed by the Engineer, open and place the roadway together with any bridges in a satisfactory condition suitable for safe public travel and snow plowing.

March 2012
Concrete bridge decks over which it is proposed to run traffic shall be cured in accordance with Section 919 "Rehabilitation of Concrete Structures". The bridge structure and railing shall be in a condition adequate to sustain all traffic without damage.

Once opened, the roadway shall not again be closed to traffic, or traffic thereon be obstructed without written authority of the Engineer.

The Contractor may request that the Department take over maintenance responsibilities for the roadway during periods when work is discontinued. In which case, the Contractor must first place the roadway together with any bridges in a condition that is acceptable to the Engineer before the Department will relieve the Contractor of his responsibility for maintenance. However, the Department will not undertake to maintain; temporary signs, temporary culverts, and temporary bridges provided by the Contractor, responsibility for the maintenance of these shall rest with the Contractor throughout the period of discontinuation of work.

During a discontinuation of work period when the Department has taken over maintenance responsibility, should any bridge damage occur, for example damage to an expansion joint or to a bridge railing, then the Contractor shall indemnify and hold harmless the Department for the damage, and any consequences of the damage. The Contractor shall make good any such damage at his own expense.

SECTION 133
REMOVAL OF SNOW AND ICE

During the construction period, the Contractor shall remove snow and ice from any portion of the work in any of its stages, whenever deemed necessary by the Engineer, no additional payment will be made for this work.

SECTION 134
FINISHING OF PROJECT

After all other work embraced in the contract is completed, and before acceptance and final payment will be made, the entire project shall be neatly finished and trimmed to the lines, grades, and cross sections shown on the plans, or as directed by the Engineer, to produce smooth surfaces and slopes and a uniform cross section. All construction operations related debris, fallen trees, boulders, bog, and surplus materials, shall be disposed of as provided by these specifications.

All drainage ditches, waterways, and culverts shall be opened up and cleared out to restore same to their full effectiveness.

Should the surface of any structure or road be contaminated as a result of the Contractor's operations, then the Contractor shall clean off all such mud, or deleterious substances, and restore the surface to the satisfaction of the Engineer.

All grubbed areas adjoining excavations or embankments shall be graded to conform to the general ground lines.

Finishing of project will be considered as subsidiary work pertaining to the contract and no extra payment will be made.

SECTION 135
DELAYS CAUSED BY UTILITIES AND PROPERTY OWNERS

Before work begins the Department will make every effort to acquire all of the right of way, and to arrange for the moving of those utility poles, wires, cables, and underground facilities that are in the way. However, should the Contractor be delayed, due to all of the right of way not being acquired, or due to utility poles, wires, cables, and underground facilities not being moved, then the Department will not assume responsibility for such delays and the Contractor shall indemnify and save harmless the Minister from all suits and action for damages and costs resulting from the delay.

March 2012
SECTION 136
CONTRACTOR'S LIABILITY FOR ENGINEERING SUPERVISION COSTS

Should the Contractor fail to meet the date to substantially perform the work as indicated in the Agreement between the Owner and Contractor, and is unable to provide justification acceptable to the Owner for the delay, then the Contractor may be held liable for payment to the Owner for the additional costs for engineering supervision as occasioned by the Contractor's delay, and as calculated by the Engineer.

The rate per day will be determined as the total of the department's direct costs associated with maintaining a presence and carrying out contract administration duties on the project. The costs to be recovered as liquidated damages will include, but will not be limited to, salaries including overtime, for the normal staff compliment on the project, travel costs for the normal staff compliment on the project, vehicle rental charges, fuel for vehicles, and other equipment rental charges, such as survey equipment, which may be utilized on the project.

Depending on the scope of work, there may be other direct or indirect costs to the department, which will also be deemed to be recoverable as liquidated damages. These costs could be substantial.

No bonus will be assessed for completing the project ahead of the given completion date.

Contractors, by submission of their tender, shall be deemed to have accepted these terms.

SECTION 137
CLEARANCES DURING CONSTRUCTION

Where vertical clearance for vehicular traffic is restricted, the Contractor shall make provision to ensure that adequate clearance remains. The vertical clearance during construction shall be not less than 4500 mm.

In addition, the entire leading edge of such vertical obstruction shall be clearly marked in fluorescent orange or red paint at the beginning of each project or each construction season, whichever is most frequent. At least two signs shall be posted; one at, and one before the opening, indicating the exact vertical clearance less 100 mm. The signs shall be of a reflective type and the lettering shall be standard size or larger. At least one of these signs shall be placed far enough in advance to permit large and heavy trucks to decelerate. This procedure shall be repeated on each side of the opening facing oncoming traffic.

Where falsework restricts the lateral clearance afforded to vehicles, the contractor shall make adequate provision for protection of the work and traveling public, including but not necessarily limited to the installation of guide rail.

Where one lane of traffic on a bridge, overpass or underpass is closed to traffic, the Contractor shall make adequate provision for the same.

This shall include proper signs and concrete median type barriers separating the work and traffic areas. The various concrete median barriers shall have a minimum height of 813 mm, minimum base width of 610 mm, a nominal mass of 17.0 kN and be connected by chain to each other with a nominal separation of 500 mm between barriers. Each anchor and chain shall be capable of lifting a mass equal to 1.3 times the mass of the median barrier.

SECTION 138
UPGRADING OF ROADS OPEN TO TRAFFIC

The Contractor shall be responsible for insuring that the driving surface of the road is always at an acceptable standard for traffic, as approved by the Engineer.

For the projects, other than the Trans Canada Highway, where placing of a Selected Granular Base

March 2012
Course is an item, the application of this material shall be carried out in such a way that no more than a total of 1km of reconstructed subgrade is left without selected granular base course at any time.

On Trans Canada Highway projects where pavement is to be removed and replaced without provision for diverting traffic over other paved areas, the work shall be carried out in conformance with the following provisions.

For projects of length less than 6km, initially no more than one continuous stretch of pavement, of length no greater than 1km, may be removed. After completion of subgrade and after completion of the placing of Granular “B” and when at least 75% of the Granular “A” operations have been carried out over this initial pavement removed section, then more old pavement may be removed in a continuous stretch, for an addition length of up to 1km.

After at least 1km of road has been paved, and at least 75% of the Granular “A” operations have been completed on the remaining unpaved part, then an additional 1km of pavement may be removed. The operations shall continue in this fashion until the paving is completed. At no time during operations shall an unpaved work area exceed 2km in length.

Furthermore, the Contractor shall carry out his operations in such a way that no one place on a public traveled roadway on the Trans Canada Highway will be unpaved for more than 28 calendar days.

Prior to commencing paving operations, the Contractor shall discuss with the Engineer the proposed locations of longitudinal joints. The Contractor shall carry out his paving operations so that the longitudinal joints are at locations approved by the Engineer.

Surface course asphalt shall not be laid on short sections. For projects of length greater than 3.0 km, the Surface Course shall not be laid in lengths less than 3.0 km. Minimum width of application for the Surface Course shall be the full base course width.

For projects of length 6.0 km or more, the work shall proceed as previously stipulated for the shorter projects, except that the contractor has the option of working with two unpaved work areas, instead of just the one as previously stipulated. The work areas shall initially be at opposite ends of the project, and both operations shall proceed toward each other. Work areas shall not be at random places throughout the project.
SECTION 150

FORCE ACCOUNT PAYMENT

Where work is required for which no contract unit prices exist, then this work will be paid for in accordance with Clause GC 19.1(c) of the General Conditions of Unit Price Contract.

With reference to Actual Cost as mentioned in Clause GC 19.1(c), Payroll Burden together with Board and Lodging shall be considered as components of Actual Cost.

For Contractor's personnel, working on Force Account Work, who are lodged in the Contractor's own accommodations, then, Board and Lodging expenses allowed shall be at the same rates as those given in Section 112 "Board and Lodging for Departmental Personnel".

However, for Contractor's personnel, working on Force Account work, who are Lodged in a hotel, then, Board and Lodging expenses allowed shall be the actual billed cost of hotel accommodation, plus compensation for meals at the same rates as those given in Section 112 Board and Lodging for Departmental Personnel.

When the Contractor does work with his own forces, including his own equipment, the rental rate for equipment which includes overhead and profit shall be as specified in Division 10, Equipment Rental Rate Schedule. Additional allowance for overhead and profit in accordance with General Conditions of the Contract. Clause 19.1(c) shall be calculated upon materials, labour and payroll burden only.

When the Contractor does work with rented equipment and the equipment is approved by the Engineer, the Contractor shall be entitled to reimbursement equal to the rental cost of the equipment, supported by detailed invoices, plus a markup of ten (10%) percent on the rental cost to cover overhead and profit.

When the Contractor does work with his own forces including his own equipment, but a rental rate for the equipment is not included in Division 10, "Equipment Rental Rate Schedule", the rental rate for the equipment in question shall be calculated by the Department.

If force account work is being carried out under a formal contract which has been tendered by the Department and changes in the work are made through the General Conditions of the contract, Clause 18 and/or 19, as the case may be, then payroll burden shall be calculated to be 35% of the cost of labour.

Where a flag person is required during the carrying out of Force Account work, then the flag person shall be compensated for in accordance with the provisions given in section 125 dealing with flag person hours, without any additional mark-up for overhead or profit.

SECTION 151

FENCES

The Contractor shall, when as directed by the Engineer, remove and replace fences in new positions and shall not, without the expressed consent of the Engineer leave any land from which a fence has been removed open to the public overnight. The Contractor shall supply materials, tools and labour necessary for the removal and re-erection of fences and shall perform the work to the satisfaction of the Engineer.

Payment will be made in accordance with the appropriate contract Unit Price. However, on those jobs where fencing is not a contract item, payment will be made in accordance with the provisions of Section 150 "Force Account Payment".

March 2012
SECTION 153

WEIGHT RESTRICTIONS

The Contractor shall be responsible for the compliance with the Department weight restrictions, by both his own vehicles and any hired trucks hauling materials for use on this contract, or on any departmental or private work the Contractor may undertake. Should the Contractor wish to haul materials for use in this contract over a Department maintained road before first weighing the materials, then, the Contractor shall give the appropriate Regional Director adequate forewarning as to the proposed travel route and the times at which loads will be transported, so that portable scales may be set up to check for compliance with the highway weight regulations.

The Resident Engineer is empowered to take immediate action to ensure compliance with all acts and regulations.

SECTION 154

TEMPORARY RAILWAY CROSSING

Where a railway line crosses the job, and should the Contractor want to use a temporary crossing to obtain access to the job site on both sides of the tracks, then it shall be the responsibility of the Contractor to obtain a permit from the railway company and to co-ordinate all the necessary details of the construction of the temporary crossing with the railway company.

The Contractor shall be responsible for all costs associated with the application for permission, the installation and the maintenance of the temporary railway crossing during the time until the contract is completed.

The Department shall not be held responsible for any delays caused to the Contractor by problems in coordinating the work with the railway company.

No payment will be made to the Contractor for this item.

SECTION 155

EXTENSIONS TO ROAD CONTRACT

Contractors are advised that they may be required to undertake work in addition to the sections of road covered in this contract. Should the Engineer request the contractor to undertake additional work and the contractor agrees, the work will be performed as per Contract unit prices subject to adjustments, plus or minus, for the difference in haulage cost of the additional work and that of the contract.

In contracts where overhaul is a bid price, haulage cost will be based on the appropriate bid unit price. Otherwise, payment adjustment for each item is given by the subtraction of the cost calculated at the rates set below to haul the quantity of the item placed on the extension minus the product of the “Specific Haul Cost” for the item, times the quantity of the item placed at the extension.

“Specific Haul Cost” for each item shall be defined as the cost calculated at the rates set below to haul the actual quantities of the item placed on the contract divided by the actual quantity, in tonnes, of the item placed on the contract.

In contracts where overhaul is not a bid price, haulage rates will be set at $0.30/t-km for excavated rock and asphalt and $0.23/t-km for all other excavated materials and granulars.

SECTION 156

CONTINGENCY AMOUNT

This amount is estimated to cover expenditures for foreseeable work to be carried out by the Contractor, the cost of which is not included in the tendered unit prices for the contract. This work will include but is not restricted to payment for such items as fencing, repairs to private property, etc. This amount will also

March 2012
cover payment for expenditures incurred by the Contractor which could not be foreseen when the contract was prepared such as but not limited to, increase in taxes during the life of the contract, etc. This is not a lump sum payment to Contractors. No payment will be made except if the expenses are properly invoiced.

SECTION 157
MOBILIZATION AND DEMOBILIZATION

Mobilization shall be defined as the loading, transportation, unloading, and complete set-up of all plant, materials, and equipment necessary to complete the work associated with the contract. Demobilization shall be defined as the decommissioning, loading, transportation, unloading and moth balling of all plant, excess materials and equipment after the work associated with the contract is complete.

Where excess materials are demobilized and the Department purchases these materials, demobilization shall include the loading, transportation and unloading of the same from the job site to the nearest district or regional depot. Demobilization does not apply to the loading, transportation to a storage site, and removing of existing materials which are to be salvaged.

The Contractor is advised that payment at the lump sum price for Mobilization and Demobilization shall be compensation in full for all labour, supplies, materials and equipment use required to mobilize and demobilize plus the provision of storage and security required during the mobilization and demobilization phases of the work.

The price bid for this item in contracts on the island portion of the province shall not exceed the limits given in the following table for the Island Portion of Province:

<table>
<thead>
<tr>
<th>Island Portion of Province</th>
<th>Total Estimated Tender (including Mobilization & Demobilization but not including HST)</th>
<th>Mobilization & Demobilization Tender Item Maximum Bid Permitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than $500,000</td>
<td>10% of Total Estimated Tender</td>
<td></td>
</tr>
<tr>
<td>Between $500,000 & $1,000,000</td>
<td>$50,000 + 7.5% of the amount that the Total Estimated Tender exceeds $500,000.</td>
<td></td>
</tr>
<tr>
<td>Greater than $1,000,000</td>
<td>$87,500 + 5.0% of the amount that the Total Estimated Tender exceeds $1,000,000)</td>
<td></td>
</tr>
</tbody>
</table>

The price bid for this item in contracts in the Labrador portion of the province shall not exceed the limits given in the following table for Labrador:

<table>
<thead>
<tr>
<th>Labrador</th>
<th>Total Estimated Tender (including Mobilization & Demobilization but not incl. HST)</th>
<th>Mobilization & Demobilization Tender Item Maximum Bid Permitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than $1,000,000</td>
<td>15% of Total Estimated Tender</td>
<td></td>
</tr>
<tr>
<td>Between $1,000,000 & $2,000,000</td>
<td>$150,000 + 12.5% of the amount that the Total Estimated Tender exceeds $1,000,000)</td>
<td></td>
</tr>
<tr>
<td>Greater than $2,000,000</td>
<td>$275,000 + 10.0% of the amount that the Total Estimated Tender exceeds $2,000,000)</td>
<td></td>
</tr>
</tbody>
</table>

Should the amount bid exceed the limits specified, the tender will be considered unbalanced and shall be rejected. Fifty percent of the total of this item shall be paid on the first progress estimate provided that the contractor has fully mobilized, and 50% will be paid on the final progress estimate.

March 2012
SECTION 190
OCCUPATIONAL HEALTH AND SAFETY

190.1 GENERAL

.1 All work is to be performed in accordance with the requirements of the Newfoundland Occupational Health and Safety Act and Regulations as amended.

.2 Subsequent to awarding of the tender and at least 10 (ten) working days prior to commencement of work, the contractor must submit to the Engineer copies of:

 .1 A detailed Health and Safety Risk Assessment and Management Plan for the owner.
 .2 A detailed summary report from the Occupational Heath and Safety Division

When Blasting is Required

.3 Valid Blaster’s Certificate and Certificates of Qualification acceptable to the OHS Regulations 5/12 under section 419 identifying the Level of Qualification for the project requirements (Journey Persons Blaster Certificate will still be accepted). An acceptable letter of extension of blasters certificate from the Industrial Training Division of the Provincial Department of Education is required when certificate expires (5 years max.). Certificate numbers and names are required for all blasters proposed for the project.

.4 Temporary Magazine License, when required

.5 Explosives Vehicle Certificate, when required, issued by Transport Canada for transport of explosives regulated under the Transportation of Dangerous Goods Act.

.6 Blaster resume which clearly states and demonstrates:

 .1 Minimum five (5) years of experience in handling, storage and detonation of explosives.
 .2 Training at a blaster’s school which is acceptable to the provincial government.

When Diving is Required

.7 Diver(s) and dive supervisor (s).

 .1 Copy of valid Diving Certificate and Supervisor Certificate from the Diving Certification Board of Canada (or equivalent) for the required work on the project. (i.e. Restricted SCUBA Diver, Unrestricted SCUBA Diver, SCUBA Supervisor, Restricted Surface-Supplied Diver, Unrestricted Surface-Supplied Diver, etc. (See www.divercertification.com)

 .2 Resume which clearly demonstrates years of experience for the specific type (SCUBA, Surface Supplied Air, etc.) of diving to be performed at the site and projects completed to achieve minimum number of logged bottom time, hours

 .3 First Aid and CPR Training Certification.

.8 Dive tender(s) resume which clearly states relevant training (including first aid and CPR) and experience for the specific task (i.e. dive tender log book)

.9 Current (less than one year) medical examination certificate(s) from a licensed medical doctor in the Province of Newfoundland and Labrador who is knowledgeable and competent in diving and hyperbaric medicine for all dives.

.10 Certificates of Analysis for quality/purity of breathing air to be used by diver(s).

.11 Documentation showing that diving life support equipment is in good working order and properly maintained.

.12 Copies of documentation shall be submitted to show:

 .1 An up-to-date dive site listing of the contact Hyperbaric facility and phone numbers for each location.
 .2 Written arrangements with standby physician(s) specializing in diving/hyperbaric medicine for contingent emergency response and post dive follow-up for 48 hours after dive is completed.
 .3 Effective means of communication between the diving supervisor and physician are available
 .4 The name, location and telephone number of the hospital and emergency department nearest the dive site.

March 2012
When Confined Space Entry is Required

.13 Copies of confined space entry training certificates acceptable to the WHSCC where entry to confined spaces may be required, as well as, copies of confined space entry programs, confined space assessment, safe work practices and rescue plans.

.3 Acceptance of the Project Health and Safety Risk Assessment and Management Plan and other submitted documents by the Engineer shall only be viewed as acknowledgment that the contractor has submitted the required documentation under this specification section. The Engineer makes no representation and provides no warranty for the accuracy, completeness and legislative compliance of the Project Health and Safety Risk Management Plan and other submitted documents by this acceptance. Responsibility for errors and omissions in the Project Health and Safety risk Assessment and Management Plan and other submitted documents is not relieved by acceptance by Engineer.

190.2 PROJECT HEALTH AND SAFETY RISK ASSESSMENT AND MANAGEMENT PLANS

The contractor shall:

.1 Conduct operations in accordance with latest edition of the Newfoundland Occupational Health and Safety (OH&S) Act and Regulations with specific reference to codes and standards referenced therein.

.2 Prepare a detailed Project Health and Safety Risk Assessment and Management Plan for the Owner. The assessment shall identify, evaluate and control job specific hazards and the necessary control measures to be implemented for managing hazards.

.3 Provide a copy of the Project Health and Safety Risk Assessment and Management Plan to the Owner/Engineer. The written Health and Safety Risk Assessment and Management Plan shall incorporate the following:

.1 A site specific health and safety plan, refer Section 190.3 Site Specific Health and Safety Risk Assessment and Management Plan for requirements.

.2 An organizational structure which shall establish the specific chain of command and specify the overall responsibilities of contractors employees at the work site.

.3 A comprehensive work plan which shall:

.1 define work tasks and objectives of site activities/operations and the logistics and resources required to reach these tasks and objectives.

.2 establish personnel requirements for implementing the plan, and establish site specific training and notification requirements and schedules.

.4 A personal protected equipment (PPE) Program which shall detail PPE:

.1 Selection criteria based on site hazards.

.2 Use, maintenance, inspection and storage requirements and procedures.

.3 Decontamination and disposal procedures.

.4 Inspection procedures prior to during and after use, and other appropriate medical considerations.

.5 Limitations during temperature extremes, heat stress and other appropriate medical consideration.

.5 An emergency response procedure

.6 A hazard communication program for informing workers, visitors and individuals outside of the work area as required

.7 A hearing conservation program in accordance with the OHS Regulations

.8 A health and safety training program

.9 A visitor safety and orientation policy that will include education on hazards, required PPE to be worn by visitors, accompaniment by staff while on site.

.10 General safety rules

.11 The Contractor shall ensure the maintenance of all equipment is conducted in accordance with the manufacturers specifications and/or as required by the CSA standard adopted by the OHS Regulations specific to the equipment.

.12 The contractor shall provide to the Engineer, as part of the safety plan, a recent (current year) inspection form for all powered mobile equipment that will be used in fulfilling the terms of the contract. The inspection form shall, at a minimum, state that the equipment is in a safe operating condition. Confirmation of the inspection shall be provided on the “Record of Inspection” attached and signed.
by a person qualified to do so in accordance with Part 1, Section 2(1)(u) of the Occupational Health and Safety Regulations, 2009. A sample “Powered Mobile Equipment Annual Inspection Form” is attached at end of this section.

.13 The contractor shall provide to the Engineer as part of the safety plan, a complete listing of employee names, their driver’s license classification, expiry date, endorsements and the type of equipment (excavator, paver, loader etc…) that they are qualified to operate for the complete scope of work on the project. The Driver’s License Number should not be provided as this is confidential information. Provision of the License Number may breach PIPEDA - the Personal Information Protection and Electronic Documents Act. (Federal Act) or ATIPPA - Access to Information and Protection of Privacy Act - Part IV. (Provincial Act of NL & Lab). This shall also include documentation where required of certification in power line hazards.

.14 The contractor shall provide to the Engineer as part of the safety plan an acceptable parking policy for all powered mobile equipment to be used on the project. The policy shall, at a minimum, be based on a hazard assessment that considers factors such as equipment type, potential for roll over, load capacity of the parking area, pedestrian and vehicular traffic, and potential for equipment tampering, equipment energy, and equipment contact with power lines. The following checklist be included as a component of the site specific hazard assessment completed by the contractor:

<table>
<thead>
<tr>
<th>Powered Mobile Equipment Parking Areas</th>
<th>Yes</th>
<th>No</th>
<th>Priority Level</th>
<th>Action By</th>
<th>Date Corrected</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential for Rollover</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Light vehicle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Heavy equipment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• ROPS equipped?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• FOPS equipped?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity of parking area based on a visual review by an experienced operator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Bearing capacity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Slope of area</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effect on other users</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Vehicles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Pedestrians</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Can equipment be tampered with</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Can equipment contact power lines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contractors are advised the powered mobile equipment inspection form referred to above is attached at the end of Section 190.

.15 Where required for completion of the contract, specific programs and documents may be required to meet basic safety provisions required in the OHS Act and Regulations. These documents may include but are not limited to:

1. A diving program which shall contain standard operating procedures to be followed in the diving operation.
2. In circumstances involving pits and quarries that fall within the jurisdiction of the mining safety additions to the Occupational Health and Safety Regulations 5/12 released March 20th, 2012. Contractors may be required to provide the following documents certified by the appropriate professionals in accordance with the regulations:
 a. Mine design plan, certified by a professional engineer (where three or more benches are to be mined) (section 519).
 b. Shifter Log Book
 c. Ground Control Log Book (section 525)
 d. Electrical energy mine plan, certified by a professional engineer (section 679)

March 2012
Periodically review and modify as required each component of the Project Health and Safety Risk Assessment and Management Plan when a new hazard is identified during completion of work and when an error or omission is identified in any part of the Project Health and Safety Risk Assessment and Management Plan.

Implement all requirements of the Project Health and Safety Risk Assessment and Management Plan.

Ensure that every person entering the project site is informed of requirements under the Project Health and Safety Risk Assessment and Management Plan.

Take all necessary measures to immediately implement any engineering controls, administrative contacts, personal protective equipment required or termination of work procedures to ensure compliance with the Project Health and Safety Risk Assessment and Management Plan and the Occupational Health and Safety Act and Regulations.

SITE SPECIFIC HEALTH AND SAFETY PLAN

The contractor shall:

Prepare a detailed site Specific Project Health and Safety Plan which shall:

1. Contain certain hazard assessment results
2. Identify engineering and administrative demonstrative controls (work practices and procedures) to be implemented for managing identified and potential hazards, and comply with applicable federal and provincial legislation and more stringent requirements that have been specified in these specifications.

Review for completeness the hazard assessment results immediately prior to commencing work, when a new hazard is identified during completion of work and when an error or omission is identified.

1. Be solely responsible for investigating, evaluation and managing any report of actual or potential hazards
2. Retain copies of all completed hazard assessments at the project site and provide a copy to the Engineer/Architect

SUPERVISION AND EMERGENCY RESCUE PROCEDURE

The contractor shall:

Carry out work under the direct supervision of competent persons responsible for safety by ensuring the work complies with the appropriate section of OH&S Act and Regulations, latest edition

Any person assigned to supervisory duties on site shall not conduct significant work in relation to the contract that inhibits them from the ability to properly supervise the work site.

Assign a sufficient number of supervisory personnel to the work site. Supervisory personnel should also be trained and aware of the requirements in the Traffic Control Manual for signage and ensure the correct signage plan is utilized on site and staff have been notified of the requirements therein. Road signage must be inspected for accuracy by the supervisor upon set-up, each morning prior to work and at any point in which the signage requires change during the work day or life of the contract. A Traffic Control Signage log will be provided by the Department of Transportation and Works and must be submitted with the Contractor Monthly OHS Performance Report.

Supervisors shall have knowledge and understanding of the principals of trenching and excavation and shall refer to the OHS Regulations and the trenching and excavation safety guide from Service NL prior to and during such work.

Provide a suitable means of communications for workers required to work alone

Develop an emergency rescue plan for the job site and ensure that supervisors and workers are trained in the emergency rescue plan

The emergency response plan shall address, as a minimum:

1. Pre-emergency planning
2. Personnel roles, lines of authority and communication.
4. Safe distances and places of refuge
5. Site security and control
6. Evacuation routes and procedures
7. Decontamination procedures which are not covered by the site specific safety and health plan

March 2012
.8 Emergency medical treatment and first aid.
.9 Emergency alarm, notification and response procedures including procedures for reporting incidents to local, provincial and federal government departments.
.10 PPE and emergency equipment.
.11 Procedures for handling emergency incidents.
.12 Site specific emergency response training requirements and schedules.
.13 For diving operation, include procedures for:
 .1 Managing deteriorating environmental conditions
 .2 Managing unexpected weather or sea state condition
 .3 Evacuation of diver(s) under pressures greater than atmospheric pressure
 .4 In water emergency transfers
 .5 Managing failing of equipment below the surface that impairs the ability of a diver to complete a dive
 .6 Managing failure of any major component of diving plant or equipment
 .7 Emergency signaling between divers involved in the diving program and between the diver(s) and the attendants using umbilical, tethers or other suitable methods
 .8 Mobilizing standby divers
 .9 Mobilizing crafts, standby boats and any other devices to be used for rescue
 .10 Contacting evacuation, rescue, treatment facilities and medical services that will be used in the diving program
 .11 Operation of emergency power and lighting facilities
.6 The emergency response procedures shall be rehearsed regularly as part of the overall training program
.7 Provide adequate first aid facilities for the job site and ensure that a minimum number of workers are trained in first aid in accordance with the First Aid Regulations.

190.5 CONTRACTORS SAFETY OFFICER
.1 The contractor’s Safety Officer will be solely responsible for the implementation and monitoring of the Project Health and Safety Risk Assessment and Management Plan, and will have the authority to implement health and safety changes as directed by the Engineer. The Safety Officer shall have as a minimum:
 .1 Completed training in hazard recognition evaluation and control.
 .2 Completed training in accident incident investigations.
 .3 Experience in the development and implementation of safe work practices and procedures.
 .4 Knowledge, understanding and experience in the use of the Traffic Control Manual
 .5 Flag persons training certified by the WHSCC.
 .6 Knowledge and experience in trenching and excavation that includes understanding of the Occupational Health and Safety Regulations 5/12.
 .7 Power line hazards training certified by the WHSCC.
 .8 Knowledge and understanding of equipment maintenance and inspections required for preventive safety.
 .9 Training and experience in the use, care and maintenance of PPE to be used on site.
 .10 Completed training in Standard First Aid.
 .11 Complete understanding, knowledge and familiarity with the Site Specific Safety Plan, Applicable codes and standards as well as the Occupational Health and Safety Act and Regulations that include the newly released parts XXVII – XXXIII related to Mining.
.2 Where the work and/or contract require high risk activities, specific training of the CSO may be necessary in specific areas of safety. The list below is in no way an all encompassing list of required training, though represents some of the areas of high risk encountered in past contracts and the training required to mitigate and control hazards related to the specified activities. The contractor will be responsible through the risk assessment conducted during the development of the site specific safety plan to identify areas of high risk and ensure that the CSO is competent and has adequate knowledge to ensure adequate controls are in place to mitigate the risks to workers and abide by all applicable legislation, codes and standards.
 .1 Completed training in the use, maintenance of fall protection systems certified by the WHSCC.
 .2 Completed training in the design and construction of scaffolding as referenced in the applicable CSA Standard.
.3 Completed training in confined space entry protocols, techniques and rescue plan as certified by the WHSCC.

3 With respect to project tasks and elements, the contractor safety officer shall be competent and qualified.

190.6 HEALTH AND SAFETY COMMITTEE
The contractor shall:
.1 Establish an Occupational Health and Safety Committee where ten or more workers are employed on the job site as per the OH&S Act and Regulations
.2 Be responsible for health and safety of persons on site, safety of property on site and for protection of persons adjacent to site and environment to extent that they may be affected by conduct of Work.
.3 Comply with and enforce compliance by employees with safety requirements of Contract Documents, applicable federal, provincial, territorial and local statutes, regulations, and ordinances, and with site specific Health and Safety Plan.
.4 Provide a copy of all committee minutes with the Contractor Monthly OHS Performance Report.

190.7 RESPONSIBILITY
.1 Should any unforeseen or peculiar safety related factor, hazard, or condition become evident during performance of Work, the contractor must:
 .1 Follow procedures in place for Employee's Right to Refuse Work in accordance with Acts and Regulations
 .2 Advise Engineer verbally and in writing
 .3 Where life safety risks exist, the contractor must stop the work until such time as the risk can be mitigated to a safe level.
 .4 Make appropriate steps to ensure that the hazards is mitigated to a safe level, workers are notified of the hazards and how to protect themselves. As well workers must be provided with any new safe work practices or information regarding mitigation of the risk.

190.8 INSTRUCTION AND TRAINING
.1 Workers shall not participate in or supervise any activity on the work site until they have been trained to a level required by this job function and responsibility. Training shall, as a minimum, thoroughly cover the following:
 .1 Federal and Provincial Health and Safety Legislation requirements including roles and responsibilities of workers and person(s) responsible for implementing, monitoring and enforcing health and safety requirements.
 .2 All workers will be instructed and trained on the hazards associated with work they will be performing and how to protect themselves. This will include a review of all safe work practices, the reporting and documentation of hazards, reporting accidents and injuries as well as, formal training in areas of high risk (i.e. fall protection, power line hazards, traffic control persons training).
 .3 Safety and health hazards associated with working on a contaminated site including recognition of symptoms and signs which might indicate over exposure to hazards.
 .4 Limitations, use, maintenance and disinfection – decontamination of personal protective equipment associated with completing work.
 .5 Limitations, use, maintenance and care of engineering controls and equipment.
 .6 Limitations and use of emergency notifications and response equipment including emergency response protocol.
 .7 Work practices and procedures to minimize the risk of an accident and hazardous occurrence from exposure to a hazard.
 .8 Appropriate number of persons trained in emergency and Standard First Aid according to the First Aid Regulations.
 .9 Department of Transportation and Works, Traffic Control Manual.
.2 Contractors must provide and maintain training of workers, as required, by Federal and Provincial legislation.
.3 Copies of all training certificates shall be provided to the Engineer for review, before a worker is to enter the work site.

.4 Authorized visitors shall not access the work site until they have been:
 .1 Notified of the names of persons responsible for implementing, monitoring and enforcing the health and Safety Risk Assessment and Management Plan.
 .2 Briefed on safety and health hazards present on the site.
 .3 Instructed in the proper use and limitations of personal protective equipment.
 .4 Briefed as the emergency response protocol including notification and evacuation process.
 .5 Informed of practices and procedures to minimize risks from hazards and applicable to activities performed by visitors.
 .6 Accompanied while on site.

190.9 CONSTRUCTION SAFETY MEASURES
The contractor shall:
 .1 Observe construction safety measures of Provincial Government, OH&S Act and Regulations, Workplace Health and Safety and Compensation Commission and Municipal Authority provided that in any case of conflict or discrepancy more stringent requirements shall apply
 .2 Administer the project in a manner that will ensure, at all times, full compliance with Federal and Provincial Acts, regulations and applicable safety codes and the site Health and Safety Risk Assessment and Management Plan.
 .3 Provide Engineer/Architect with copies of all orders, directions and any other documentation, issued by the Provincial Department of Service NL and Human Resources Development Canada (HRDC).
 .4 Forward copies of all orders, directions or any other documentation immediately after receipt.

190.10 POSTING OF DOCUMENTS
 .1 Ensure applicable items, articles, notices, minutes and orders are posted in conspicuous location on site in accordance with all Acts and Regulations.

190.11 HEALTH AND SAFETY MONITORING
 .1 Periodic inspections of the contractor’s work may be carried out by the Engineer and/ or the Department of Transportation and Works Occupational Health and Safety Consultants to maintain compliance with the Health and Safety Program. Inspections will include visual inspections as well as testing and sampling as required.
 .2 The contractor shall be responsible for any and all costs associated with delays as a result of contractor’s failure to comply with the requirements outlined in this section.

190.12 NOTIFICATION
 .1 For projects exceeding thirty (30) days or more, the contractor shall, prior to the commencement of work, notify in writing the Work Place Health and Safety Division, Department of Government Services with the following information:
 .1 Name and location of construction site
 .2 Company name and mailing address of contractor doing the work
 .3 The number of workers to be employed
 .4 A copy of the Health and Safety Risk Assessment and Management Plan if requested

190.13 CORRECTION OF NONCOMPLIANCE
 .1 Immediately address health and safety non-compliance issues identified by authority having jurisdiction or by Engineer
 .2 Provide Engineer/Architect with written report of action taken to correct non-compliance of health and safety issues identified
 .3 Engineer/Architect may stop work if noncompliance of health and safety regulations is not corrected

190.14 WHMIS
 .1 Ensure that all controlled products are in accordance with the Workplace Hazardous Materials Information System (WHMIS) Regulations and Chemical Substances of the OH&S Act and Regulations regarding use, handling, labeling, storage, and disposal of hazardous materials

March 2012
.2 Deliver copies of relevant Material Safety Data Sheets (MSDS) to job site and the Engineer. The MSDS must be acceptable to Labour Canada and Health and Welfare Canada for all controlled products that will be used in the performance of this work.

.3 Train workers required to use or work in close proximity to controlled products as per OH&S Act and Regulations.

.4 Label controlled products at jobsite as per OH&S and Regulations.

.5 Provide appropriate emergency facilities as specified in the MSDS where workers might be exposed to contact with chemicals, e.g. eyewash facilities, emergency shower.

.1 Workers to be trained in use of such emergency equipment.

.6 Contractor shall provide appropriate personal protective equipment as specified in the MSDS where workers are required to use controlled products.

.1 Properly fit workers for personal protective equipment

.2 Train workers in care, use and maintenance of personal protective equipment.

.7 No controlled products are to be brought onsite without prior approved MSDS.

.8 The MSDS are to remain on site at all times.

190.15 OVERLOADING

.1 Ensure no part of work or associated equipment is subjected to loading that will endanger its safety or will cause permanent deformation.

190.16 FALSEWORK

.1 Design and construct falsework in accordance with CSA S269.1.

190.17 SCAFFOLDING AND FALL PROTECTION

.1 Design, erect and maintain scaffolding in accordance with CSA S269.2M87: Access Scaffolding for Construction Purposes and Part XI: sections 147-249 of the OH&S Regulations.

.2 Ensure that fall restraint or fall arrest devices are used by all workers working at elevations greater than 3.05 metres above grade or floor level in accordance with CSA Z259.

.3 All workers performing work at height and who will be required to utilize a fall arrest system must be trained in a fall protection program certified by the WHSCC.

.4 Prior to working at height workers shall be instructed in a Contractor SWP for working at height and associated rescue plan for working at height developed specific to the work, locations and risks.

190.18 PERSONAL PROTECTIVE EQUIPMENT

.1 In addition to those requirements set forth in the Occupational Health and Safety Act and Regulations, all persons, including those employed by the contractor or sub-contractors, working on projects for The Department of Transportation and Works shall wear the following mandatory Personal Protective Equipment at ALL times while working on the project.

.1 CSA approved safety boots meeting the CSA Z195 Standard

.2 CSA approved hard hat meeting the CSA Z94.1 Standard

.3 High visibility apparel as defined in Occupational Health and Safety Regulations

.4 Where noise exceeds standards set out in the Occupational Health and Safety Regulations hearing protection shall be worn, and hearing conservation program implemented.

.5 other personal protective equipment, as may be required by the engineer, depending on duties being performed, shall also be worn

190.19 TRAFFIC CONTROL

.1 Provide traffic control measures when working on, or adjacent to, roadways. This will include but is not limited to appropriate signage, traffic control persons and control vehicles

.2 Traffic control measures to conform with “Traffic Control Manual for Roadway Work Operations”, Department of Transportation and Works.

.3 Daily completion of the Department of Transportation and Works, contractor daily traffic control signage log. This log is to be completed daily at a minimum and at any point where the signage required changes to ensure accuracy. The log will be submitted monthly with the contractor OHS Monthly performance report and may be inspected randomly by staff of Transportation and works for completion and accuracy.

March 2012
.4 Signage utilized on site shall meet the requirements of the Traffic Control Manual. This shall include though is not limited to:
 .1 Signage shall be a minimum of 1.5 meters (this may include the use of flags)
 .2 Signage should be in a vertical and highly visible position
 .3 Only sandbags shall be utilized as an acceptable form of weighting for signage.
 .4 Contractors shall remove appropriate signage during end of the work day and where required. This shall include but not be limited to speed limit reductions and flag persons signage where required.

190.20 EXCAVATION SAFETY
 .1 Protect excavations more than 1.25 metres deep against cave ins or wall collapse by side wall sloping to the appropriate angle of repose, an engineered shoring/sheathing system or an approved trench box
 .2 Provide a ladder where excavation greater than 1.25 meters deep, extending from the bottom of the excavation to at least 0.91 meters above the top of the excavation.
 .3 Ensure that all excavations less than 1.25 metres deep are effectively protected when hazardous ground movement may be expected
 .4 Design trench boxes, certified by a registered Professional Engineer, and fabricated by a reputable manufacturer. Provide the manufacturer’s Depth Certificate Statement permanently affixed. Use trench boxes in strict accordance with manufacturer’s instructions and depth certification data
 .5 For excavations deeper than six (6) metres, provide a certificate from a registered Professional Engineer stating that the protection methods proposed have been properly designed in accordance with accepted engineering practice. The engineer’s certificate shall verify that the trench boxes, if used, are properly designed and constructed to suit the depth and soil conditions
 .6 Ensure that the superintendent and every crew chief, foreperson and lead hand engaged in trenching operations or working in trenches have in his/her possession a copy of the Occupational Health and Safety Regulations: Part XVII: Construction, Excavation and Demolition and Part XVIII: Excavation, Underground Work and Rock Crushing.

190.21 BLASTING OPERATIONS
 .1 Ensure blasting operations are carried out under the direct visual supervision of a certified Blaster either registered with the Industrial Training Division of the Provincial Department of Education or has been issued a certificate from completion of a program approved by the Provincial Department of Government Services. Ensure that the certificate level is appropriate for the blasting activities which will occur. Comply with the requirements of:
 .1 Explosives Act.
 .2 Explosives Regulations.
 .3 Newfoundland Regulation 5/12, Occupational Health and Safety Regulations.
 .4 Role of certified blaster set out in section 419 of the Occupational Health and Safety Regulations 5/12.
 .2 Store explosives in accordance with the “Explosives Act (Canada)” and transport, handle and use in the manner prescribed by the manufacturer of the substance and subject to specific regulations. An inventory of explosives shall be kept.
 .3 Ensure that workers required to transport explosives have a valid Transportation of Dangerous Goods Training Certification in accordance with the “Act to Promote Public Safety in the Transportation of Dangerous Goods, and the “Explosives Act (Canada)”. Vehicle used to transport explosives on site shall be placarded and explosives shall be transported in containers lined with wood (reference section 428 of the Occupational Health and Safety Regulations 5/12 comply with section 42. Detonators shall not be placed in a magazine or daybox with other types of explosives or in a compartment of a vehicle with another type of explosive.
 .4 Use of explosives on site shall comply with the Occupational Health and Safety Regulations 5/12. General Blasting requirements are set out in Part XIX of the Regulations

March 2012
Advise the public by suitable public notices, advertisements, house to house contacts etc. for blasting operations in close proximity to areas occupied by the public. Advise of the warning device to be sounded and the procedure to be used before detonation of individual blasts. Roads and approaches to the danger area are guarded or barricaded to prevent anyone from entering. Loaded holes which have not been fired by the end of the day shall not be left unattended.

Prior to detonation of a blast, give sufficient warning in every direction and ensure that all persons have reached a place of safety before the blast is fired.

File an Emergency Response Assistance Plan with the Explosives Branch, Natural Resources Canada.

Blaster shall:
 .1 Be solely responsible for implementation of the Explosives Management Program
 .2 Have a valid blaster’s safety certificate from the Department of Education Division of Institutions and Industrial Education, and have a valid temporary Magazine License, when required, issued by Natural Resources Canada, for storage and explosives
 .3 Possess a thorough working knowledge of the Federal Explosives Act and Provincial Regulations
 .4 Possess a specialized training in handling storage and detonation of explosives
 .5 Keep a field journal concerning the blast activities.

HEAVY EQUIPMENT
 .1 Ensure mobile equipment used on job site is of the type specified in OH&S Act and Regulations (specific to sections 261-263) shall be fitted with a Roll Over Protective Structure (ROPS) and Falling Object Protective Structures (FOPS).
 .2 Operators of mobile equipment shall have adequate instruction and competent in the operation of mobile equipment.
 .3 Provide certificate of training in Power Line Hazards for operators of heavy equipment.
 .4 Obtain written clearance from the power utility where equipment is used in close proximity to (within 5.5 metres) overhead or underground power lines
 .5 Equip cranes with:
 .1 A mechanism which will effectively prevent the hook assembly from running into the top boom pulley.
 .2 A legible load chart
 .3 A maintenance log book

TREE AND BRUSH CLEARING
 .1 Ensure workers using chain saws wear the following safety equipment:
 .1 CSA approved safety hat
 .2 Hearing protection, e.g. ear muffs
 .3 CSA approved chain saw pants
 .4 CSA approved chain saw boots
 .5 Approved eye protection
 .2 Ensure that all workers using brush saws wear the following safety equipment:
 .1 CSA approved safety hat fitted with face screen or shield or approved safety glasses
 .2 Hearing protection, e.g. ear muffs
 .3 CSA approved safety footwear
 .3 Chain saws must be equipped with a chain brake
 .4 A safe work practice (SWP) must be developed, implemented and all workers trained in the SWP prior to undertaking such tasks and utilizing tree and brush clearing equipment.

DIVING OPERATIONS
 .2 Sampling:
 .1 Prior to commencing diving activities, sample water and analyze sample(s) for:
 .1 Fecal Coliforms (Escherichia coli)
 .2 Total Coliforms.
 .3 Any health hazard identified during the site specific hazard assessment.

March 2012
4. Any parameter as directed by the Department of Government Services, Government of Newfoundland and Labrador.

2. Water will be designated a contaminant if the chemical concentration of a contaminant exceeds:
 .1 200 fecal Coliforms (Escherichia coli) per 1000 milliliter of water.
 .2 100 times the guidelines concentration established in the most recent Guidelines of Canadian Drinking Water Quality.
 .3 Any other criteria established by the Newfoundland Department of Government Services.

3. Sample analysis is to be completed by a laboratory that is accredited by the Canadian Associates of Environmental and Analytical Laboratories (CAEAL) or other national equivalent.

4. Dive personnel must meet the minimum competency requirements of CSA 275.4-97.
 .1 The Dive supervisor(s) shall as a minimum:
 .1 Possess a Valid Diving Certificate, or equivalent, for a minimum of three (3) years for the type of diving to be performed.
 .2 Have completed one hundred and fifty (150) hours of logged diving time for the type of diving to be performed.
 .3 Have completed fifty (50) hours of dive supervision for the type of diving to be performed.
 .2 Diver(s) shall as a minimum:
 .1 Possess a valid Diving Certificate or equivalent, for the type of diving to be performed.
 .2 Have completed fifty (50) hours of logged dive time for the type of diving to be performed.

5. A diving operation shall be interrupted or discontinued or not commenced when:
 .1 Continuation of the diving operation would or is likely to compromise the safety of any person involved in the diving operation.
 .2 The water currents at the underwater work site are likely to compromise the safety of any person involved in the diving operation.
 .3 Combustible material is stored too close for safety to any diving plant and equipment used in the diving operation.

6. A diving operation shall:
 .1 Not be conducted in the vicinity for any other activity that might pose a danger to any person involved in the diving operation.
 .2 Not use any craft that has insufficient power or stability for the safe continuity of the diving operation.
 .3 Provide measures for making work area boundary and stopping unauthorized entry into the work area.
 .4 Provide adequate illumination of the dive site and the underwater work site of the diving operation.

7. Provide, at the work site while completing diving operations, a diving operations log book that is permanently bound and has numbered pages.
 .1 Produce on request, any log books, records or other documentation associated with the diving operation, for inspection by Engineer/Architect.
 .2 As a minimum, for each diving operation enter into the diving operation logbook:
 .1 date and time the diving operation commenced and terminated including any time the diving operation was interrupted
 .2 name of supervisor; names of all other persons involved
 .3 the procedures followed
 .4 the decompression table and the schedule in that the decompression table was used
 .5 the maximum depth, bottom time, dive time and total dive time for each dive
 .6 the type of diving plant and equipment and the type of breathing mixture used
 .7 the type of discomfort, injury or illness including decompression sickness, suffered by any person involved
 .8 any environmental conditions that affected or might have affected the diving operation
 .9 any other factors relevant to the safety to health of any person involved

8. Diving in free swim mode is not permitted at the work site.

March 2012
.9 Provide separate first aid supplies for dive operation. All dive team personnel shall be trained in first aid and cardiopulmonary resuscitation (CPR)

.10 Provide medical oxygen for emergency response at work site. The dive supervisor shall be trained in administering medical oxygen.

190.25 CONFINED SPACE OPERATIONS

.1 Ensure confined operations are carried out under the Occupational Health and Safety Act and Newfoundland Regulation 70/09, Occupational Health and Safety Regulations PART XXVII CONFINED SPACE ENTRY.

.2 All staff required to enter a confined space shall be trained in confined space entry through a program certified by the WHSCC.

.3 The contractor shall ensure that all appropriate policies, assessments, testing and rescue plans are in place, communicated to workers and utilized prior to confined space entry.

190.26 The owner shall not be responsible for injury or damage occasioned by a failure of the Contractor to adhere to these provisions.
POWERED MOBILE EQUIPMENT INSPECTION FORM

This is to confirm that as of (Date)______________________ the unit described below is in safe operating condition in accordance with s.251(1) & s.251(3) of the OHS Regulations.

Contract No: ________________________________

Company Name: ________________________________

Company Number: ________________________________

Equipment Description: ________________________________

Serial Number / Identification Number: ________________________________

Hours: ________________________________

Odometer: ________________________________

CONTRACTOR SIGN OFF

Signed by: __

Print Name: __

Position: __

INSPECTOR SIGN-OFF

Signed by: __

Print Name: __

Qualifications of Inspector - see attached documentation, if applicable (Note that OHS Regs s.251(1) & s.251(3) outline the requirements for the maintenance, inspection and repair of mobile equipment.)

__

__

Journeyman License No. & Issuing Province (if applicable): ________________________________
The report below is to be completed on a monthly basis by all contractors engaged in Construction/Maintenance and or other project work for the Government of Newfoundland and Labrador, Department of Transportation and Works. Please attach information pertaining to items highlighted with an asterisk (*)

<table>
<thead>
<tr>
<th>Contractor Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contractor/Company Name</td>
</tr>
<tr>
<td>Report Prepared By</td>
</tr>
<tr>
<td>Report for Period Beginning:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Name</td>
</tr>
<tr>
<td>Contact Number</td>
</tr>
<tr>
<td>Contract Manager</td>
</tr>
<tr>
<td>Contractor CSO</td>
</tr>
<tr>
<td>Site Manager</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monthly OHS Performance Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagging Indicators</td>
</tr>
<tr>
<td>Indicate the total within reporting period above</td>
</tr>
<tr>
<td>Lost Time Injuries</td>
</tr>
<tr>
<td>Working Days Lost</td>
</tr>
<tr>
<td>Return to Work Plans</td>
</tr>
<tr>
<td>First Aid Incidents</td>
</tr>
<tr>
<td>Medical Aid Incidents</td>
</tr>
<tr>
<td>Total Hours Worked (site)</td>
</tr>
<tr>
<td>Accident /Incident reports</td>
</tr>
<tr>
<td>Accident Incident Investigations Conducted*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OHS Division Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>OHS Division Inspections</td>
</tr>
<tr>
<td>OHS Division Directives Issued*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sub-Contractor Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name sub-contractors working on site</td>
</tr>
<tr>
<td>Description of work conducted by sub-contractors</td>
</tr>
<tr>
<td>Days on site</td>
</tr>
<tr>
<td>COR Certified (Y/N)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Training Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training conducted with staff</td>
</tr>
<tr>
<td>Brief description of training conducted with safety or work practice focus</td>
</tr>
<tr>
<td>Total staff trained</td>
</tr>
<tr>
<td>Records available (Y/N)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equipment Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual equipment inspections conducted (Y/N)</td>
</tr>
<tr>
<td>All equipment passed inspection (Y/N)</td>
</tr>
<tr>
<td>Records Available (Y/N) Non-Routine maintenance required? Identify equipment</td>
</tr>
<tr>
<td>List maintenance conducted</td>
</tr>
</tbody>
</table>

Report completed on: Signature:
Definitions

First Aid incident – An Occupational Injury/Illness that requires first aid treatment only and does not result in loss of time from work or Restricted Work.

Medical aid incident – A classification of Occupational Injury/Illness for Medical Treatment beyond First Aid Injury where there has been no Lost Days. i.e: Visit to a health care provider or hospital specific to the injury.

Lost-Time Injury – An injury/illness resulting in Lost Days beyond the date of injury as a direct result of an Occupational Injury/Illness incident on the project.

Working Days Lost – The number of calendar days that the employee is unable to work beyond the day of injury specific to the project in which the injury occurred. Calculate total days for all employees working on the project.

Total Hours Worked – Total number of hours of employment (i.e., the actual worked hours) of all employees for each contractor and sub-contractor companies for the reporting period specific to the project.

Accident – An undesired event resulting in death, ill health, injury, damage or other loss.

Incident – An unplanned, undesired event that had the potential to cause injury or other damage.

Accident/Incident Report – all accidents and incidents must be reported, whether through an internal reporting structure or through the WHSCC employers form 7. All accidents of a serious nature must also be reported to the OHS Division within 24 hours (serious accidents re outlined in section 54(3) of the OHS Act).

Accident/Incident Investigation – is an investigation by the employer into the root cause of an accident or incident to identify hazards and prevent workplace accidents/incidents from recurring.
<table>
<thead>
<tr>
<th>Date/Time</th>
<th>Location/Project</th>
<th>Indicate the number or name of the signage layout utilized from the TCM</th>
<th>Current condition/placement of signage</th>
<th>Current/expected weather conditions</th>
<th>Signage and equipment adequate for the work and conditions (Y/N)</th>
<th>Identify deficiencies completed prior to the commencement of work and any signage repairs, replacements or upgrading required</th>
<th>Report completed by</th>
<th>Signage adjusted, indicate date and time of adjustment/inspection</th>
<th>Log reviewed by T&W Engineer, (date and time)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
SECTION 315
SELECTED GRANULAR BASE COURSE

INDEX
315.01 SCOPE
315.02 MATERIALS
 315.02.01 Physical and Gradation Requirements
 315.02.02 Recycled Asphalt Pavement (RAP)
315.03 SAMPLING AND APPROVAL
315.04 PREPARATION OF ROAD SURFACE
 315.04.01 Preparation of Existing Shoulder When Recapping With Addition of Paved Shoulder
 315.04.02 Preparation of Existing Granulars Prior to Providing Gravel Shoulder on Previously Paved Area
 315.04.03 Excavation of Existing Gravel Shoulder Prior to Butt Jointing Additional Pavement
315.05 PLACING SELECTED GRANULAR BASE COURSE ON ROAD
 315.05.01 Special Requirements for Placing Granular Base Course Granular "A" on Paving Contracts
315.06 SHOULDERING
315.07 COMPACTION
315.08 MEASUREMENT FOR PAYMENT
 315.08.01 Weight Measurement for Payment
 315.08.02 Volume Measurement for Payment
315.09 BASIS OF PAYMENT

315.01 SCOPE

This specification covers the requirements for the supply and the placing of a road bed, Selected Granular Base Course Granular "A", Granular "B", Granular "C" and Maintenance Grades No. 1, No. 2 and No. 3, included as an integral part of these requirements are the provisions of Section 310 "Use of Pits, Quarries and Stockpiles For Production of Materials Supplied by Contractor".

315.02 MATERIALS

 315.02.01 Physical and Gradation Requirements

The granular materials shall be composed of clean, hard, uncoated particles and shall be free from organic matter, clay lumps and deleterious materials such as shale, slate, ochre and schists.

Materials from deposits acceptable as to the quality of the particles, but deficient in sizes to provide the required gradation, may be accepted if the Contractor furnishes and satisfactorily incorporates into the product supplementary sizes from other sources to produce the required grading. If the deficiencies occur in Granular "B" or Granular "C" materials, corrections may be attempted by crushing to a smaller...
maximum particle size. In that event, the Department will furnish special grading limits based on the actual maximum particle size.

Materials shall be considered unsuitable even though particle sizes are within the specified gradation limits if particle shape or any other characteristic precludes satisfactory compaction or fails to provide a roadway suitable for traffic. If, in the opinion of the Engineer, an improved particle shape can be achieved by using a different crushing unit from that proposed by the Contractor, then the Contractor shall supply and use a crushing unit of the type directed by the Engineer.

Materials shall conform to the gradation requirement given in Table I and to the physical requirements given in Table II. The gradation shall not show marked fluctuations from opposite extremes of the limiting sizes, and the plotted curve shall flow in a manner free from acute changes in direction. Granular "A", Granular "B" and all the maintenance grades materials shall be processed by crushing and, when necessary to eliminate surplus fines passing the 4.76 mm sieve, shall be screened and washed.

Crushing of Granular "C" materials shall not be required except that the Contractor may, at his opinion, elect to crush any oversize as an alternative to screening.

315.02.02 Recycled Asphalt Pavement (RAP)

The Contractor will be permitted to use RAP in Granular "B". The Recycled Asphalt in the mixture of Virgin Granulars plus RAP will be limited to a maximum of 30% under the asphalt and 50% in the granular shoulders. The quality and gradation of the Virgin Granulars and the mixture of RAP and virgin materials shall meet the requirements for Granular "B", when tested individually. In areas where only surface course asphalt is to be applied, as an overlay, the Contractor will be permitted to use all RAP (100%) in the granular shoulders. In this case, the RAP shall not contain material larger than 5 cm in diameter.

The Contractor shall provide the Department with a minimum 30 day notice of his intention to use RAP. The Department reserves the right to accept or reject any particular source of RAP, irrespective of its quality.

TABLE 1
Gradation Requirements

<table>
<thead>
<tr>
<th>Sieve Sizes</th>
<th>Granular "A"</th>
<th>Granular "B"</th>
<th>Granular "C"</th>
<th>Maintenance Grades</th>
</tr>
</thead>
<tbody>
<tr>
<td>101.6 mm</td>
<td>100</td>
<td></td>
<td></td>
<td>No. 1</td>
</tr>
<tr>
<td>76.1 mm</td>
<td></td>
<td></td>
<td></td>
<td>No. 2</td>
</tr>
<tr>
<td>50.8 mm</td>
<td>100</td>
<td>75-100</td>
<td></td>
<td>No. 3</td>
</tr>
<tr>
<td>25.4 mm</td>
<td>50-100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.0 mm</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.9 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.51 mm</td>
<td>50-80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.76 mm</td>
<td>35-60</td>
<td>20-55</td>
<td>20-55</td>
<td></td>
</tr>
<tr>
<td>1.20 mm</td>
<td>15-35</td>
<td>10-35</td>
<td>10-35</td>
<td></td>
</tr>
<tr>
<td>300 µm</td>
<td>5-20</td>
<td>5-20</td>
<td>5-20</td>
<td></td>
</tr>
<tr>
<td>75 µm</td>
<td>2-6 (Pit Source)</td>
<td>2-6 (Pit Source)</td>
<td>0-12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-8 (Rock Source)</td>
<td>2-8 (Rock Source)</td>
<td>6-10</td>
<td></td>
</tr>
</tbody>
</table>

1. 1 µm = 0.001 mm
2. If not available, the 80 µm sieve may be substituted for the 75 µm.
3. The percentage of material finer than the 75 µm sieve shall be determined by ASTM C117.
4. While Granular A and Granular B materials are produced from natural gravel deposits, a maximum of 6% passing the 75 µm sieve shall be permitted.
5. Where Granular A and Granular B materials are produced from quarried rock, a maximum of 8% passing the 75 µm sieve shall be permitted.
6. Where forty percent or more of other material is blended to a rock source for the production of granular materials, it shall then be treated as a pit source.
TABLE 2

Physical Requirements

<table>
<thead>
<tr>
<th>Physical Test</th>
<th>ASTM Designation</th>
<th>Granular "A"</th>
<th>Granular "B"</th>
<th>Granular "C"</th>
<th>Maintenance Grades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Crushed (Minimum)**</td>
<td>D5821</td>
<td>50</td>
<td>50</td>
<td>-</td>
<td>50 50 50</td>
</tr>
<tr>
<td>Plasticity Index</td>
<td>D4318</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>Petrographic Number (Max.) (CSA 23 2-M90)</td>
<td>(CSA 23 2-M90)</td>
<td>150</td>
<td>150</td>
<td>-</td>
<td>150 150 150</td>
</tr>
<tr>
<td>Micro-Deval Test for Fine Aggregate(% Maximum)</td>
<td>D7428</td>
<td>30</td>
<td>30</td>
<td>-</td>
<td>- - -</td>
</tr>
<tr>
<td>Micro-Deval Test for Coarse Aggregate (% Max.)</td>
<td>D6928</td>
<td>25</td>
<td>25</td>
<td>-</td>
<td>- - -</td>
</tr>
</tbody>
</table>

* For Granular "A", "B" and "C", the rates of the loss after 100 revolutions to the loss after 500 revolutions shall not exceed 0.280.
** The percent of crushed particles will be determined by examining the fraction retained on the 4.76 mm sieve and dividing the weight of the crushed particles by the total weight contained on the 4.76 mm sieve. Pieces having one or more freshly fractured faces only will be considered as crushed material. Pieces with only small chips removed will not be considered as crushed.

315.03 SAMPLING AND APPROVAL

In addition to the requirements for pit and quarry sampling and processed material sampling and approval, as set forth in Section 310 "Use of Pits, Quarries and Stockpiles for Production of Materials Supplied by Contractor", where materials are hauled directly from the source to the roadway, acceptance of the material, or rejection of the material shall be decided on the basis of test results of samples taken from the roadways.

315.04 PREPARATION OF ROAD SURFACE

The Contractor shall prepare the road surface to the satisfaction of the Engineer before commencing placement of any selected granular base course materials. Except for the special cases of preparation on an existing or a proposed shoulder, adjacent to existing pavement, the preparation of the road surface shall be carried out in accordance with Section 204 "Grading of Fill", Section 206 "Grading of Cuts" and Section 301 "Scarifying and Reshaping".

315.04.01 Preparation of Existing Shoulder When Recapping with Addition of Paved Shoulder

Where it is intended to recap existing pavement and simultaneously add a paved shoulder where a gravel shoulder existed before, then the Contractor shall prepare the existing shoulder prior to the placing of additional Granular "A" and paving. The preparation of the existing shoulder shall involve levelling followed by compaction.

315.04.02 Preparation of Existing Granulars Prior to Providing Gravel Shoulder on Previously Paved Area

Where existing pavement has been removed because it is intended to provide a gravel shoulder, then the Contractor shall level off and compact the existing granulars prior to shouldering with additional selected granular base course.

315.04.03 Excavation of Existing Gravel Shoulder Prior to Butt Jointing Additional Pavement

Where it is intended to widen existing pavement by butt jointing new pavement against existing pavement, then the existing gravel shoulder material shall be removed so that the required new Granular "B" and Granular "A" may be placed in preparation for the new pavement.

The Contractor shall excavate the existing gravel shoulder to the depth needed so that the required thickness of Granular "B" and Granular "A" may be placed. The excavated shoulder material shall be...
spread over the adjacent subgrade. The spread excavated shoulder material and the excavated
shoulder shall be leveled and compacted.

315.05 PLACING SELECTED GRANULAR BASE COURSE ON ROAD

The Contractor shall place all granular bases in such a manner as to prevent contamination by
other materials and to prevent segregation. If, in the opinion of the Engineer, the methods and
techniques used by the Contractor cannot overcome contamination or segregation, then the
Engineer may direct a modification in these methods which may require the use of an approved
spreader box or other acceptable device. All granular bases shall be placed in uniform layers
such that the thickness of the compacted layer does not exceed 150 mm. This requirement may
be waived if the Contractor can demonstrate to the complete satisfaction of the Engineer, a
method of placing and compacting thicker layers of materials such that the specified density is
uniformly attained.

Prior to closing down operations for each working day, all granular materials shall be bladed and
compacted to the specified compaction.

The materials shall be sprayed with water when and as directed by the Engineer, either to aid
compaction or reduce dust nuisance or both. When water is added to aid compaction, it shall be
applied immediately ahead of the compacting unit.

Each layer of granular base shall be bladed, shaped and compacted as necessary to produce the
required profile and cross section. The finished surface shall not deviate at any place on a 3m
straight edge by more than 20 mm for Granular "B" and "C" and 10 mm for Granular "A". The
upper layer shall be maintained to these tolerances and to the specified density upon completion
of the contract, or until the surface is paved. This may require keeping the moisture content at
the appropriate value during periods of dry weather in addition to regrading and recompacting as
frequently as may be deemed necessary by the Engineer.

Calcium chloride shall be applied uniformly by mechanical means when, and as directed by the
Engineer.

315.05.01 Special Requirement for Placing Granular Base Course Granular
"A" on Paving Contracts

In paving contracts which also include the placing of Granular Base Course Granular "A", the
Contractor shall so coordinate his granular base course Granular "A" placing operations and his
paving operations, such that at any given time no more than 3 km of granular base course
Granular "A" treated unpaved road is subject to use by public traffic.

On roads used by public traffic where the Granular "B" was produced from a rock source, or if
natural gravel source produced Granular "B" gives a rough driving surface, then the Contractor
shall place at least a portion of the Granular "A" over the Granular "B" to provide a smoother
driving surface. The Contractor shall carry out his operations in such a way that no one place on
the road has this type of Granular "B" left without a running surface of Granular "A", for more than
3 days.

315.06 SHOULDERING

The placing of granular materials for shoulder construction shall be carried out by means of an
approved spreader. Spreaders shall consist of a box to hold shouldering material and a suitable
mechanism to control the width and rate of application and to prevent materials getting onto the
pavement.

Granular materials for shoulder construction shall be placed directly on the shoulder and any
spillage and materials dragged onto the pavement surface shall be immediately removed, without
damage to the pavement, and the area so effected shall be thoroughly cleaned by the use of a
power broom or other suitable method.
The shoulders shall be sloped to the specified lines, grades and cross section.

Shouldering operations shall not commence along any section of pavement until 24 hours have elapsed from the time of completion of the final pavement course in that section, but the shouldering operations shall be completed within 7 days of the final pavement course on sections which are open to traffic.

315.07 COMPACTION

All Granular "A", Granular "B", Granular "C" and the maintenance grades materials placed on the roadway, or placed on shoulders, shall be compacted to not less than 100% of the maximum Standard Proctor Dry Density (ASTM D698).

Compaction operations shall be carried out as closely as possible behind the placing and spreading operation. At the end of each working day, all materials placed shall have been compacted to the specified density.

Each layer of material shall be graded and compacted as specified before the next layer is placed.

Where necessary to obtain the required compaction, the Contractor shall apply sufficient water by means of an approved distributor.

315.08 MEASUREMENT FOR PAYMENT

Measurement for payment will only be made for those materials accepted for use under this specification. Measurement for payment for Selected Granular Base Course materials may be by: the weight of material placed in the works, the nominal amount of the material placed in the works, or the amount of material stockpiled.

315.08.01 Weight Measurement for Payment

Where the unit of measurement for a particular type of Selected Granular Base Course material is stated in tonnes on the unit price table, then the material shall be weighed on scales.

The scales shall be provided by the Contractor and they shall conform with the requirements of Section 501 "Weighing of Materials in Trucks". The Department will supply scale tickets, and the Department Scale Checker will issue the tickets. Only loads certified by the Department Road Checker as being placed in the works at the required locations shall be included in measurement for payment.

The weight shall be computed in tonnes, rounded to one decimal place.

For quantities of Selected Granular Base Course material less than or equal to 1 000 tonnes, the Department will measure the material in stockpile by cross sectioning, calculating the number of cubic metres and converting the quantities to tonnes if the Contractor so desires. A standard conversion factor of 2.0 t/m³ will be applied for Selected Granular Base Course material measured in stockpile. For quantities of Selected Granular Base Course material greater than 1 000 tonnes, the Contractor must provide weight scales.

315.08.02 Volume Measurement for Payment

Where the unit of measurement for a particular type of Selected Granular Base Course material is stated in cubic metres on the unit price table, then the material shall be assessed for volume in accordance with the specification for stockpiling, select bedding or such other item as the case may be.

315.09 BASIS OF PAYMENT

Payment at the appropriate contract price for the particular type of Selected Granular Base Course shall be full compensation for all labour, materials, equipment-use and any other expenses to; provide a pit or quarry, obtain all required permits and approval, provide and transport pit or quarry samples to the Department's Soils Laboratory in St. John's, clear, grub and strip the pit or quarry, process pit or quarry materials to the gradation and physical requirements for the required type of material, provide and maintain a field laboratory, provide scales if required, construct and maintain access road to the source of material.
the material, provide for such prior reconditioning of the surface on which the selected granular base course is to be applied and which is required in accordance with Section 301 "Scarifying and Reshaping", but which is not a pay item under that specification, provide all haulage of the material from the source to where the material is to be placed, place, spread, grade and compact the material, provide such watering of the material as is required, maintain the placed material to the required compaction and to the specified cross section and profile tolerances until completion of the contract, pay any royalties for the material, clean up and provide such other restoration to the pit or quarry and the stockpile site as may be required, together with any other work necessary to complete the contract item.

Moreover, where at shoulders minor grading work of the types described in 315.04.01, 315.04.02 and 315.04.03 is required, then payment at the contract unit price for Granular "A" and Granular "B" shall also include compensation in full for all labour, materials and equipment-use to carry out the shoulder excavation, spreading, leveling and compaction as described.

Where instead of placing the required select granular materials, the Contractor had chosen, of his own choice, to place temporary fill material level with the finish grade, then the Contractor shall excavate the fill material to make room for the select granulars, at his own expense. No payment will be made for the work of carrying out this excavation, or re-compacting the underlying materials. An example where this might occur, would be in connection with the installation of a culvert across an existing paved road, and the Contractor chose in one operation to place temporary backfill right up the level of the pavement; instead of placing backfill only to subgrade, and then placing the required select granulars.
This section covers the requirements for the supply and application of Tack Coat to pavement surfaces prior to repaving with asphaltic concrete.

Tack coat shall consist of RS-1 emulsified asphalt conforming to ASTM D977 Standard Specification for Emulsified Asphalt.

Should the Contractor wish to use an alternate product, then prior written approval of the Engineer must first be obtained. A written request must be submitted to the Engineer a minimum of 14 days prior to the intended use of the alternate product. The Contractor's request must include reasons for the use of the alternate product, manufacturer's product literature and required application rates as well as applicable Material Safety Data Sheets.

Tack Coat shall be applied by means of an approved pressure distributor designed and equipped so that the emulsion may be applied uniformly at even heat on variable widths at easily determined and controlled application rates under uniform pressure. The distributor shall maintain a constant height of the spray bar as the tank is unloaded.

The distributor shall be equipped with a suitable thermometer with a minimum range from 10°C to 150°C placed to accurately show the temperature of the contents. The approved pressure distributor shall be equipped with a tachometer measuring speeds in meters per minute that is visible to the truck driver so as to maintain constant application speeds at specified rates. The distributor's pump shall be equipped with a tachometer registering liters per minute that is visible to the truck driver. The distributor shall be equipped with a hose and nozzle attachment to be used for spraying by hand, areas inaccessible to the spray bar.

All spray nozzles shall be in good condition and of the same type, orifice size and manufacturer and capable of producing a uniform fog-type spray without streaking. Clogged nozzles shall be removed and cleaned with solvent. The slot of each nozzle shall be set at 30 degrees to the axis of the spray bar and the spray bar shall be set at a height above the existing pavement that will permit the fan from each
FORM 320

nozzle to overlap its neighbouring fan by exactly half. The spray bar shall be provided with a positive shut-off to prevent dribbling.

320.04 APPLICATION

Tack Coat shall only be placed on surfaces that are clean and dry, with no threat of precipitation or fog and then only when the atmospheric temperature is at least 10°C. The emulsion shall not be applied to a prepared surface when the surface temperature is less than 2°C.

Should the surface to be treated be dirty, then the Contractor shall thoroughly clean the surface by means of a power broom, or equivalent to ensure bonding of the Tack Coat.

Tack Coat shall only be placed on surfaces that have been approved by the Engineer.

The Contractor shall plan his work so that no more tack coat than is necessary for the days paving operation is applied at one time.

To avoid nuisance and possible property damage to the traveling public, the Contractor shall install portable traffic lights or other means of directing one-way traffic while the Contractor is working on the adjacent part of the road. All other means of traffic control must be in accordance with Division 7 of the Specifications Book, Temporary Condition Signs and Devices.

The application temperature shall be between 20°C and 65°C, or the temperature recommended by the manufacturer. On old pavement the emulsion shall be applied at 0.15 to 0.25 l/m² or the Department approved application rate as recommended from the manufacturer. However, on pavement which was placed during the previous construction season, the rate of application shall be as directed by the Engineer. This rate will not exceed the rate for old pavement.

Tack coat application shall be visually uniform. Areas of insufficient or non-uniform tack coat coverage shall be re-sprayed by the Contractor at no additional cost.

320.05 ENVIRONMENTAL PROVISIONS

The Contractor shall follow the requirements of Section 820 "Storage and Handling of Fuels and Other Hazardous, Toxic or Dangerous Material", and the procedure for reporting spills.

320.06 CURING

No hot mix shall be placed upon the tack coat until it has dried to a proper condition of tackiness, as determined by the Engineer. The Contractor is advised that the period required for such drying will depend upon weather conditions; generally it can be 1 hour or more.

320.07 MEASUREMENT FOR PAYMENT

Measurement for payment shall be by means of the horizontal area actually treated with tack coat lying within the area designated by the Engineer for treatment. The area shall be computed in square meters, rounded to one decimal place.

320.08 BASIS OF PAYMENT

Payment at the contract price for Tack Coat shall be compensation in full for all labour, materials and equipment-use to; clean the existing surface, supply and apply the tack coat, together with the provision of all required traffic control necessary.
SECTION 330
HOT MIX ASPHALT CONCRETE

INDEX

330.01 SCOPE

330.02 MATERIALS

330.02.01 Mixture Materials

330.02.01.01 Asphalt Cement

330.02.01.01.01 Performance Graded Asphalt Binder (PGAB) Sampling

330.02.01.01.02 Asphalt Binder Temperature Viscosity Chart

330.02.01.02 Crushed Aggregate

330.02.01.02.01 Coarse Aggregate

330.02.01.02.02 Fine Aggregate

330.02.01.02.03 Crushing Tolerances

330.02.01.03 Blending Sand (Naturally Occurring Screened Sand)

330.02.01.04 Mineral Filler

330.02.01.05 Anti-Stripping Additive

330.02.01.06 Recycled Asphalt Pavement (RAP)

330.02.02 Composition of Mixture

330.02.02.01 General Requirements for Pavement Mixture

330.02.02.02 Physical Requirements for Mixture

330.03 USE OF PITS, QUARRIES AND STOCKPILES

330.04 ENVIRONMENTAL PROVISIONS

330.04.01 Environmental Requirements for Asphalt Mixing Plants

330.04.02 Environmental Approval

330.05 METHOD SPECIFICATION FOR ASPHALT CONCRETE MIX - HOT PLACED

330.05.01 General

330.05.02 Testing and Inspection

330.05.02.01 Designation of Mixture

330.05.02.02 Unauthorized Tampering with Plant Settings and Materials

330.05.03 Equipment

330.05.03.01 Mixing Plants

330.05.03.01.01 General Requirements and Equipment for Storage of Asphalt Cement

330.05.03.01.02 Cold Bins

330.05.03.01.03 Dryer

330.05.03.01.04 Screens

330.05.03.01.05 Hot Aggregate Storage Bins

March 2012

GOVERNMENT OF NEWFOUNDLAND AND LABRADOR
Department of Transportation and Works
Highway Design Division
FORM 330

330.05.03.01.06 Asphalt Cement Control Unit
330.05.03.01.07 Thermometric Equipment
330.05.03.01.08 Dust Collectors
330.05.03.01.09 Safety Requirements
330.05.03.01.10 Capacity

330.05.03.02 Special Requirements for Batching Plants
330.05.03.02.01 Weight Box or Hopper
330.05.03.02.02 Plant Scales
330.05.03.02.03 Mixer Unit

330.05.03.03 Special Requirements for Continuous Mixing Plants
330.05.03.03.01 Gradation Control Unit
330.05.03.03.02 Weight Calibration of Material Feed
330.05.03.03.03 Synchronization of Aggregate and Asphalt Feed
330.05.03.03.04 Mixer Unit
330.05.03.03.05 Discharge Hopper
330.05.03.03.06 Material Level Indicators

330.05.03.04 Special Requirements for Drum Mixer Plants
330.05.03.04.01 Aggregate Feed
330.05.03.04.02 Asphalt Cement Feed
330.05.03.04.03 Asphalt Cement Mixing

330.05.04 Truck Weigh Scales
330.05.05 Haulage Equipment
330.05.06 Spreading Equipment
330.05.07 Rollers
330.05.08 Material Transfer Device/Vehicle

330.05.09 Construction
330.05.09.01 Preparation of Gravel Road Surface
330.05.09.02 Preparation of Old Paved Surface
330.05.09.03 Placing of Asphalelic Courses
330.05.09.04 End of Paving Season for Asphalelic Surface Course
330.05.09.05 Joints
330.05.09.05.01 Keyed Joints

330.05.09.06 General Requirements for Compaction
330.05.09.06.01 Compacting Asphaltic Base, Levelling and Surface Courses
330.05.09.06.02 Compacting with Static Wheel Rollers
330.05.09.06.03 Asphalt Density Measurement and Unit Price Adjustment

330.05.09.07 Requirements for Asphaltic Leveling Course
330.05.09.08 Requirements for Completed Asphaltic Base and Surface Courses
330.05.09.09 Segregation and Other Surface Defects

March 2012
FORM 330

330.05.10 Pavement Smoothness
 330.05.10.01 Pavement Smoothness Measurement
 330.05.10.02 Profile Index Limits
 330.05.10.03 Surface Deviations (Individual Bumps and Dips)
 330.05.10.04 Testing
 330.05.10.05 Remedial Action

330.05.11 Asphaltic Patching

330.05.12 Measurement for Payment
 330.05.12.01 Measurement for Payment for Asphaltic Surface Course, Asphaltic Base Course, Asphaltic Leveling Course Type I & Type
 330.05.12.02 Measurement for Payment for Asphaltic Patching
 330.05.12.03 Measurement for Payment for Asphalt Cement
 330.05.12.04 Measurement for Payment for Blending Sand
 330.05.12.05 Measurement for Payment for the Cutting and Removal of Asphaltic Pavement

330.05.13 Basis of Payment
 330.05.13.01 Basis of Payment for Asphaltic Surface Course, Asphaltic Base Course Asphaltic Leveling Courses Type I & Type II
 330.05.13.02 Basis of Payment for Asphaltic Patching
 330.05.13.03 Basis of Payment for Asphalt Cement
 330.05.13.04 Basis of Payment for Blending Sand
 330.05.13.05 Basis of Payment for the Cutting and Removal of Asphaltic Pavement
 330.05.13.06 Basis of Payment for Asphaltic Mix for Department's Maintenance Division
 330.05.13.07 Basis of Payment for Rejected Mix

330.06 END PRODUCT SPECIFICATION FOR ASPHALT CONCRETE MIX - HOT PLACED

330.06.01 General

330.06.02 Definitions
 330.06.02.01 End Product Specification (EPS)
 330.06.02.02 Design Mix Formula (DMF)
 330.06.02.03 Job Mix Formula (JMF)
 330.06.02.04 Actual Asphalt Binder Content
 330.06.02.05 Lot
 330.06.02.06 Stratified Random Sample
 330.06.02.07 Sample Mean
 330.06.02.08 Mean of the Deviations
 330.06.02.09 Thickness
 330.06.02.10 Mix Property
 330.06.02.11 Referee Sample

330.06.03 Materials
 330.06.03.01 General

330.06.04 Mix Design Properties

March 2012
FORM 330

330.06.04.01 Establishing a Design Mix Formula (DMF)
330.06.04.02 Requirements for Design Mix Formula
330.06.04.03 Submission of Design mix Formula
330.06.04.04 Evaluation of Design Mix Formula
330.06.04.05 Establishing a Job Mix Formula (JMF)
330.06.04.06 Approval Job Mix Formula
330.06.04.07 Field Adjustments to the Job Mix Formula

330.06.05 Construction Methods
330.06.05.01 General
330.06.05.02 Production
330.06.05.03 Transportation
330.06.05.04 Placement
330.06.05.05 Joint Construction
 330.06.05.05.01 Transverse Construction Joints
 330.06.05.05.02 Longitudinal Construction Joints
 330.06.05.05.03 Paving in Echelon
 330.06.05.05.04 Conventional Paving
 330.06.05.05.05 Keyed Joints

330.06.06 Compaction

330.06.07 Surface Defects

330.06.08 Quality Control
 330.06.08.01 Quality Control Inspection Testing Plan (ITP)
 330.06.08.02 Sampling and Test Results

330.06.09 Quality Assurance
 330.06.09.01 Sampling
 330.06.09.02 Asphalt Binder Content, Gradation and Air Voids
 330.06.09.03 Asphalt Density
 330.06.09.04 Thickness (New Construction)
 330.06.09.04.01 Material Application Rate (Rehabilitated Pavements)
 330.06.09.05 Performance Graded Asphalt Binder (PGAB) Sampling
 330.06.09.06 Pavement Smoothness
 330.06.09.06.01 Profile Index limits
 330.06.09.06.02 Surface Deviations (Individual Bumps and Dips)

330.06.10 Appeals
 330.06.10.01 Appeal of Individual Test Results
 330.06.10.02 Appeal of Test Results for the Entire Lot
 330.06.10.02.01 Appeal of Lot Binder Content, Gradation and Air Void Content
 330.06.10.02.02 Appeal of Lot or Trail Mix Density
 330.06.10.02.03 Appeal of Lot or Trial Mix Thickness
 330.06.10.02.04 Payment of Appeal Testing

March 2012
330.01 SCOPE

This specification covers the Department's requirements for the production, placing and compaction of hot mix, hot laid base course, surface course and leveling course asphalt concrete for pavement construction. Sections 330.02 to 330.04 provides aggregate and asphalt pavement specifications and general requirements that are common to both method specification and end product specification projects. Section 330.05 provides specifications specific to method specifications projects, whilst Section 330.06 details the specifications for end product projects.

Method specification projects are identified as projects where Department personnel conduct all materials testing and engineering services and the contractor’s payment is based upon tonnage of production for a specific project with some minimal performance criteria applied.

End product specification projects are defined as projects where the contractor is solely responsible for quality control functions and the Department is responsible for the provision of all quality assurance testing. Payment to the contractor is also based on tonnage of production with a more extensive bonus/penalty system which in turn is based upon the end product quality assurance test results carried out by the Department.

The base, surface and leveling course asphaltic concrete pavement shall consist of asphaltic cement, coarse and fine mineral aggregate, blending sand, plus mineral filler if required, combined as hereinafter specified, placed and compacted on a prepared base in conformity with the lines, grades, dimensions and cross sections, as staked by the Engineer.

The paving of bridge decks and approach slabs shall be in accordance with Section 922 "Asphaltic Paving of Bridge Decks".

330.02 MATERIALS

330.02.01 Mixture Materials

330.02.01.01 Asphalt Cement

 Unless otherwise specified, the asphalt cement (binder) shall conform to the latest edition of AASHTO M320 entitled Standard Specification for Performance Graded Asphalt Binder. The Performance Grade (PG) of asphalt binder shall be PG 58-28 and shall conform to the requirements of Table 1 in the AASHTO Specification. Other PG binders may be specified in individual contracts when warranted.

All PG asphalt binders will be subject to testing for acceptance prior to and during use. Samples failing to meet the relevant performance grade will require classification and be subject to penalty based on the following formulation.

March 2012
Temperature Deviation	Price Reduction (% of Asphalt Cement and Mix Prices)
Within 3 degrees of Specified Grade | N/A
From 3 degrees to 6 degrees of Specified Grade | 10%
From 6 degrees to 9 degrees of Specified Grade | 20%
Greater than 9 degrees of Specified Grade | Rejection

Projects with only one asphalt binder sample collected and not meeting the specified grade will have the penalty applied to all the unit prices of the entire quantity of hot mix asphalt concrete. Projects with multiple samples of asphalt binder will have the penalty applied proportionally to the affected asphalt.

Performance Graded Asphalt Binder with either higher than the maximum or lower than the minimum design temperature will be accepted at full price and no bonus will be applied.

Prior to the start of and throughout pavement production current copies of certification of all project asphalt binders shall be provided to the Department.

Any asphalt binder other than the asphalt binder specified must be removed from the Contractor’s tanks to prevent contamination. Binders meeting the performance specifications but obtained from different sources cannot be stored in the same tank unless approved by the asphalt suppliers.

330.02.01.01 Performance Graded Asphalt Binder (PGAB) Sampling

The Contractor shall collect samples of asphalt cement as required by the Engineer. At least one sample shall be collected per project and per additional 5000 t of hot mix asphalt produced. The Engineer may opt to request one random sample per day. Samples shall be taken from the Contractor’s storage tank in accordance with ASTM D140 Standard Practice for Sampling Bituminous Materials. The sample size shall be at least two litres placed in one litre containers. Collection of the asphalt binder sample shall be witnessed by the Engineer. The sample shall be appropriately identified including the time and date of samples, grade and type of binder, supplier, refinery and the name and proportions of any additives added. The sample shall be immediately forwarded to the witnessing Engineer.

It shall be the Department’s responsibility to submit PGAB samples for quality assurance testing.

330.02.01.02 Asphalt Binder Temperature Viscosity Chart

The Contractor shall supply a temperature viscosity chart from the manufacturer/supplier for each source or type asphalt binder provided. The contractor shall also request of the manufacturer/supplier any information or recommendations regarding the production and handling of the mix relating to the asphalt binder. All such requested information shall be available in advance of the pre-paving meeting for discussion and review during the meeting. During the hot mix production the maximum mixing temperature shall be the lower of either; the high end temperature for recommended mixing from the temperature viscosity chart provided by manufacturer/supplier or 165° C.

330.02.01.02 Crushed Aggregate

Additional to all other requirements, the designated aggregates shall be split on the 4.75 mm screen during crushing operations, and each material shall be stockpiled separately such that intermixing of each size and type does not occur.

Where aggregates are processed from pits the naturally occurring fines shall be pre-screened prior to crushing, individually stockpiled and referenced as “naturally occurring fine aggregate”. No more than 5% naturally occurring fine aggregate passing the 4.75 mm screen shall be permitted with the retained naturally occurring screened coarse aggregate prior to crushing. Naturally occurring coarse aggregate must be stockpiled separately prior to crushing. Fine aggregate sizes generated during the crushing phase shall also be individually stockpiled and identified as “crushed fines”. In no cases shall the fine aggregate stockpiles be combined or mixed with other aggregate types. For all mixes the maximum percentage passing the 75 μm sieve is limited to 10 % for naturally occurring fine aggregate.

As an alternative to the above pre-screening on the 4.75mm screen, where aggregates are processed from pits, contractors may choose to pre-screen with a 19 mm or larger screen size provided that no more than 10% of the retained material for aggregate production passes the 19 mm sieve. For this prescreening operation a completely safe means of accessing the retained material for sampling is to be provided by the contractor.
FORM 330

shall have full control over the time of sampling. If the Contractor chooses to pre-screen with a 19 mm or larger screen size, material passing the 19 mm or larger screen size can not be utilized as a naturally occurring fine aggregate.

330.02.01.02.01 Coarse Aggregate

Coarse Aggregate shall consist of hard, durable crushed stone or crushed gravel particles, reasonably uniform in quality and free from soft or disintegrated pieces. The portion of material retained on the 4.75 mm sieve shall be known as coarse aggregate. The coarse aggregate stockpile shall contain no more than 10% passing the 4.75 mm screen.

Coarse Aggregates shall be washed if necessary to have clean surfaces free from coatings of foreign matter. Coarse Aggregates shall conform to the physical requirements shown in Table 1.

Irrespective of compliance with the physical requirements of Tables 1, any coarse aggregate may be accepted or rejected on the basis of past field performance at the discretion of the department.

<table>
<thead>
<tr>
<th>TEST METHOD</th>
<th>TEST NO.</th>
<th>RAU & RAD-100 SURFACE</th>
<th>RAU & RAD-90 RAU & RAD-90, RCU-80 BASE</th>
<th>RLU-60, RLU-70 RLU-80 ALL COURSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS ANGELES ABRASION - % MAXIMUM (A)</td>
<td>ASTM C131</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>ABSORPTION - % MAXIMUM</td>
<td>ASTM C127</td>
<td>1.75</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>MAGNESIUM SULPHATE - SOUNDNESS - 5 CYCLES - % MAXIMUM (B)</td>
<td>ASTM C88</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>PETROGRAPHIC NUMBER - MAXIMUM</td>
<td>CSA A23.2-15A</td>
<td>135</td>
<td>135</td>
<td>135</td>
</tr>
<tr>
<td>FREEZE-THAW TEST - 5 CYCLES - % MAXIMUM</td>
<td>CSA A23.2-24A</td>
<td>8</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>CRUSHED PARTICLES -% MINIMUM (C)</td>
<td>ASTM D5821</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>FLAT & ELONGATED PARTICLES - % MAXIMUM (D)</td>
<td>ASTM D 4791</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>LOSS BY WASHING - % MAXIMUM PASSING (E)</td>
<td>ASTM C117</td>
<td>1.75</td>
<td>1.75</td>
<td>1.75</td>
</tr>
<tr>
<td>MICRO DEVAL - % MAXIMUM</td>
<td>ASTM D 6928</td>
<td>19</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>CLAY LUMPS -% MAXIMIM</td>
<td>CSA A23.2-3A</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>LOW DENSITY PARTICLES - % MAXIMUM</td>
<td>CSA A23.2-4A</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FRIABLE OR SLATEY SILTSTONE - % MAXIMUM</td>
<td>CSA A23.2-15A</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes:
(A) The ratio of the loss after 100 revolutions to the loss after 500 revolutions shall not exceed 0.265.
(B) Test to be conducted on basalt rich or highly absorptive (> 1.5%) aggregates.
(C) Pieces having two or more freshly fractured faces only will be considered as crushed material. Pieces with only small chips removed will not be considered as crushed.
(D) Flat and elongated pieces are those whose greatest dimension exceeds four times their least dimension.
(E) When only quarried rock is used as a source of coarse aggregate, a maximum of 2 percent passing the 75 μm sieve shall be permitted.

The Contractor must meet all the requirements above, while the guidelines below are provided for information purposes. The Contractor is responsible for ensuring the combination of aggregate conforms to the grading requirements of Table 3.

Guidelines for Coarse Aggregate Gradation
Fine aggregate shall consist of clean, tough, rough-surfaced grains, free from clay, loam and other foreign matter. The fine aggregate stockpile shall contain no more than 20% retained on the 4.75 mm screen.

For RCU-80 and above highway classifications the maximum allowable percentage in total of all natural occurring fine aggregates plus blending sand in the total combined aggregate shall be 15% (by dry weight). For RLU-80 and below highway classifications the maximum allowable percentage in total of all natural occurring fine aggregates plus blending sand in the total combined aggregate shall be 20% (by dry weight).

For all base and levelling type II course mixes the fine aggregates maximum percentage passing the 75 \(\mu m \) sieve is limited to 7% prior to mix production at the asphalt plant. All surface and levelling type I course mixes the fine aggregates maximum percentage passing the 75 \(\mu m \) sieve is limited to 6% prior to mix production at the asphalt plant.

Irrespective of compliance with the physical requirements of Tables 2 any fine aggregate may be accepted or rejected on the basis of past field performance at the discretion of the department.

TABLE 2
Physical Requirements for Fine Aggregates

<table>
<thead>
<tr>
<th>TEST METHOD</th>
<th>TEST NO.</th>
<th>RAU & RAD-100 RAU & RAD-90, RCU-80</th>
<th>RLU-60, RLU-70 RLU-80</th>
</tr>
</thead>
<tbody>
<tr>
<td>MICRO-DEVAL TEST FOR FINE AGGREGATE - % MAXIMUM</td>
<td>ASTM D 7428</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>PLASTICITY INDEX</td>
<td>ASTM D4318</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SAND EQUIVALENT - % MINIMUM</td>
<td>ASTM D 2419</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>FINE AGGREGATE ANGULARITY - % MINIMUM (A)</td>
<td>ASTM C 1252</td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

Note:
(A) FAA tests shall be conducted on a representative sample of the total fine aggregate inclusive of all fine aggregate materials as indicated in the mix design including blending sand. The test will be conducted in accordance with Standard Graded Sample Method A.

The Contractor must meet all the requirements above, while the guidelines below are provided for information purposes. The Contractor is responsible for ensuring the combination of aggregate conforms to the grading requirements of Table 3. Contractors should also be aware of material breakdown after crusher production testing for the material being utilized and their plants capabilities in producing the mixture in accordance with Table 3.
FORM 330

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing by Dry Weight</th>
<th>Surface Course & Levelling Course Type I</th>
<th>Base Course & Levelling Course Type II</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5 mm</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>4.75 mm</td>
<td>90-100</td>
<td>85-100</td>
<td></td>
</tr>
<tr>
<td>2.00 mm</td>
<td>40-60</td>
<td>40-90</td>
<td></td>
</tr>
<tr>
<td>0.425 mm</td>
<td>10-30</td>
<td>20-65</td>
<td></td>
</tr>
<tr>
<td>0.150 mm</td>
<td>5-16</td>
<td>10-25</td>
<td></td>
</tr>
<tr>
<td>0.075 mm</td>
<td>2-6</td>
<td>2-7</td>
<td></td>
</tr>
</tbody>
</table>

330.02.01.02.03 Crushing Tolerances

After the Contractor starts crushing, an average grading will be determined and tolerances will be applied to subsequent production. The average grading will be determined by averaging at least six washed sieved results on a minimum of 1500 tonnes or 30% of the required amount.

The tolerances for subsequent production are as follows:

<table>
<thead>
<tr>
<th>Tolerance for Production of Asphalt Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate Passing 25.0 mm to 9.5 mm sieves</td>
</tr>
<tr>
<td>Aggregate Passing 4.75 mm sieve</td>
</tr>
<tr>
<td>Aggregate Passing 2.00 mm sieve</td>
</tr>
<tr>
<td>Aggregate Passing 425 µm sieve</td>
</tr>
<tr>
<td>Aggregate Passing 150 µm sieve</td>
</tr>
<tr>
<td>Aggregate Passing 75 µm sieve</td>
</tr>
</tbody>
</table>

330.02.01.03 Blending Sand

Blending sand shall consist of clean, tough, rough surfaced grains, free from clay, loam, or any other foreign matter. Blending sand is considered as a fine aggregate and thus must meet the requirements of Table 2. Blending sand may be either a naturally occurring screened sand or a manufactured sand added to the mix for the purposes of enhancing mix properties.

The gradation of the blending sand shall be such that when used in the asphalt mix, the resulting mix shall meet the requirements of Tables 2 and 3 of this section. In any case, the blending sand shall have 100% (by dry weight) passing the 9.5 mm sieve and at least 80% (by dry weight) passing the 4.75mm sieve. For all mixes the maximum percentage passing the 75 µm sieve is limited to 10% for all blend sands.

For RCU-80 and above highway classifications the maximum allowable percentage in total of all natural occurring fine aggregates plus blending sand in the total combined aggregate shall be 15% (by dry weight). For RLU-80 and below highway classifications the maximum allowable percentage in total of all natural occurring fine aggregates plus blending sand in the total combined aggregate shall be 20% (by dry weight).

Blending sand shall be supplied by the Contractor.

330.02.01.04 Mineral Filler

Material Filler shall meet the requirements of ASTM D 242 Standard Specification for Mineral Filler for Bituminous Paving Mixtures. Where filler is required, it shall be supplied by the Contractor.

330.02.01.05 Anti-Stripping Additive

An anti-stripping additive may be required in the Hot Mix Asphaltic Concrete. Modified Lottman tests in accordance with AASHTO T 283 Resistance of Compacted Hot Mix Asphalt (HMA) to Moisture-Induced Damage shall be completed within the mix design procedure, to determine the need for, and the required amount of anti-stripping additive. Liquid anti-stripping additives and/or hydrated lime (Ca(OH)₂) can be utilized as an anti-strip additive.

An anti-stripping additive will be required if one of the following conditions occurs as determined by AASHTO T 283:
• The tensile strength ratio of the hot mix asphalt concrete is less than 0.80
• There is visual evidence of stripping. Acceptable specimens shall have a visual stripping rating of 1.0 or lower based on a scale from 0 to 10 (with 0 being no visual stripping and 10 being fully stripped).

Stripping tests are deemed necessary on end product specification projects and the Contractor will conduct the required testing. The test report will contain the following:

(a) The source and percentage of aggregates used within the proposed asphalt concrete
(b) The type and percentage of asphalt binder used
(c) The percentage of anti-stripping additive added.
(d) The percentage air voids for both the untreated and treated mix
(e) The average tensile strength of both the treated and untreated mix
(f) The Tensile Strength Ratio (TSR)
(g) Visual inspections of any moisture damage must also be noted

Contractors may choose to use an approved liquid anti-stripping additive in order to meet the AASHTO T283 requirements above. The liquid anti-stripping additive application rate added to the hot mix asphaltic concrete shall be the greater of 0.5% of additive by weight of asphalt cement, or the recommended percentage as determined from Lottman test results. Approved liquid anti-stripping additives include the products AD-here LOF 6500 (ARR-MAZ Custom Chemicals) and Redicote C-3082 (Akzo Nobel Chemicals). All other products must be approved by the Department’s Materials Engineering Division.

Suppliers of the asphalt cement and liquid anti-stripping additives shall provide in writing all mixing requirements and proof of product compatibility. The treated asphalt PG binders must meet the relevant performance grade specifications.

Contractors must inform the Engineer and advise workers of the proper procedures, use of protective clothing and equipment when handling anti-stripping additives. Hot mix asphaltic concrete with liquid anti-strip additives is known to produce strong odours. Contractors must ensure the mix materials are used under proper environmental conditions to guarantee the safety and comfort of construction personnel and the public.

In addition to AASHTO T 283 requirements, the asphalt hot mix containing anti-stripping additive shall pass a boiling water test in accordance with ASTM D3625 Standard Practice for the Effect of Water on Bituminous-Coated Aggregate Using Boiling Water within the mix design procedure. The pass criterion for ASTM D 3625 is 95% or greater retained bitumen coating of aggregate.

An additional rate of anti-strip and/or an alternate anti-stripping additive will also be required if the aggregate is known to be prone to stripping from past performance and the minimum application rate was insufficient.

Modified Lottman Tests (AASHTO T 283) and Boiling Water Tests (ASTM D3625) shall also be conducted on field produced samples of hot mix. All field produced samples shall also pass the requirements above.

If liquid anti-stripping additive is required as described above and utilized by the contractor payment is set at twenty five dollars ($25) per tonne of asphalt cement based on the quantity of cement as determined under 330.05.12.03 or 330.06.13.02 Measurement for Payment for Asphalt Cement as applicable. This payment price is compensation in full for all labor, materials and equipment to supply the liquid anti-stripping additive, mix the additive with the asphalt cement and utilize in accordance with the requirements set forth above.

Hydrated lime (Ca(OH)₂) can also be utilized as an anti-strip additive. Where hydrated lime is used as an anti-strip additive the dosage requirement shall be the greater of one half (1/2) percent by mass of total dry aggregate, or the recommended percentage as determined from the Lottman and Boiling Water test results.

Where hydrated lime is utilized the hydrated lime shall be added to all aggregates by either of the following methods:

(a) Hydrated lime slurry shall be homogeneously mixed with the aggregate in a pug-mill or tumble mixer prior to entering the asphalt plant (the hydrated lime slurry shall be produced at the approximate rate of 1 part lime to 3-4 parts water).
(b) Dry hydrated lime shall be homogeneously mixed with wetted aggregate in a pug-mill or tumble mixer prior to entering the asphalt plant. The wetted aggregate shall have a minimum moisture content of 2% by weight for coarse aggregate and 3% by weight for fine aggregate.
Hydrated lime shall be mixed with the aggregate at least 4 hours prior to entering the asphalt plant. Aggregate treated with hydrated lime shall be used within the same construction season. Treatment shall include both coarse and fine aggregate components of the asphalt aggregate.

Where hydrated lime is required, the Contractor shall provide the Department with complete information on how the hydrated lime is to be used in the treatment of aggregates. Hot mix produced containing hydrated lime, shall conform to all requirements of the contract before acceptance.

The requirement for hydrated lime anti-stripping additive will be determined following the mix design. The design amount of hydrated lime will be added as a percentage of the total dry aggregate weight. Measurement for hydrated lime anti-stripping additives shall be determined by the Department on the basis of the computed quantity calculated from the percentage of anti-stripping additive specified in the mix design and the total asphalt cement or dry aggregate used by the Contractor. If hydrated lime anti-stripping additive is required, payment is set at three hundred seventy five dollars ($375) per tonne. This payment price is compensation in full for all labor, materials and equipment to supply the hydrated lime anti-stripping additive, mix the hydrated lime with water (if necessary) and add the hydrated lime in accordance with the requirements set forth above.

If an anti-stripping additive or additional/alternative anti-stripping additives are required, a further 10 working days will be required after the Contractor has advised the Department of its new anti-strip proposal and all materials have been received by the Material Engineering Division. The Contractor and his supplier shall provide sample materials, any technical information and Manufacturer’s recommended application rates.

330.02.01.06 Recycled Asphalt Pavement (RAP)

If the Contractor wishes, the Contractor will be permitted to use Recycled Asphalt Pavement (RAP) in levelling or base course asphalt. The amount of RAP in the pavement mixture will be limited to 20% and subject to the following conditions:

Preparation and submission of a Marshall Asphalt Design Mix Formula (including all supporting documentation) for the asphalt mixture containing RAP, for the Department’s approval, is the responsibility of the Contractor. The Contractor shall use professional engineering services and a qualified testing laboratory, to assess the aggregate materials, asphalt binders, blending sands, mineral fillers, anti-stripping agents and asphalt cement rejuvenation agents proposed for use and to carry out the design of the asphalt concrete mix. No compensation will be provided to the Contractor, for the production of the asphalt design mix formula for the asphalt mixture containing RAP.

The asphalt mixture containing RAP shall be designed in accordance with the Ontario Ministry of Transportation, Design Procedure for Recycled Hot Mix Asphalt, latest edition, except that all test methods referred to shall be replaced with the appropriate ASTM Standards. Copies of this document are available from the Department’s Materials Engineering Division.

RAP percentages may require the use of asphalt cement rejuvenation agents to ensure the overall asphalt cement characteristics meet the specified Performance Grade. Testing to confirm the rheological characteristics of the combined Performance Graded Asphalt Cement and the RAP asphalt cement shall be supplied as part of the Marshall Mix Design. In all cases the Performance Grade of the asphalt cement shall meet the project specifications.

RAP shall be comprised of asphalt millings and be free of uncoated particles. The use of non-milled reclaimed asphalt pavement is subject to the approval of the Department.

The quality of the aggregate in the RAP and the quality of the final pavement mixture shall meet all requirements set forth in this specification.

Where RAP is included in base or levelling course mixes the following process will be followed:
- RAP shall be fractionated into a minimum of three separate sizes.
- The gradation of the individual fractionated RAP shall be:
 - 9.5mm and above
 - 4.75mm to 9.5mm
 - minus 4.75mm
- The asphalt plant must be equipped with a metering system that allows the fractionated RAP to be added in a controlled manner acceptable to the Department.
The Contractor shall provide the Department with a minimum 30 day notice of his intention to use RAP. The Department reserves the right to accept or reject any particular source of RAP, irrespective of its quality.

330.02.02 Composition of Pavement Mixture

330.02.02.01 General Requirements for Pavement Mixture

The mixture shall consist of suitably graded fine and coarse aggregate thoroughly mixed with asphalt cement as specified. Blending sand, filler and chemical additives shall be added when required.

Unless otherwise specified, the aggregates shall be combined in such proportions as to produce a mixture conforming to the grading of Table 3.

TABLE 3
Asphalt Aggregate Mixtures

<table>
<thead>
<tr>
<th>Sieve Size (mm)</th>
<th>Surface Course</th>
<th>Levelling Course Type I**</th>
<th>Base Course & Levelling Course Type II***</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.0</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>19.0</td>
<td>100</td>
<td>100</td>
<td>90-100</td>
</tr>
<tr>
<td>12.5</td>
<td>93-100</td>
<td>75-100</td>
<td>75-90</td>
</tr>
<tr>
<td>9.5</td>
<td>75-92</td>
<td>63-95</td>
<td>63-84</td>
</tr>
<tr>
<td>4.75</td>
<td>55-75</td>
<td>35-78</td>
<td>35-55</td>
</tr>
<tr>
<td>2.00</td>
<td>32-55</td>
<td>20-65</td>
<td>20-42</td>
</tr>
<tr>
<td>0.425</td>
<td>12-25</td>
<td>10-25</td>
<td>10-25</td>
</tr>
<tr>
<td>0.150</td>
<td>5-12</td>
<td>5-12</td>
<td>5-12</td>
</tr>
<tr>
<td>0.075</td>
<td>2-5*</td>
<td>2-5*</td>
<td>2-6*</td>
</tr>
<tr>
<td>Asphalt Cement (%) By Weight of Total Mixture</td>
<td>4.5 – 7.0</td>
<td>4.5 – 7.0</td>
<td>4.5 – 7.0</td>
</tr>
</tbody>
</table>

* The dust/effective asphalt ratio of all mixtures shall be between 0.6 and 1.2. Dust is defined as material passing the 0.075 mm sieve.

** Levelling Course Type I to be used where thickness of compacted lift is to be less than or equal to 30 mm.

*** Levelling Course Type II to be used where thickness of compacted lift is to be greater than 30 mm.

Once a mix design has been designated or approved by the Engineer, the Contractor shall be required to produce a pavement mixture conforming to the following mix control tolerances. The mix must still fall inside the gradation envelopes of Table 3.

Individual Sample Tolerance for Production of Combined HMA

<table>
<thead>
<tr>
<th>Aggregate Passing</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.0 mm sieve</td>
<td>± 5%</td>
</tr>
<tr>
<td>12.5 mm sieve</td>
<td>± 5%</td>
</tr>
<tr>
<td>9.5 mm sieve</td>
<td>± 5%</td>
</tr>
<tr>
<td>4.75 mm sieve</td>
<td>± 5%</td>
</tr>
<tr>
<td>2.00 mm sieve</td>
<td>± 4%</td>
</tr>
<tr>
<td>425 µm sieve</td>
<td>± 3%</td>
</tr>
<tr>
<td>150 µm sieve</td>
<td>± 2%</td>
</tr>
<tr>
<td>75 µm sieve</td>
<td>± 1%</td>
</tr>
</tbody>
</table>

330.02.02.02 Physical Requirements for Mixture

The aggregates and the asphalt cement shall be mixed in such proportions as to satisfy the criteria contained in Table 4. These criteria are based on the Standard Marshall Test Procedures and using a compactive effort of 75 blows on each face of the specimen.

All test procedures used shall be the latest versions of ASTM or AASHTO standards, except where indicated.

TABLE 4

March 2012
FORM 330

Physical Requirements for Asphaltic Concrete Mixture (All Courses)

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARSHALL STABILITY N. AT 60°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I) FOR HIGHWAY CLASSIFICATIONS RLU-60, RLU-70, RLU-80</td>
<td>5 400</td>
<td></td>
</tr>
<tr>
<td>(II) FOR HIGHWAY CLASSIFICATIONS RAU & RAD-100, RAU & RAD-90, RCU-80</td>
<td>8 000</td>
<td></td>
</tr>
<tr>
<td>MARSHALL FLOW INDEX MM</td>
<td>2.5</td>
<td>4.25</td>
</tr>
<tr>
<td>% AIR VOIDS (A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I) FOR HIGHWAY CLASSIFICATIONS RLU-60, RLU-70, RLU-80</td>
<td>2.5</td>
<td>4.5</td>
</tr>
<tr>
<td>(II) FOR HIGHWAY CLASSIFICATIONS RAU & RAD-100, RAU & RAD-90, RCU-80</td>
<td>3.0</td>
<td>5.0</td>
</tr>
<tr>
<td>% VOIDS IN COMPACTED MINERAL AGGREGATES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I) LEVELING & BASE COURSE</td>
<td>14.0</td>
<td></td>
</tr>
<tr>
<td>(II) SURFACE COURSE</td>
<td>15.0</td>
<td></td>
</tr>
<tr>
<td>MODIFIED LOTMAN AASHTO T283 - TENSILE STRENGTH RATIO</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>MOISTURE CONTENT OF HOT MIX ASPHALT BY OVEN METHOD, AASHTO T329 AS PERCENT OF HMA</td>
<td>---</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Notes: (A) The test method, ASTM D2041 "Theoretical Maximum Specific Gravity and Density of Bituminous Paving Mixture", shall be modified as follows: The residual pressure in the vacuum cell shall be 30 mm ±1 mm.

330.03 USE OF PITS, QUARRIES AND STOCKPILES

The use of pits and quarries for the production of the aggregates, together with the requirements for the stockpiling of the aggregates shall be in compliance with the provisions of Section 310 "Use of Pits, Quarries and Stockpiles for Production of Materials Supplied by Contractor".

330.04 ENVIRONMENTAL PROVISIONS

Pits and quarries shall be stripped, worked and at the completion of the work restored, all in compliance with the provisions of Section 310 "Use of Pits, Quarries and Stockpiles for Production of Materials Supplied by the Contractor".

Off-specification asphalt shall be disposed of in accordance with Division 8.

330.04.01 Environmental Requirements for Asphalt Mixing Plants

Any asphalt plant being operated within a radius of 1.5 km of a regularly used building, either residential or commercial, or an organized recreational area, must control their dust emissions such that compliance is obtained with the air standards enforced by the Department of Environment and Conservation. In order to comply, the efficient operations of either a bag house dust collector or a water scrubber on the dryer emissions would be necessary.

These controls may be waived in an area where there are three or less regularly used buildings if the Contractor makes satisfactory arrangements with the owners and occupiers of all buildings. Under such circumstances, a written agreement between the Contractor and owner/occupier, signed by both parties, must be submitted to both the Department of Transportation and Works and the Department of Environment and Conservation.

Contractors are referred to the "Environmental Code of Practice for Asphalt Plant Operations" prepared by the Department of Environment and Conservation (Latest Edition). Hydrocarbon storage shall be in accordance with Section 820. The Contractor shall follow the procedure for spill reporting.

All sections of the asphalt plant which could contribute to air or water pollution must be maintained in efficient operating condition.

Where a water scrubber is used, the scrubber effluent must be given retention time in suitably sized artificial settling ponds. Such ponds must be sufficiently impermeable to enable seepage water to meet the Environment Control (water and sewage) Regulations, 2003.

All storage tanks for fuel must be drained within one week after production has been completed. Fuel oil must not remain in tanks over the winter.

March 2012
330.04.02 Environmental Approval

Contractors wishing to set up an asphalt mixing plant at a site must first obtain environmental approval before proceeding.

Contractors must apply in writing to the Department of Government Services and Lands for a Ministerial Approval as required under the Department of Environment Act, 2002. The following information must be supplied with the application:

1. LOCATION OF THE PROPOSED SITE AND DESCRIPTION OF ITS SURROUNDINGS WITHIN A RADIUS OF 1.5 KM.
2. SOIL TYPE AND PARTICULARS OF PROTECTIVE DYKING NEAR STORAGE TANKS.
3. SIEVE ANALYSIS OF COLD FEED AGGREGATE OR AT LEAST THE PERCENTAGE OF MINUS 75 µM SIEVE.
4. DESCRIPTION OF THE PLANT AND ASSOCIATED EQUIPMENT TO REDUCE AIR CONTAMINANTS (PLANS IF AVAILABLE).
5. CAPACITY OF PLANT IN TONES PER HOUR.
6. SOURCE OF HEAT (AND SULPHUR CONTENT IF IT IS OIL).
7. RATE OF AIR FLOW THROUGH THE DRYER AT OPERATING CONDITIONS AND DIAMETER OF THE DRYER.
8. RELEVANT OPERATION DETAILS OF AIR POLLUTION CONTROL EQUIPMENT (IE. PRESSURE DROP ACROSS CYCLONES OR SCRUBBERS).
9. AIR TO CLOTH RATIO IF BAGHOUSE FILTER IS USED.
10. HEIGHT OF EXHAUST STACKS.
11. TEMPERATURE AND VELOCITY OF EXHAUST GASES FROM DRYER AND/OR STACK.
12. EXPECTED DATES OF OPERATION OF THE PLANT: PROPOSED STARTING DATE, HOURS IN OPERATION PER DAY, PROPOSED COMPLETION DATE, TOTAL DAYS IN OPERATION.

For inspection purposes, the Contractor is to notify the Department of Environment and Conservation at least five days prior to site closure.

Should the Contractor wish to leave his equipment at the site beyond the completion of his work for this Department, or beyond his proposed completion date as stated in his application, then the Contractor shall state in writing his commitment to undertake the cleanup and restoration requirements of this section and those of Section 310 "Use of Pits, Quarries and Stockpiles for Production of Materials Supplied by Contractor", and also state his updated proposed completion date. Copies of this letter shall be sent to both the Department of Transportation and Works and the Department of Environment and Conservation.

330.05 METHOD SPECIFICATION FOR ASPHALT CONCRETE MIX - HOT PLACED

330.05.01 GENERAL

This item consists of supplying crushed aggregates, sand and mineral filler, anti-stripping additive, asphalt binder, with the production, loading, hauling, placing and compaction of hot mix asphalt concrete. The limits of placement, application rates and the asphalt concrete mixture type shall be as stated in the contract specifications. Production and Placement of hot mix asphalt will be subjected to various quality tests.

All aspects of the production and placement of the Hot Mix Asphalt will be supervised by the Department. All appropriate inspection and testing will be determined by the Department.

The mixing period and temperature shall be such as to produce a uniform mixture in which all the particles are thoroughly coated, and the moisture content of the material as it leaves the mixer must be reduced to 0.3% or less. Facilities for sampling and observing the mix shall be provided.

The temperature of the mix immediately after mixing shall not exceed 165°C.

Quality control tests shall be performed, by the Department, on random samples taken either at the production site or lay-down site.

Asphalt concrete is defined as a carefully controlled mixture of asphalt cement and mineral aggregate thoroughly mixed to be free from segregation and contamination and then placed and compacted to a uniform density and smooth finish.
The following sections describe the requirements applicable to quality control and quality assurance, manufacturing, transportation, placing, compaction, finishing and measurement and payment of asphalt concrete. The requirements of specific materials for the asphalt concrete are described in Section 330.02.

330.05.02 TESTING AND INSPECTION

The Contractor shall provide a field laboratory in accordance with the provisions of Section 111 "Field Laboratory". The field laboratory shall be provided at the site of the asphalt mixing plant.

The requirements for pit and quarry sampling and processed material sampling and approval as set forth in Section 310 "Use of Pits, Quarries and Stockpiles for Production of Materials Supplied by Contractor", shall apply to this section. The Contractor shall send to the Department's Laboratory in St. John's, samples of the proposed paving aggregate for testing as to quality, mix design, and approval by the Engineer. No samples will be accepted for mix design until 100% of the total aggregate required (including filler and blending sand) has been crushed, tested and properly stockpiled.

The Contractor shall be notified of the designated composition of the mixture not later than ten (10) working days after the day on which all necessary samples have been received at the Department's Laboratory and shall not commence mix production before such notification.

330.05.02.01 Designation of Mixture

The Engineer shall specify or approve a job mixture within the required limits of grading and conforming to the Marshall Test requirements given in Table 4 of Section 330.02.02 for each mix selected. The Engineer may select one or more mix proportions to suit job conditions. The actual grading of the job mix, when plotted, shall so range from course through fine sizes that it will approximate the shape of the plotted average grading for corresponding mix given in Table 3 Section 330.02.02. For that portion of the aggregate passing the 4.75 mm sieve, gradients which range from the maximum of one sieve to the minimum of the next larger sieve, shall not be permitted.

330.05.02.02 Unauthorized Tampering with Plant Settings and Materials

Any person employed by the Contractor, who, in the opinion of the Engineer, alters or causes to be altered, any settings or screens of an asphalt plant after it has been calibrated, or who adds or causes to be added, any unapproved material to a stockpile or aggregate, or in any way hampers the production of the mix as designed, shall at the written request of the Engineer, be forthwith removed from the project and such persons shall not again be employed in the work.

330.05.03 EQUIPMENT

All manufacturing of asphalt concrete shall be conducted using batch, drum or continuous mixing plants. All plants shall conform to the requirements of ASTM D995 Standard Specification for Mixing Plants for Hot-Mixed, Hot Laid Bituminous Paving Mixtures and as specified herein.

330.05.03.01 Mixing Plants

330.05.03.01.01 General Requirements and Equipment for Storage of Asphalt Cement

Tanks for storage of asphalt cement shall be capable of heating and maintaining the temperature of the asphalt cement at a constant temperature range between 120°C and 160°C. The actual working temperature shall not vary by more than ± 5°C when the amount of asphalt cement added to the mixture is measured volumetrically. Heating shall be by steam or oil coils, electricity, or other means such that no flame shall contact the heating tank.

A circulating system for the asphalt cement shall be of adequate capacity to thoroughly mix the asphalt cement and provide continuous circulation between the storage tank and proportioning units during the entire operation period. All pipe lines and fittings shall be steam or oil jacketed and properly insulated to prevent heat loss.

Storage tank capacity shall be such as to ensure continuous operation of the plant and uniform temperature of the asphalt cement when it is introduced into the mixing unit. Tanks shall be accessible for measuring the volume of asphalt cement at any time.

March 2012
FORM 330

A sampling outlet shall be provided in the asphalt cement feed lines connecting the plant storage tanks to the weighing system or spray bar. The outlet shall consist of a valve installed in such a manner that samples may be withdrawn from the line slowly at any time during plant operation. The sampling outlet shall be installed between the pump and the return line discharge in a location that is readily accessible and free from obstruction. A drainage receptacle shall be provided for flushing the outlet prior to sampling.

330.05.03.01.02 Cold Bins

All plant types shall be equipped with operational cold bins capable of being calibrated. Cold bins shall be divided into not less than three compartments, each to be equipped with individual gate controls, so as to enable accurate and positive proportioning of each aggregate size. Partitions of sufficient height to eliminate intermingling of the aggregate shall be provided between adjoining bins, if the bins are being fed with a front-end loader the width of each bin must be at least 500 mm wider than the width of the loader bucket.

330.05.03.01.03 Dryer

A rotary dryer, of satisfactory design, for drying and heating the aggregate shall be provided. Dryer units shall be of sufficient capacity to uniformly heat the aggregate and reduce the moisture content to the specified level. Upon request the asphalt contractor shall make available to the Engineer the following information.

a) The specified rate of production in tonnes per hour versus aggregate moisture content.
b) Within drum plants the specified location and length of the of the asphalt cement delivery pipe.

330.05.03.01.04 Screens

Plant screens on batch and continuous mix plants shall have adequate capacity and size range to properly separate all of the aggregate into the sizes required for proportioning so that they may be recombined consistently within the specification limits.

All screens shall have square openings and be free any rips or holes. Screen decks shall be stacked in such a manner that cross contamination of aggregates is prevented.

330.05.03.01.05 Hot Aggregate Storage Bins

Batch and continuous mix plants shall have hot bin storage of sufficient capacity to ensure uniform and continuous operation. Bins shall be divided into compartments arranged to ensure separate and adequate storage of appropriate fractions of the aggregate. Each compartment shall be provided with an overflow pipe of such size and at such a location to prevent any backing up of material into other bins or into contact with the screen. Adequate and convenient facilities shall be provided for obtaining aggregate samples from each hot bin.

330.05.03.01.06 Asphalt Cement Control Unit

Satisfactory means, either by weight, metering or volumetric measurements, shall be provided to obtain the proper amount of asphalt cement. All measuring devices shall prove accurate to within ± 2.0% when tested for accuracy.

330.05.03.01.07 Thermometric Equipment

An armoured thermometer of suitable range shall be fixed in the asphalt cement feed line at a convenient location near the discharge of the mixer unit. The plant shall be further equipped with approved recording thermometers, pyrometers, or other approved recording thermometric instruments at the discharge chute of the dryer and in the hot fines bin to register and record automatically the temperature of the heated aggregate.

330.05.03.01.08 Dust Collectors

March 2012

330-16
Dust collectors shall be provided where required under the provisions of Section 330.04.01 "Environmental Requirements for Asphalt Mixing Plants". Provision shall be made to waste the material so collected, or to return all or any part uniformly to the aggregate mixture.

330.05.03.01.09 Safety Requirements

Adequate and safe stairways to the mixer platform shall be provided, and guarded ladders to other plant units shall be located where requested.

All gears, pulleys, chains, sprockets, and other dangerous moving parts shall be thoroughly protected. Ample unobstructed passage shall be maintained at all times in and around the truck-loading space. This space shall be kept free of drippings from the mixing platform. A ladder or platform shall be located at the truck-loading space to permit easy and safe inspection of the mixture as it is delivered into the trucks.

A suitable sampling platform with stairs or ramp access including railing shall be provided for sampling material in the truck bed. The height of the platform shall be adequate to prevent the inspector from having to climb up on to the truck in order to obtain a sample. The platform shall be constructed such that the truck is able to park on either side. If it is not possible for the platform to be constructed in such a manner, then two separate platforms shall be provided or the truck will be required to reverse direction so that a sample may be obtained. Overhead protection shall be provided where necessary.

330.05.03.01.10 Capacity

Unless indicated otherwise asphalt mixing plants must have a minimum rated capacity of 120 tonnes per hour delivered to the spreader, with a production history to support this requirement.

330.05.03.02 Special Requirements for Batching Plants

330.05.03.02.01 Weigh Box or Hopper

The equipment shall include a means for weighing each bin size of aggregate into a weigh box or hopper, suspended on scales, and ample in size to hold a full batch without running over. The weigh box or hopper shall be supported on fulcrums and knife edges that will not easily be thrown out of alignment or adjustment. Gates both on the bins and the hopper shall be constructed to prevent leakage when closed.

330.05.03.02.02 Plant Scales

Scales shall be of the dial or digital type and of a standard make and design. Scales for weighing aggregates shall be accurate and sensitive to 0.5% of the maximum loading required. All scales shall provide a positive means of balancing the tare weight of the hopper or asphalt bucket. After each plant set-up and prior to batching any materials, and whenever deemed necessary by the Engineer, the Contractor shall, at his own expense, have the plant scales tested to the satisfaction of the Engineer.

330.05.03.02.03 Mixer Unit

The plant shall include a batch mixer of an approved twin shaft pug mill type capable of producing a uniform mixture within the permissible job mix tolerances. The clearance between the mixer blades and liner plates shall not exceed 20 mm. The mixer shall be constructed to prevent leakage of the contents. Mixer discharge shall not cause appreciable segregation. The mixer shall be fitted with separate dry and wet mixing cycle timers and locking devices so that asphalt cement cannot be discharged and the pug mill gate cannot be opened until the desired mixing times have elapsed.

330.05.03.03 Special Requirements for Continuous Mixer Plants

330.05.03.03.01 Gradation Control Unit

The plant shall include means for accurately proportioning by volumetric measurement the aggregate discharged from each hot bin. The unit shall include a feeder, mounted under the compartment bins. Each bin shall have an accurately controlled individual gate to form an orifice for volumetrically measuring the material drawn from each respective bin compartment. The orifice shall be rectangular with dimension adjustable by positive mechanical means. Indicators shall be provided on each gate to show the gate opening in millimetres. Each gate will be provided with a lock.

March 2012
330.05.03.03.02 Weight Calibration of Material Feed

The plant shall include a means for calibration of gate openings by weighted test samples. The equipment shall include a method of obtaining hot aggregates from the bins fully representative of the flow from the specific gate openings. It shall also include platform scales capable of accurately weighing test samples of aggregates and asphalt cement. All calibration equipment, including revolution counters, shall be kept in good operating order at all times and shall be available whenever required.

330.05.03.03 Synchronization of Aggregate and Asphalt Feed

In order to ensure the correct flow of aggregate from the bins and the flow of asphalt from the meter or other proportioning sources, satisfactory means shall be provided to afford positive interlocking control between the flow of aggregate from the bins and the flow of asphalt from the meter or other proportioning sources. In order to ensure the correct flow of asphalt cement to the mixer at all times, the plant shall be equipped with means of maintaining a constant head of asphalt cement to the metering device. A satisfactory pressure gauge shall be installed on the asphalt line between the metering device and the spray bar.

330.05.03.04 Mixer Unit

The plant shall include a continuous mixer of an approved twin shaft pug mill type that shall be capable of producing a uniform mixture within the specified tolerances. The clearance of the blades from the inner surfaces of the pug mill liners shall not exceed 20 mm. The paddles shall be of a type adjustable for angular position on the shafts and reversible to retard the flow of the mixture. The mixer shall be equipped with an adjustable dam gate at the discharge end to control the level of the material. The mixer shall carry a manufacturer’s plate giving the net volumetric contents of the mixer at several heights.

Unless otherwise required, determination of mixing time shall be by weight method under the following formula. The weights shall be determined for the job by tests made by the Engineer.

\[
\text{Mixing time in seconds} = \frac{\text{Pug mill capacity in kg}}{\text{Pug mill output in kg/s}}
\]

330.05.03.05 Discharge Hopper

All continuous mix plants shall be equipped with a controlled discharge storage hopper. The minimum capacity of the hopper in tonnes shall be equal to 1.5% of the hourly production rate of the plant but shall not be less than one tonne. This hopper shall be kept in satisfactory operating condition at all times and operated to prevent segregation of the mixture.

330.05.03.06 Material Level Indicators

Material level indicators shall be installed in each hot aggregate bin at the one-third full level and at the two-thirds full level and they shall be connected to remote high-low indicator lights mounted at the operator’s station. Operation of the mixer shall not be permitted when the low-level indicator shows any bin to be less than one-third full.

330.05.04 Special Requirements for Drum Mixer Plants

330.05.04.01 Aggregate Feed

Aggregates shall be fed to the dryer drum by means of a multi bin (minimum 3 or 4 bins) cold feed unit and shall be blended to meet the design mix proportions by adjustment of variable speed feed belts and gates on each bin. There shall be no overflow from one bin to another.

A reliable moisture probe shall be installed in the fine aggregate cold feed bin with a meter mounted in the plant control panel.

March 2012
The total flow of aggregate shall be metered by an electronic weigh belt system with an indicator that can be monitored by the plant operator and which is interlocked with a variable speed asphalt pump so that the proportions of aggregate and asphalt entering the mixer remain constant.

Cold feed calibration and asphalt cement pump calibration shall be performed at the start of each contract and whenever deemed necessary by the Engineer. The calibration shall be done in the presence of the plant inspector. The cold feed shall be recalibrated whenever the weighing conveyor is moved.

A positive interlocked automatic shut off shall be provided so that the plant shuts down automatically if there is any disruption in the flow of aggregate or asphalt cement.

A vibrating screen of adequate capacity shall be provided to remove oversize from the combined cold feed. An aggregate sampling device shall be provided which will divert a representative combined aggregate sample of adequate size into a container or hopper for the purposes of gradation testing. The sampling device shall be located after the cold feed aggregates have passed through the vibrating screen and prior to mixing with asphalt cement.

330.05.03.04.02 Asphalt Cement Feed

The asphalt cement feed system shall be equipped with a calibration system which will enable approximately 200 litres of asphalt cement to be by-passed into a container which can be weighed. Adequate scales shall be provided by the Contractor.

A temperature gauge, showing the temperature of the asphalt cement at the metering pump, shall be provided in the control trailer. The gauge shall be graduated to cover at least the range 100°C to 200°C with increments of not more than 2.5°C.

A temperature compensating system shall be installed in the asphalt cement metering system designed to provide a volume of asphalt cement which will be constant when referenced to 15°C of regardless of variations in the temperature of the asphalt cement from the storage tank.

330.05.03.04.03 Asphalt Cement Mixing

The heating, coating and mixing of the asphalt mix shall be accomplished in an approved parallel flow dryer-mixer. The aggregate and asphalt shall enter the drum at the burner end and travel parallel to the flame and exhaust gas stream. Heating shall be controlled to prevent fracture of the aggregate or excessive oxidization of the asphalt. The system shall be equipped with automatic burner controls and shall provide for continuous temperature sensing of the bituminous mixture of discharge, with a printing recorder that can be monitored by the plant operator. The printed record of mix temperatures shall be available to the Department for inspection.

The method used to transfer the mixture from the drum mixer to the haulage units shall be designed, constructed and operated so that there shall be no segregation of, or damage to, the mix.

A system for wasting unacceptable asphalt aggregate mixture shall be provided between the drum mixer discharge and holding bin.

The plant shall not be operated below 50% of the rated capacity of the belt scale.

330.05.04 Truck Weigh Scales

The scales shall be in accordance with Section 501 "Weighing Materials in Trucks".

330.05.05 Haulage Equipment

Trucks for hauling asphaltic mix shall be of the metal box type and their use shall be approved by the Engineer. The metal box shall be treated with an approved release agent and be in smooth condition with no rust scales or foreign materials. Where ever possible trucks shall be loaded such that the front and back of the truck body are loaded prior to placement of asphalt in the middle section.

Vehicles shall be equipped with tarpaulins of water repellent material (no open mesh types) of sufficient size to completely cover the truck box and overhang the box on all sides by a minimum of 150 mm. The tarpaulins shall have...
enough tie-down points so that they can be properly secured, and shall be in good condition and be free of holes and tears. They shall be securely tied down as an effective barrier against rain infiltration and air flow over the HMA mixture.

Tarpaulins are to be used at all times for protection of the load of Hot Mix Asphalt. Tarpaulins shall be rolled back to uncover the hot mix for inspection immediately prior to dumping the load into the paver. Trucks will stop ahead of the paver and allow the paver to smoothly pick up the truck.

330.05.06 Spreading Equipment

Mechanical self-powered pavers shall be used which are capable of spreading the mixture true to line, grade and crown as specified and as directed by the Engineer.

Pavers shall be equipped with hoppers and reversing distributing screws to place the mixture evenly in front of the screed. The distributor screws shall always be kept 1/3 to 2/3 covered.

Asphalt concrete shall be dumped into the middle of the paver hopper. The hopper shall not be emptied to less than 25% of its capacity when moving except when the spreading operation is suspended. All cold or segregated asphalt must be shovelled out and wasted. In no case shall cold asphalt be allowed in the pavement mix.

Pavers shall be equipped with heated vibrating screeds and shall be capable of spreading the mixture, without segregation, in thickness of from 10 mm to 200 mm and in widths of from 2500 mm to the greater of the maximum width of the project travel lane and paved shoulder combined or 4000 mm, in increments of 150 mm.

The Contractor shall provide on each paver a 3 m straight edge with a level recessed in its upper surface parallel to the lower face and capable of detecting a variation from the horizontal of 3 mm in 1000 mm.

The term "screed" shall mean any strike-off device operated by cutting, crowding, or other practical action which is effective on the mixture and which produces a finished surface of the evenness and texture required. The screed shall have an approved vibratory application and be adjustable as to level and crown and shall be heated in an approved manner.

Pavers shall be equipped with automatic screed controls, as recommended by the paver manufacturer, for the control of longitudinal grade and transverse slope. The longitudinal grade control shall be equipped to operate from a joint matching shoe except when a spreader with ski is required by the specifications. Longitudinal joints shall be matched by the spreader with ski where ever a spreader with ski is required or specified. The transverse slope control shall be capable of operating from either side of the paver.

A paver with a ski shall be required for paving base course and surface course on the Trans Canada Highway. On other projects, a paver with a ski will also be required where the contract item description includes the phrase "Spreader with Ski".

The paver with a ski shall be equipped with an approved 12 m ski. Where such a ski is a flexible unit, it shall be equipped with a spring tensioned wire extending between brackets fitted on and slightly above each end of the ski. The sensing grid shall ride on the wire, not on the ski.

330.05.07 Rollers

All rollers shall be of the types specifically designed for asphalt compaction.

All rollers shall be in good condition and capable of reversing without backlash. They should be operated at all times by competent and experienced operators.

All rollers shall be weighed in the presence of the Engineer and ballasted, if required, immediately before commencing work and whenever subsequently required by the Engineer. There shall be no additional cost to the Department for meeting these requirements.

Steel drum rollers shall be equipped with satisfactory means to supply sufficient water to the drum to prevent adhesion of asphalt mixture. The rear wheels of combination rollers shall each be not less than 450 mm in width, drums of tandem rollers shall each be not less than 1250 mm in width. Steel drum rollers shall weigh at least 12 tonnes and
shall exert a load on the compression roll of at least 6 tonnes per metre of wheel width. All pneumatic tired rollers shall be self-propelled and shall have not less than nine wheels revolving on two axles. The tires on the front and rear axles shall be staggered to cover the entire area over which the roller travels with a minimum overlap of 15 mm. Under working conditions, the roller shall exert a load of not less than 5 tonnes per metre of tire width on the asphalt surface. The tires shall be inflated to an air pressure of not less than 400 kPa. The roller shall be equipped with an adequate scraping or cleaning device on each tire to prevent the bituminous mixture from accumulating on the tires. The roller shall be equipped with a water system which will keep all tires uniformly wet, and which will have a capacity that will provide not less than two hours continuous operations without refilling.

330.05.08 Material Transfer Device/Vehicle

For all highway classifications, a Material Transfer Device/Vehicle shall be used at no extra cost to transfer the project’s top lift of asphalt mixture (base, leveling or surface material) from the transport vehicles to the asphalt spreader. The purpose of the Materials Transfer Device is to minimize segregation during placement of the asphalt pavement and to increase the smoothness of the pavement surface by reducing the number of stops and starts during the placement of the asphalt pavement. The Material Transfer Device shall be utilized in conjunction with a hopper insert in the asphalt spreader. The hopper insert on the asphalt paver shall be kept full at all times. Cycling the hopper wings of the asphalt paver shall be kept to a minimum.

When required to pave on granulars, a self-propelled transfer vehicle is required.

Prior to being utilized the Material Transfer Device/Vehicle shall be approved for use by the Engineer.

330.05.09 CONSTRUCTION

330.05.09.01 Preparation of Gravel Road Surface

Where paving is to take place directly on top of a gravel surface, then the Contractor shall prepare the road to the satisfaction of the Engineer before paving. Not less than 300 m of prepared grade shall be maintained in front of the paver at all times, except at the end of the paving operation for that day.

Where the top layer of Granular “A” is placed under the same contract as the paving, then the preparation of the Granular “A” prior to paving shall be carried out in accordance with Section 315 “Selected Granular Base Course”. However, where the paving is to take place directly on top of materials that were not placed in the paving contract, then such preparation prior to paving as the Engineer may require shall be carried out in accordance with Section 301 "Scarifying and Reshaping”.

330.05.09.02 Preparation of Old Paved Surface

When required by the Engineer, old paved surfaces shall be cleaned and treated with tack coat prior to repaving with asphaltic concrete. Such treatment with tack coat as may be required shall be carried out in accordance with Section 320 "Tack Coat”.

330.05.09.03 Placing of Asphaltic Courses

The base on which paving is to take place shall be cleaned of all loose or foreign material before paving may take place. The asphaltic mixture shall be laid only upon a base which is dry or at least free from standing water, and when weather conditions are suitable. No paving shall take place during rain.

No course shall be placed upon a previously laid course less than 12 hours after final compaction of the latter, except with the permission of the Engineer in circumstances where in his opinion this requirement would be impractical.

No hot mix shall be placed unless the air temperature at the surface of the road is 7°C or above without the written permission of the Engineer. The temperature of the mixture immediately after spreading and prior to initial rolling shall not be less than 125°C.

The longitudinal joints in the surface course shall correspond to the demarcation between driving lanes, speed change lanes, tapers, etc. indicated in the contract or as directed by the Engineer. The width of succeeding courses shall be adjusted by an offset of width of from 150 mm to 300 mm so that longitudinal joints do not coincide.
Immediately after any pavement course is laid and before roller compaction is started the surface and edges shall be checked and any irregularities adjusted by the addition or removal of mixture.

Pavers must be equipped with heated vibratory screeds. There should be no allowance for pavers with non-vibratory screeds. All mechanical apparatus designed to aid compaction of the mixture shall have such devices operating continuously when the mixture is being placed unless otherwise directed by the Engineer. Where screed extensions are used, such extensions shall be designed so that the tamping or vibratory action of the screed is effectively transferred to the extensions in such manner as to provide a uniform degree of initial compaction across the full width of the freshly laid mat.

To ensure continuous operation of the pavers, they shall operate at whatever speed necessary to match the output of the plant provided that a consistent and satisfactory mat is being laid. However, in no case shall the speed of the paver exceed 0.7 km/h.

When two or more pavers are in echelon in order to match longitudinal joints, pavers following the lead paver shall use joint matching shoes, or an approved 12 m ski as per the contract requirements, designed for the purpose, which shall ride on the previously placed undisturbed mat. Pavers are considered to be paving in echelon when the lead paver is not more than 60 m in advance of an adjacent succeeding paver.

Mixtures may be spread by hand only in places inaccessible to the paver. Hand spreading shall be by means of hot shovels. Hand spreading shall be with rakes of suitable design. The mixture shall be spread to the depth required to give the compacted design thickness after rolling. No loads of mixture shall leave the plant so late in the day as to preclude the spreading and compacting of the mixture during daylight.

Paving of intersections, ramps and driveway tie-ins are integral with the work. No separate payment or compensation will be provided for this work.

330.05.09.04 End of Paving Season for Asphaltic Surface Course

The season for laying asphaltic surface course shall end on the 30th of September each year, unless extended by the Engineer.

No paving of asphaltic surface course shall take place beyond the designated end of the asphaltic surface course paving season. No pavement shall be removed from a roadway that cannot meet the requirement of replacing the asphalt before the end of the paving season.

330.05.09.05 Joints

All joints shall be made in such a manner as to ensure a thorough and continuous bond and to provide a smooth riding surface.

All foreign material and all loose material shall be removed from all faces against which joints are to be made. All cold faces against which joints are to be made shall be cut back to full depth to expose a fresh vertical face and painted with emulsified asphalt (tack coat).

Longitudinal joints shall be rolled immediately upon placement of the fresh mixture and before the adjacent strip has completely cooled. The joint shall be set up with the back of a rake or lute at proper height and grade to receive the required compression under rolling. The depth of the newly laid mat shall be adjusted to allow for compaction. The paver shall overlap the existing mat by approximately 25 to 40 mm.

Prior to placing the adjacent mat, the exposed edge of each longitudinal joint must be coated with emulsified asphalt (tack coat). Upon completion of each day’s paving, the maximum length of exposed joint edge shall be 60 meters.

Asphalt mat edges having companion longitudinal joints shall be matched within the maximum allotted time period as determined by the engineer. The maximum allotted time period shall be restricted to a lower limit of one hour with an upper limit of two hours. The allotted time limit will be proportioned on the paving lay-down conditions; with the lower time limit applied to least favorable placement conditions and the upper time limit applied to favorable placement conditions. Lay-down conditions considered by the engineer in establishing the time limit will include ground surface temperature, hot mix lay-down temperature, placement capacity, ultraviolet intensity, wind speed and air temperature. Longitudinal joints shall be matched by the end of each day’s operations. Unmatched asphalt longitudinal joints left

March 2012
FORM 330

exposed at the end of the day, or exposed to moisture, also shall be painted with a continuous thin coating of hot asphalt cement to the full face.

All joints shall be constructed such that any excess material is not scattered on the surface of the freshly laid mat. Such excess material shall be carefully removed and disposed of as directed.

Transverse joints shall be checked with a straight edge immediately after initial rolling. Any irregularity in the pavement surface at the joint shall immediately be corrected by the addition of or removal of mixture. When possible, the transverse joints shall be initially rolled in a direction perpendicular to the direction of paving.

330.05.09.05.01 Keyed Joints

When overlaying existing asphalt concrete pavement, keyed joints shall be constructed at both ends of the project, at all intersecting roads, ramps and at all bridge decks in the repaving area. The taper length for such keyed joints shall be a minimum of 15m. Keyed joints will only be required between the final lift of pavement and the existing pavement, unless otherwise directed by the Engineer.

When existing pavement has been removed in advance of paving the joint area, the Contractor shall construct a temporary (hot mix asphalt concrete ramp) taper at the joint area to a slope of at least 50 horizontal to 1 vertical (50H:1V). Temporary tapers (ramps) shall be installed immediately following milling of the keyed joint and prior to opening the area to traffic.

330.05.09.06 General Requirements for Compaction

The pavement mixture shall be compacted to a density of 93% of the Maximum Theoretical Density of the comparative laboratory Marshall mixture based on the criteria given in Section 330.02.02.02 "Physical Requirements for Mixture". Steel drum rollers shall have vibratory capabilities acceptable to the project engineer. Static rolling will only be allowed on bridge decks or where shallow underground utilities are present. The decision to use static rolling will be the responsibility of the project engineer.

It is an express condition of this specification that all mixtures be compacted to the specified density immediately following placement. If, during the course of the paving operation, measured insitu field densities fall below the specified minimum, the Contractor shall revise his compaction process by (a) increasing the number of passes of the compaction train; (b) adjusting the frequency amplitude or tire pressure of individual rollers; or (c) by adding additional rollers to the compaction train. Steel drum rollers should operate with the drive wheel forward in the direction of paving. In all cases, the production and placing of the pavement mixture shall be controlled so that all rolling shall be completed before the pavement mat temperature falls below 80 degrees Celsius. The compaction process shall be completed before sunset.

330.05.09.06.01 Compacting Asphaltic Base, Levelling and Surface Courses

Unless otherwise approved by the Engineer as per Section 330.05.09.06.02, the Contractor shall supply a minimum of two vibratory rollers and one pneumatic tired roller.

The initial compaction shall be obtained by the vibratory roller followed by the pneumatic tired roller. Rolling shall commence as soon after placing as the mixture will bear the roller without checking or undue displacement. Final rolling will be with a roller operating in static mode. Static rolling will be conducted only to remove any irregularities in the pavement surface.

The initial breakdown rolling by a steel wheel roller shall commence as soon after placing as the mixture will bear the roller without checking or undue displacement. Rolling shall start longitudinally at the lower edge and proceed towards the higher edge of the course, overlapping on successive passes. Alternate passes of the roller shall be staggered.

Intermediate rolling, using a pneumatic tire roller, shall follow the breakdown roller as closely as possible. Passes shall be so arranged as to ensure overlapping successive tire paths. The Contractor shall be responsible for ensuring that the tires are in proper condition at all times to prevent pick up of the mixture.

Finishing rolling, using a steel wheel roller, shall be accomplished with the minimum number of passes required to produce a satisfactory surface. Rolling shall start longitudinally at the higher edge and proceed towards the lower edge.
While rolling longitudinal joints, steel drums or rubber tires shall extend 150 mm over the previously placed mat.

When paving in echelon the contactor shall provide sufficient rollers required to compact the asphalt pavement to the required degree of compaction. As a minimum there shall be four vibratory rollers and one pneumatic roller on site.

330.05.09.06.02 Compacting With Static Wheel Rollers

In areas where a vibratory roller cannot operate (i.e. shallow utilities and bridge decks) compaction shall be obtained using suitable static steel wheel rollers but only under approval from the Engineer.

Where approved by the Engineer (as per above) to compact the mixture using static wheel rollers, a minimum of 2 steel wheel and 1 pneumatic tire rollers will be required to operate with each paver used.

The operating speed of static steel wheel rollers shall not exceed 5 km/h and shall be slow enough to avoid displacement of the mix.

330.05.09.06.03 Asphalt Density Measurement and Unit Price Adjustment

The Contractor shall be responsible for the compaction stage of the work to ensure that the density conforms to requirements.

Compaction testing and unit price adjustments shall be based on daily production. Daily production is defined as the production and placement of 200 tonnes or more of asphalt concrete. If the daily production is less than 200 tonnes, the quantity for that day will be added to the next day or days in accordance with Table 1. If it is the last day of production for the project, the quantity for that day will be added to the previous day’s production. If the total quantity of asphalt mix is less than 200 tonnes for the project, two cores will be used to determine asphalt core density.

Test coring must be completed prior to placement of the next lift of asphalt concrete. If the Contractor believes that certain areas to be tested should be excluded from unit price adjustments, then those areas should be identified and submitted to the Department in writing prior to the pre-paving meeting with the Department.

Pavement samples will be taken on the road by Department personnel at random sample locations. Cores shall be a nominal 100 mm diameter. Sample locations will be determined by the Engineer using random sample procedures, in which the daily production is divided into segments as shown in Table 1. A random sample is taken from each segment.

<table>
<thead>
<tr>
<th>DAILY PRODUCTION OF ASPHALT CONCRETE</th>
<th>NUMBER OF SEGMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 to 500 t</td>
<td>2</td>
</tr>
<tr>
<td>500 to 1000 t</td>
<td>3</td>
</tr>
<tr>
<td>1000 to 1500 t</td>
<td>4</td>
</tr>
<tr>
<td>More than 1500 t</td>
<td>5</td>
</tr>
</tbody>
</table>

Segments shall be of approximately equal length. In each segment, a test site will be located by using random numbers to determine the longitudinal distance from the end of the segment and the lateral distance from the edge of the segment. Cores shall not be taken within 0.15m of the pavement edge or longitudinal joint, nor closer than 6 m from transverse joint.

Areas not to be cored include: small areas such as tapers, bullnoses, aprons, bridge approaches, bridge decks, areas of handwork, and asphalt mix used for isolated levelling.

Cores shall be obtained in accordance with ASTM 5361 after a minimum of 12 hours from mix laydown. Typically cores will be sampled within 24 hours after mix laydown. However, the length of time to core the pavement may be...
extended as approved by the Engineer in order to exclude Saturdays, Sundays and holidays unless the Contractor is placing asphalt concrete on either day or to meet the minimum 200 tonne production requirement described above.

If the Contractor would like to have the cores removed immediately upon completion of his compaction process (and therefore avail of normal paving construction signage), the Contractor may supply dry ice at his expense for this purpose. With the application of approximately 1.5 kg of dry ice, coring can typically be completed within 20 minutes. Traffic control must be in place prior to and throughout the application of the dry ice, as this area must be protected from traffic.

During the coring operation, the Contractor must provide all traffic control in the form of flag persons and signs which conforms to Division 7 Temporary Condition Signs and Devices of the Department and Transportation and Works Specifications Book. Coring will not be permitted until all traffic control devices are erected and flag persons are in position.

Immediately following each coring operation, the Contractor shall reinstate the pavement at the core sample location in conjunction with removal of the core by dewatering the core hole and filling it with hot mixed asphalt concrete in 50 mm lifts to the pavement surface elevation, compacting each lift with 25 blows using a standard Marshall hammer. Each coring operation and the reinstatement of core hole is to be conducted during a single traffic control and flag person set up.

Failure to meet the time requirements for the core hole repair may result in delayed paving of any subsequent asphalt production.

Mat densities will be tested by the Engineer by core analysis throughout the course of the work and shall conform to the density requirements indicated in Table 2. The asphalt cores will be retained and stored safely by the Engineer.

The percent compaction will be determined by comparing the core bulk densities, in accordance with ASTM D2726 with the average theoretical maximum density of the loose mix samples corresponding with the daily production of these cores, in accordance with ASTM D2041.

The Engineer will provide the Contractor with a copy of the results of acceptance tests within one working day of their availability. For asphaltic base and leveling courses unit price adjustments will be applied utilizing Table 2 to each tonne of asphalt mix for the day (or days if daily production is less than 200 tonne) represented by the segments cored and the percent compaction averaged. For asphaltic surface courses unit price adjustments will be applied utilizing Table 2 for each individual core’s percent of maximum theoretical, and the unit price adjustment will be applied to each tonne of asphalt mix for the day divided by the daily segments cored (or days if daily production is less than 200 tonne).

For each asphaltic base, leveling and surface course mixture type for the day, in addition to the requirements noted above, if an individual core’s percent of maximum theoretical falls below 92.5 % or above 97.5 % no bonuses will be paid for the paving day for that mixture. Also, irrespective of the paving day, the average of any four consecutive samples of a mixture type (base, leveling or surface) shall have a reject limit of 91.0 % based on the four individual core’s percent of maximum theoretical. The rejected material represented by the averaged four cores will be the sum of the four units of material represented by each core defined as the tonnes of the asphalt mixture type for the day divided by the daily segments cored (or days if daily production is less than 200 tonne). Units of rejected material will not be rejected twice or more.
Table 2
Unit Price Adjustment for Density

<table>
<thead>
<tr>
<th>% OF MAXIMUM THEORETICAL DENSITY</th>
<th>UNIT PRICE ADJUSTMENT ($ PER TONNE)</th>
<th>% OF MAXIMUM THEORETICAL DENSITY</th>
<th>UNIT PRICE ADJUSTMENT ($ PER TONNE)</th>
<th>% OF MAXIMUM THEORETICAL DENSITY</th>
<th>UNIT PRICE ADJUSTMENT ($ PER TONNE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>98.5</td>
<td>REJECT</td>
<td>93.2</td>
<td>+0.20</td>
<td>91.2</td>
<td>-3.20</td>
</tr>
<tr>
<td>98.5</td>
<td>-5.00</td>
<td>93.1</td>
<td>+0.10</td>
<td>91.1</td>
<td>-3.60</td>
</tr>
<tr>
<td>98.4</td>
<td>-4.00</td>
<td>93.0</td>
<td>0.00</td>
<td>91.0</td>
<td>-4.00</td>
</tr>
<tr>
<td>98.3</td>
<td>-3.00</td>
<td>92.9</td>
<td>-0.10</td>
<td>90.9</td>
<td>-4.40</td>
</tr>
<tr>
<td>98.2</td>
<td>-2.00</td>
<td>92.8</td>
<td>-0.20</td>
<td>90.8</td>
<td>-4.80</td>
</tr>
<tr>
<td>98.1</td>
<td>-1.00</td>
<td>92.7</td>
<td>-0.30</td>
<td>90.7</td>
<td>-5.20</td>
</tr>
<tr>
<td>98.0</td>
<td>-0.50</td>
<td>92.6</td>
<td>-0.40</td>
<td>90.6</td>
<td>-5.60</td>
</tr>
<tr>
<td>97.9</td>
<td>-0.40</td>
<td>92.5</td>
<td>-0.50</td>
<td>90.5</td>
<td>-6.00</td>
</tr>
<tr>
<td>97.8</td>
<td>-0.30</td>
<td>92.4</td>
<td>-0.60</td>
<td>90.4</td>
<td>-7.00</td>
</tr>
<tr>
<td>97.7</td>
<td>-0.20</td>
<td>92.3</td>
<td>-0.70</td>
<td>90.3</td>
<td>-8.00</td>
</tr>
<tr>
<td>97.6</td>
<td>-0.10</td>
<td>92.2</td>
<td>-0.80</td>
<td>90.2</td>
<td>-9.00</td>
</tr>
<tr>
<td>97.5</td>
<td>0.00</td>
<td>92.1</td>
<td>-0.90</td>
<td>90.1</td>
<td>-10.00</td>
</tr>
<tr>
<td>97.4</td>
<td>+0.10</td>
<td>92.0</td>
<td>-1.00</td>
<td>90.0</td>
<td>-11.00</td>
</tr>
<tr>
<td>97.3</td>
<td>+0.20</td>
<td>91.9</td>
<td>-1.20</td>
<td>89.9</td>
<td>-12.00</td>
</tr>
<tr>
<td>97.2</td>
<td>+0.30</td>
<td>91.8</td>
<td>-1.40</td>
<td>89.8</td>
<td>-13.00</td>
</tr>
<tr>
<td>97.1</td>
<td>+0.40</td>
<td>91.7</td>
<td>-1.60</td>
<td>89.7</td>
<td>-14.00</td>
</tr>
<tr>
<td>≤97.0 thru ≤93.5</td>
<td>+0.50</td>
<td>91.6</td>
<td>-1.80</td>
<td>89.6</td>
<td>-15.00</td>
</tr>
<tr>
<td>>93.5</td>
<td>+0.50</td>
<td>91.5</td>
<td>-2.00</td>
<td>89.5</td>
<td>-16.00</td>
</tr>
</tbody>
</table>

330.05.09.07 Requirement for Asphalitic Leveling Course

Asphalitic Leveling Course shall be used to fill surface depressions on old pavement, to restore the surface to the original profile and cross section. Patching and leveling shall not be carried out simultaneously at the same place. The patch shall be placed and fully compacted before leveling operations may proceed over the patch.

330.05.09.08 Requirements for Completed Asphalitic Base and Surface Courses

Each course, after final compaction shall be smooth, true to the established crown and grade, shall have the average thickness specified, and shall at no point vary more than 6 mm from the specified thickness. The surfaces of each base course, and any surface not subjected to smoothness testing under Section 330.07.10, shall be free from deviations exceeding 3 mm as measured with a 3 m straight edge paralleling the centerline of the roadway.

Any low or defective locations shall immediately be remedied by removal of the defective area by cutting and replacing it with fresh hot asphalt. The area should be tacked and allowed to cure prior to the placement of any new asphalt. The new asphalt shall immediately be compacted to conform to the surrounding area and be thoroughly bonded to it.

330.05.09.09 Segregation and Other Surface Defects

The finished surface of any Pavement Course shall have a uniform texture and be free of visible signs of poor workmanship.

Any obvious defects, as determined by the Engineer, will be cause for rejection of the pavement course. Such defects shall include but not necessarily be limited to the following:
Segregation is defined here as areas with predominantly coarser texture than that of the surrounding pavement, and will normally be first identified visually.

Slight Segregation:
Area where the matrix is in place between the stones but there is slightly more stone in comparison with the surrounding acceptable mix. Slight segregation will normally be left in place without price adjustment. The severity of segregation can be determined through a number of test methods, as specified by the Engineer.

Medium Segregation:
Area has significantly more stone than the surrounding acceptable mat and usually exhibits some lack of surface matrix. Medium segregation in surface-courses will be subject to a penalty of $25/m² for the area in question, but for base-courses will normally be left in place with no price reduction. However, any areas of medium segregation that deteriorate prior to being overlaid by another pavement course must be repaired at the Contractor’s cost.

Severe segregation:
Area appears very stony, with stone against stone and little or no matrix. All areas of severe segregation in any pavement course will require removal and repair across the full lane width.

Defects as determined by the Engineer, which occur in the finished surface of any pavement course during the two year warranty period resulting from poor workmanship, shall be repaired by the Contractor. The Contractor’s method of repair shall be approved by the Engineer and performed according to specifications.

330.05.10 Pavement Smoothness

330.05.10.01 Pavement Smoothness Measurement

The smoothness of the finished surface of the top lift of the pavement structure shall be determined after final rolling of the surface to be tested. Normally, the outer wheel paths of all lanes will be tested, in 100 m sections, or lots. Other wheel paths may also be tested in addition to, or as a substitution for, the outer wheel path, as directed by the Engineer.

The profile measurement will normally be taken using a Class 1 inertial laser profiler, which will measure the profile in accordance with the manufacturer’s recommendations and ASTM E950 – Standard Test Method for Measuring the Longitudinal Profile of Traveled Surfaces with an Accelerometer Established Inertial Profiling Reference. The resulting measurements will be compiled to produce a Profile Index (PI). This determination of smoothness will be made by the Department, or its representative.

The Profile Index (PI) for each lane is the cumulative profile reading of the outer wheel path in millimeters per 100 m section, in excess of the 5 mm blanking band.

330.05.10.02 Profile Index Limits

The surface of the profiled pavement shall conform to the following Smoothness requirements:

<table>
<thead>
<tr>
<th>Roadway Alignment Section</th>
<th>Profile Index (mm / 100 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLU-80 CLASSIFICATION AND ABOVE</td>
<td>15 mm OR LESS</td>
</tr>
<tr>
<td>INTERCHANGE RAMPS, TAPERS*, AND HIGHWAYS OF LOWER CLASSIFICATION THAN RLU-80</td>
<td>N/A</td>
</tr>
</tbody>
</table>

March 2012
If the Smoothness requirements are not met, the Contractor shall repair the sections, or pay a price adjustment based on the Profile Index. These price adjustments will be applied based on the square meters of the final pavement surface as outlined in Table 6. For price adjustment purposes, the width of the final pavement surface includes the driving lane and adjacent shoulders.

Table 6
Profile Index Price Adjustment Schedule

<table>
<thead>
<tr>
<th>PROFILE INDEX PI (mm / 100m)</th>
<th>PRICE ADJUSTMENT $ PER SQUARE METER</th>
<th>PROFILE INDEX PI (mm / 100m)</th>
<th>PRICE ADJUSTMENT $ PER SQUARE METER</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 4.0</td>
<td>$0.338</td>
<td>18.1 to 21.0</td>
<td>-$0.540</td>
</tr>
<tr>
<td>4.1 to 5.5 incl.</td>
<td>$0.270</td>
<td>21.1 to 22.5</td>
<td>-$0.810</td>
</tr>
<tr>
<td>5.6 to 7.0</td>
<td>$0.203</td>
<td>22.6 to 24.0</td>
<td>-$1.080</td>
</tr>
<tr>
<td>7.1 to 8.5</td>
<td>$0.135</td>
<td>24.1 to 25.5</td>
<td>-$1.350</td>
</tr>
<tr>
<td>8.6 to 10.0</td>
<td>$0.068</td>
<td>25.6 to 27.0</td>
<td>-$1.620</td>
</tr>
<tr>
<td>10.1 to 15.0</td>
<td>$0.00</td>
<td>27.1 to 28.5</td>
<td>-$1.890</td>
</tr>
<tr>
<td>15.1 to 18.0</td>
<td>-$0.270</td>
<td>28.6 to 30.0</td>
<td>-$2.160</td>
</tr>
<tr>
<td>EACH ADDITIONAL 1.5mm INCREMENT ABOVE 30.0</td>
<td></td>
<td></td>
<td>-(NO OF INCREMENTS X $0.54 +$2.160)</td>
</tr>
</tbody>
</table>

330.05.10.03 Surface Deviations (Individual Bumps and Dips)

Individual bumps and dips shall not exceed 8 mm in 7.6 m in the vertical direction. Where individual bumps and dips exceed 8 mm in 7.6 m, they may be corrected or the Contractor may elect to accept a penalty as per Table 7. The 5 mm blanking band is not applied to the bump and dip measurements. Notwithstanding, transverse joints are still subject to Section 330.05.09.05 and any irregularity should be immediately corrected.

Table 7
Bump and Dip Penalties

<table>
<thead>
<tr>
<th>Bumps / Dips Measured in the Vertical Direction</th>
<th>Penalty</th>
<th>Bumps / Dips Measured in the Vertical Direction</th>
<th>Penalty</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 - 9 mm</td>
<td>$200</td>
<td>13.1 - 14 mm</td>
<td>$1200</td>
</tr>
<tr>
<td>9.1 - 10 mm</td>
<td>$400</td>
<td>14.1 - 15 mm</td>
<td>$1400</td>
</tr>
<tr>
<td>10.1 - 11 mm</td>
<td>$600</td>
<td>15.1 - 16 mm</td>
<td>$1600</td>
</tr>
<tr>
<td>11.1 - 12 mm</td>
<td>$800</td>
<td>16.1 - 17 mm</td>
<td>$1800</td>
</tr>
<tr>
<td>12.1 - 13 mm</td>
<td>$1000</td>
<td>17.1 - 18 mm</td>
<td>$2000</td>
</tr>
<tr>
<td>Each Additional 1 mm Increment Above 18 mm</td>
<td>(No. of Increments x $500) + $2000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

330.05.10.04 Testing

Testing and Evaluation: Testing will be performed as soon as possible after final rolling of the surface.

Profile measurements will terminate 15 metres from the end of each bridge deck, or from a joint between existing pavement and the new pavement. Profiles will be taken at approximately the outer wheel path for every lane of traffic, or as designated by the Engineer. Repeat profiles may be taken only to define the limits of an out-of-tolerance surface variation. Some sections may be omitted from testing, as determined by the Engineer. Tapers will be excluded from testing unless otherwise directed by the Engineer.

The Contractor shall give the Department at least 5 days notice prior to laying the final course of asphalt. A pre-paving meeting shall be convened on-site between the Contractor, the Engineer, and the Manager of Materials (or their representatives) to discuss any concerns either party might have regarding placement of the final course of asphalt. If
the Contractor believes certain areas to be tested should be excluded from price adjustments, then those concerns should be submitted in writing for discussion at that meeting. Failure to submit those concerns in writing shall mean all areas shall be subject to price adjustments.

Re-testing to Verify Original Testing Results: Should the Contractor request retesting of pavement sections due to an excessive PI or excessive bump and dip heights, and the Department approves the re-test, then the Contractor shall bear all costs associated with testing if the original results are confirmed. If the retest results determine an improved PI or improved bump and dip heights over the original test, then testing costs shall be borne equally by the Contractor and the Department, and the average of the two results will be accepted as final. Only one retest, using the same profiler is permitted.

330.05.10.05 Remedial Action

Where the Profile Index (PI) and / or the bump and dip heights are greater than the limits specified, then the Contractor may elect to correct the smoothness of the deficient sections by i) rolling, ii) cold milling and replacing, iii) overlaying, or iv) removing and replacing.

Remedial Action Plan: Prior to initiating any remedial work, the Contractor shall submit to the Engineer for approval a detailed plan outlining the methods to be used to improve the smoothness. All remedial actions shall be done at the Contractor’s expense, and shall comply with the following requirements:

Rolling: Additional rolling will only be permitted while asphalt is still workable, i.e., during the same day’s paving operations, and at the sole direction of the Engineer. Additional rolling may be used only to correct deviations in transverse joints or excessive bump and dip deviations. Rolling shall not be used solely to reduce the overall PI of a section - rolling is to be used only for correction of individual bumps and dips, not 100 m sections or lots. Rolling must not cause any damage, such as but not limited to, crushing, cracking, or displacing the asphalt concrete. Should the rolling cause damage, the Contractor shall remove and replace the damaged area, at his expense.

Cold Milling and Replacing: Any section to be repaired by cold milling and replacing shall be milled the full lane width and a minimum length of 20 meters, to the full thickness of the lift of asphalt to be replaced.

All replacement asphalt concrete shall be of the same material and mix design as originally used on the section undergoing repairs.

Materials removed by cold milling shall become the property of the Contractor.

Overlaying: When an additional lift of asphalt concrete is used to improve smoothness, it shall extend the full width of the pavement surface and have a finished compacted thickness sufficient to produce compliance with smoothness limits, and produce a uniform final surface closely matching the existing asphalt pavement. Butt joints will be required at each end of the overlay.

All asphalt concrete used for overlay shall be of the same material and mix design as originally used on the section undergoing repairs.

Removing and Replacing: Where the remedial action involves removal and replacement, the lift shall be removed to its full thickness and lane width. All asphalt removed shall become the property of the Contractor.

Asphalt concrete shall be replaced to its original thickness and shall be of the same material and mix design as used originally in the section to be replaced.

Retesting Following Remedial Action: Where Remedial Action is conducted, then the Contractor shall bear all costs associated with the verification of smoothness of the remedial work. The test results of the remedial work shall be accepted as final and replace the initial test results for price adjustment purposes.

Time Limits for Remedial Action: All remedial work should be completed within 30 days of receipt by the Contractor of testing results, but in no case later than September 30.
FORM 330

330.05.11 ASPHALTIC PATCHING

Asphaltic patching involves patching pot holes in bituminous pavement, patching cuts for culverts or patching transverse cracks with hot mix asphaltic concrete.

Holes to be patched shall have loose material removed and be cleaned of dirt and gravel.

Tack coat shall be applied to all edges to be repaired. Surfaces shall be thoroughly dry before tack coat is applied.

Asphaltic concrete for use in patching shall conform to the requirements of Asphaltic Surface Course or Asphaltic Leveling Course Type I.

Asphaltic concrete shall be placed and leveled in the hole in one lift, so that when compacted, the repaired hole is level with the surrounding surface. The patches shall be compacted in accordance with the requirements of 330.05.09.06 “General Requirements for Compaction”.

330.05.12 MEASUREMENT FOR PAYMENT

330.05.12.01 Measurement for Payment for Asphaltic Surface, Asphaltic Base Course, Asphaltic Leveling Courses Type I and Type II

Measurement for payment will only be made for those materials accepted for use under this specification and then only when incorporated into the work at the required locations.

Measurement for payment for the particular type of asphaltic course shall be by the weight of that material in tonnes, rounded to one decimal place.

Payment Adjustment Factors, if applicable, shall be as described throughout this specification. The material shall be weighed by means of the truck scales. The Department will supply scale tickets and the Department Scale Checker will issue the tickets. Only loads certified by the Department Road Checker, as being placed in the works at the required locations, shall be included in measurement for payment.

330.05.12.02 Measurement for Payment for Asphaltic Patching

Measurement for payment will only be made for those materials accepted for use under this specification and then only when incorporated into the work at the required locations.

Measurement for payment shall be by the square meter of that material placed, rounded to the whole number.

330.05.12.03 Measurement for Payment for Asphalt Cement

The asphalt cement will be measured in tonnes, rounded to two decimal places. Payment for Asphalt Cement shall be as per the percentage (%) of asphalt cement required in the Design Mix Formula approved by the Materials Engineering Division. However, where Asphalt Cement contents are found to be deficient to the point of being in the penalty zones subsequently described, Asphalt Cement will be paid on actual content only, as determined by ASTM D6307 Method A -Standard Test Method for Asphalt Content of Hot-Mix Asphalt by the Ignition Method. Any moisture content in the hot mix asphalt will be determined and deducted. The method of determination of this moisture content will be in accordance with AASHTO 329 Standard Method of Test for Moisture Content of Hot Mix Asphalt by Oven Method.

Samples of hot mix asphalt shall be taken randomly, throughout each day of production, and tested to ensure conformance with the specifications stated herein. Sampling and testing shall be performed in accordance with ASTM D979 and ASTM D6307, Method A. Additional samples may also be taken and tested in accordance with ASTM D2172, for verification purposes.

In the event of any and all disputes over asphalt content, the asphalt contents as determined by the Engineer, in accordance with the above stated method, shall govern in all cases.
Acceptance Criteria
The following acceptance criteria shall apply for all mixes:

Table 8
Asphalt Content Acceptance Criteria

<table>
<thead>
<tr>
<th>TYPE OF TEST</th>
<th>ACCEPTABLE ZONE (%)</th>
<th>PENALTY ZONE (%</th>
<th>REJECTABLE ZONE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDIVIDUAL SAMPLE</td>
<td>± 0.25</td>
<td>-0.26 TO - 0.50</td>
<td>< 0.50 OR > +0.50</td>
</tr>
</tbody>
</table>

Payment Adjustment Factor

If the test results representing the individual sample for asphalt cement content falls into the above-stated “Penalty Zone”, the payments for both Asphalt Cement and Hot Mix Asphalt shall be adjusted by deducting a percentage from the unit prices per Table 9 for the Individual Sample. These adjustments shall apply to the areas of pavement represented by these samples.

If the test results representing the individual sample fall into the above-stated “Rejectable Zone”, then no payment will be made for either the asphalt cement or hot mix asphalt represented by those samples.

The design mix formula may be revised, as required, by the Department throughout the project. If a change in the mix design occurs during the day, then two or more averages will be computed, before and after the change was made.

Table 9
AC Content Penalty (Individual Sample)

<table>
<thead>
<tr>
<th>Penalty Zone AC Content Deviation %</th>
<th>Unit Price Payment Adjustment Factor %</th>
<th>Penalty Zone AC Content Deviation %</th>
<th>Unit Price Payment Adjustment Factor %</th>
<th>Penalty Zone AC Content Deviation %</th>
<th>Unit Price Payment Adjustment Factor %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.26</td>
<td>0.5</td>
<td>0.35</td>
<td>5</td>
<td>0.44</td>
<td>14</td>
</tr>
<tr>
<td>0.27</td>
<td>1</td>
<td>0.36</td>
<td>6</td>
<td>0.45</td>
<td>15</td>
</tr>
<tr>
<td>0.28</td>
<td>1.5</td>
<td>0.37</td>
<td>7</td>
<td>0.46</td>
<td>16</td>
</tr>
<tr>
<td>0.29</td>
<td>2</td>
<td>0.38</td>
<td>8</td>
<td>0.47</td>
<td>17</td>
</tr>
<tr>
<td>0.30</td>
<td>2.5</td>
<td>0.39</td>
<td>9</td>
<td>0.48</td>
<td>18</td>
</tr>
<tr>
<td>0.31</td>
<td>3</td>
<td>0.40</td>
<td>10</td>
<td>0.49</td>
<td>19</td>
</tr>
<tr>
<td>0.32</td>
<td>3.5</td>
<td>0.41</td>
<td>11</td>
<td>0.50</td>
<td>20</td>
</tr>
<tr>
<td>0.33</td>
<td>4</td>
<td>0.42</td>
<td>12</td>
<td>> 0.50</td>
<td>Reject</td>
</tr>
<tr>
<td>0.34</td>
<td>4.5</td>
<td>0.43</td>
<td>13</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

330.05.12.04 Measurement for Payment for Blending Sand

The blending sand will be measured in tonnes, rounded to the nearest whole number.

Measurement for blending sand shall be determined on the basis of the computed quantity calculated from the percentage of blending sand specified in the mix design and the total tonnage of asphalt mix of that design used by the Department.

330.05.12.05 Measurement for Payment for the Cutting and Removal of Asphaltic Pavement

The cutting and removal of pavement in connection with the preparation of joints, as required in Section 330.05.09.05, shall be measured for payment in accordance with Section 510 “Cutting Asphaltic Pavement”, and Section 520 “Storage or Disposal of Old Asphaltic Pavement”, except where the preparation of joints is required as the result of a break in the paving operations, in which case no measurement for payment will be made for either cutting asphaltic pavement or storage or disposal of old asphaltic pavement.

March 2012

330 - 31
FORM 330

330.05.13 BASIS OF PAYMENT

330.05.13.01 Basis of Payment for Asphaltic Surface Course, Asphaltic Base Course and Asphaltic Leveling Courses Type I and Type II

Payment at the contract price for asphaltic base course, asphaltic surface course, asphaltic leveling course Type I or asphaltic leveling course, Type II as appropriate, shall be full compensation for:

1. THE SUPPLY OF ALL MATERIALS WITH THE EXCEPTION OF ASPHALT CEMENT AND BLENDING SAND. THE ASPHALT CEMENT AND THE BLENDING SAND SHALL BE PAID FOR SEPARATELY UNDER OTHER CONTRACT ITEMS.
2. THE USE OF THE REQUIRED EQUIPMENT, INCLUDING A PAVER WITH A SKI FOR BASE AND SURFACE COURSE APPLICATION ON THE T.C.H. ON OTHER PROJECTS, WHERE THE CONTRACT ITEM DESCRIPTION, IN THE UNIT PRICE TABLE, INCLUDES THE PHRASE "SPREADER WITH SKI" THEN A SKI ATTACHED TO THE LEAD SPREADER WILL BE INCLUDED AS WELL.
3. THE HANDLING, STORING, CRUSHING, HAULING, STOCKPILING, AND PREPARATION OF ALL MATERIALS WITH THE EXCEPTION OF BLENDING SAND AND ASPHALTIC CEMENT.
4. THE PREPARATION OF ALL JOINTS WITH HOT ASPHALT CEMENT, TOGETHER WITH THE CUTTING AND REMOVAL OF PAVEMENT WHERE A JOINT IS REQUIRED AS THE RESULT OF A BREAK IN THE PAVING OPERATIONS.
5. THE MIXING, PLACING AND COMPACTING OF THE ASPHALTIC MIXTURE, TOGETHER WITH ALL HAULAGE OF THE MIXTURE TO PLACES WITHIN THE CONTRACT.
6. ALL OTHER COSTS ARISING FROM THE REQUIREMENTS OF THE SECTION FOR WHICH PAYMENT IS NOT OTHERWISE SPECIFICALLY PROVIDED, INCLUDING ALL KEYED JOINTS AND THE PAVING REQUIRED FOR TIEINS AT INTERSECTIONS, RAMPS AND DRIVEWAYS.

330.05.13.02 Basis of Payment for Asphaltic Patching

Payment at the contract price for Asphaltic Patching shall be full compensation for:

1. THE SUPPLY OF ALL MATERIALS INCLUDING ASPHALT CEMENT AND BLENDING SAND.
2. THE USE OF THE REQUIRED EQUIPMENT.
3. THE HANDLING, STORING, CRUSHING, HAULING, STOCKPILING AND PREPARATION OF ALL MATERIALS.
4. THE CLEARING OF ALL HOLES TO BE PATCHED, TOGETHER WITH THE REMOVAL OF LOOSE MATERIAL FROM THE HOLES.
5. THE SUPPLY AND APPLICATION OF TACK COAT TO THE EDGES OF THE HOLES.
7. ALL OTHER COSTS ARISING FROM THE REQUIREMENTS OF THE SECTION FOR WHICH PAYMENT IS NOT OTHERWISE SPECIFICALLY PROVIDED.

330.05.13.03 Basis of Payment for Asphalt Cement

Payment at the contract price for Asphalt Cement shall be compensation in full for all labor, materials, and equipment to supply the Asphalt Cement cost shall include purchase, loading, transportation, unloading and storage at the asphalt plant.

330.05.13.04 Basis of Payment for Blending Sand

Payment at the contract price for Blending Sand shall be compensation in full for all labor, materials, equipment-use and all other expenses to: provide a pit, obtain all required permits and approvals, provide and transport samples to the Department's Soils Lab in St. John's, excavate, load and provide all haulage from the source to the asphalt plant, stockpile the sand at the asphalt plant, pay any royalties for the material, clean up and restore the pit as may be required.

330.05.13.05 Basis of Payment for the Cutting and Removal of Asphaltic Pavement

Where cutting and removal of pavement is carried out in order to prepare a joint resulting from a break in the paving operations, then no payment will be made for the cutting and removal of the pavement since such work is considered part of the basis of payment for asphaltic base and surface courses.

March 2012
However, where other asphaltic pavement is cut and removed then payment will be in accordance with Section 510 "Cutting Asphaltic Pavement" and Section 520 "Storage or Disposal of Old Asphaltic Pavement.

330.05.13.06 Basis of Payment for Asphaltic Mix for Department's Maintenance Division

The Department's Maintenance Division may, on occasion have need for asphalt in the areas of a project. The Contractor will allow Department trucks along with his own trucks to pick up asphalt from the plant as required. Payment will be made to the Contractor by the tonne weighed over the scales and invoiced to the Department based on the tendered unit price in the Contract except in cases where the Contractor has a Standing Offer Agreement with the Department for supply of asphalt and the Unit Price in the Standing Offer Agreement is less than the Unit Price Table in the highway contract, then the Unit Price in the Standing Offer Agreement will apply.

330.05.13.07 Basis of Payment for Rejected Mix

The Department will pay for only the original mix quantity. The Contractor is fully responsible to bear all costs associated with repair of rejected areas, including all materials, equipment, plant, labour, traffic control and incidentals necessary to complete the work to the satisfaction of Engineer.

If the Department determines the rejected material may remain in the work, and the Contractor elects not to repair the affected area, payment for the rejected mix components will be at 50% of the various contract unit prices.

330.06 END PRODUCT SPECIFICATION (EPS) FOR ASPHALT CONCRETE MIX – HOT PLACED

330.06.01 General

This item consists of supplying crushed aggregates, blending materials, anti-stripping agent, asphalt binder, and the production, loading, hauling, placing and compaction of hot mix asphalt concrete. The limits of placement, application rates and the asphalt concrete mixture type shall be as stated in the contract specifications. Areas constructed will be subjected to various quality assurance testing.

It shall be the Contractor’s responsibility to provide an acceptable product as specified. In order to achieve this, the Contractor shall implement and maintain a quality control system that will provide assurance that all components, as well as end result products, submitted to the Department for acceptance, conform to the contract requirements. This is without regard to whether the products are manufactured by the Contractor or purchased from suppliers or subcontractors. The Contractor’s Quality Control System proposed for each project shall be provided to the Department in the form of a written Quality Control plan.

Quality assurance tests shall be performed, by the Department, on random samples taken either at the production site or lay down site.

330.06.02 Definitions

330.06.02.01 End Product Specification (EPS)

An end product specification is a specification under which the Contractor has control of the processes that produce the items of construction. The Department accepts or rejects the end product according to identified bonus / penalty items. The Contractor is entirely responsible for quality control. End product acceptance is the responsibility of the Department based on a program of quality assurance testing.

330.06.02.02 Design Mix Formula (DMF)

The DMF is defined as the laboratory determination of the precise proportions of asphalt binder, additives and aggregates to be blended together to meet the specified properties for a given asphalt concrete mix.

330.06.02.03 Job Mix Formula (JMF)

The JMF is the resultant establishment of the single definite percentage for each sieve fraction of aggregate and asphalt binder content that will produce the desired asphalt concrete mix properties under field conditions.
FORM 330

330.06.02.04 Actual Asphalt Binder Content

This is the percentage of asphalt binder in the asphalt concrete mixture, determined from quality assurance testing in accordance with ASTM D6307.

330.06.02.05 Lot

For each mixture type specified, a Lot is defined as the quantity of asphalt concrete plant production, to a total of 2400 tonnes, where approved changes to the Job Mix Formula have not occurred. For loose samples, each Lot shall be divided into 4 (four) approximately equal segments and one loose sample is randomly selected from each segment. For core samples, each Lot shall be divided into 4 (four) approximately equal segments and three adjacent core samples are taken from each segment at a single random location.

If it is the last time the mix is produced and this criterion cannot be met (i.e. less than 2400 tonnes of mix remain), the following shall apply:

If the remaining plant production is 600 tonnes or less, the production will be added to the previous Lot. The adjusted Lot shall be divided into 5 (five) approximately equal segments and one loose sample is randomly selected from each segment. For core samples, the adjusted Lot shall be divided into 4 (four) approximately equal segments and three adjacent core samples are taken from each segment at a single random location.

If the remaining plant production is between 600 and 1200 tonnes, the production will be added to the previous Lot. The adjusted Lot shall be divided into 6 (six) approximately equal segments and one loose sample is randomly selected from each segment. For core samples, the adjusted Lot shall be divided into 4 (four) approximately equal segments and three adjacent core samples are taken from each segment at a single random location.

If the remaining plant production is greater than 1200 tonnes, but less than 2400 tonnes, the production will be designated as a separate Lot. The separate Lot shall be divided into 4 (four) approximately equal segments and one loose sample is randomly selected from each segment. For core samples, the adjusted Lot shall be divided into 4 (four) approximately equal segments and three adjacent core samples are taken from each segment at a single random location.

In all cases above, the lot size shall be equally segmented and random samples selected from each segment.

A separate Lot will be established at the discretion of the Engineer if conditions of construction indicate that it is likely that a portion of the Lot production is significantly different from the remainder of the Lot production.

330.06.02.06 Stratified Random Sample

A stratified random sample is defined as a representative sample taken in an unbiased manner, by dividing a Lot into approximately equal segments. A random sample is taken from each area or segment.

330.06.02.07 Sample Mean

This is the arithmetic mean of the group of test results derived from the randomly selected samples.

330.06.02.08 Mean of the Deviations

This is the sum of the absolute values of the deviations divided by the number of tests in the Lot.

330.06.02.09 Thickness

Thickness is defined as the specified application rate indicated in the contract documents divided by the average bulk relative density obtained from the core samples for a given Lot. Price adjustments for thickness will be applied to new construction only.

330.06.02.10 Mix Property

Mix properties measured for product acceptance and price adjustments are as follows:

March 2012
FORM 330

Gradation: Passing 4.75 mm and 75 \(\mu \)m sieves, Asphalt Binder Content, Binder Grade, Marshall Air Voids, Thickness, Application Rate, Density and Smoothness.

330.06.02.11 Referee Sample

A referee sample is defined as the portion of the loose or core sample that is set aside by the Department representative’s laboratory in the case of an appeal of binder content, gradation, and/or density by the Contractor.

330.06.03 Materials

330.06.03.01 General

All materials required to produce the asphalt concrete will be supplied by the contractor. Details regarding the property requirements for the asphalt cement, course aggregate, fine aggregate, blending sand, anti-stripping admixtures are presented in section 330.02.

330.06.04 Mix Design Requirements

330.06.04.01 Establishing a Design Mix Formula (DMF)

Preparation and submission of the asphalt DMF for the Department’s approval is the responsibility of the Contractor. The Contractor shall use professional engineering services and a CCIL or AASHTO certified testing laboratory, to assess the aggregate materials, asphalt binders, blending sands, mineral fillers and anti-stripping agents proposed for use and to carry out the design of the asphalt concrete mix.

330.06.04.02 Requirements for Design Mix Formula

The asphalt mix design shall follow the Marshall method of the DMF as outlined in the latest edition of the Asphalt Institute Manual Series No. 2 (MS-2). The mix design, at the design asphalt binder content, shall meet the requirements presented in section 330.02 for each asphalt concrete mix specified. For highway design classifications RAU & RAD-100, RAU & RAD-90 as well as RCU-80 the design air voids shall be chosen as the lowest value, within the range of 3.5 to 4.0% inclusive, such that all other mix design criteria are met. While for highway design classifications RLU-80, RLU-70, RLU-60 the design air voids shall be chosen as the lowest value, within the range of 3.0 to 3.5% inclusive, such that all other mix design criteria are met.

330.06.04.03 Submission of Design Mix Formula

The Contractor’s submission shall include the following information/materials:

- The specific gravity and the percentage by mass of each aggregate (including natural sand, lime) to be used in the mix.
- The mix design gradation of the combined aggregate (including natural sand, lime).
- Physical properties of the aggregates specified, in accordance with Section 330.02.
- All Marshall mix design characteristics, including graphs used in arriving at the final mix design, the bulk relative density of the combined aggregates, and the asphalt absorption of the combined aggregates.
- Pit identification consisting of its name, name of owner, public highway from which it is accessed.

330.06.04.04 Evaluation of Design Mix Formula

The Engineer will require up to ten (10) working days from the time of receipt of the DMF, for evaluation by the Department and/or the Department’s representative’s laboratory. The Engineer will advise the Contractor of the acceptability. If the DMF does not meet the requirements of Section 330.02, it shall be rejected. The Engineer shall provide a written explanation to the Contractor that details why the DMF failed. The Contractor shall then provide another complete DMF in accordance with 330.06.04.02 Requirements for Design Mix Formula, and re-submit it to the Engineer for evaluation. Each time a DMF is re-submitted, an additional five (5) working days, from the time of receipt of the revised DMF, shall be required for evaluation by the Department and/or the Department’s representative’s laboratory.

The Engineer will not accept any asphalt concrete mix produced prior to the Contractor receiving written approval of the DMF from the Engineer.

March 2012
330.06.04.05 Establishing a Job Mix Formula (JMF)

The Contractor shall establish a JMF for each mix type by placing a specified quantity of trial mix (asphalt concrete) at a location designated by the Engineer. The maximum allotted quantity of asphalt concrete allowed for establishment of the JMF is as follows:

- Base Course: 600 tonnes
- Surface Course: 600 tonnes
- Alternatively, the Contractor may elect to waive their trial mix option and submit their JMF (and supporting documentation) directly to the Engineer for approval.

The asphalt concrete placed in the trial sections will be tested with a minimum of 3 QC tests to determine if it meets the requirements of Section 330.02, however, unit price adjustments and repair/replace/reject criteria will be applied to the Thickness and Density properties. The asphalt concrete shall be assessed for surface defects in accordance with 330.06.07 Surface Defects.

330.06.04.06 Approval of Job Mix Formula

The Contractor shall submit the JMF in writing to the Engineer for approval. The Contractor’s submission shall include the following information:

- The percentage by mass of each aggregate (including natural sand, lime) to be used in the mix
- The JMF target asphalt binder content and gradation
- The % Air Voids, Voids in Mineral Aggregate (VMA) and Voids Filled with Asphalt (VFA) from the trial mix.

The Engineer’s written approval of the JMF will allow the Contractor to start/continue production. Rejection of the JMF shall require the appropriate action based on the Engineer’s assessment.

330.06.04.07 Field Adjustments to the Job Mix Formula.

A field adjustment to the JMF is defined as a change in the target gradation, asphalt binder content and/or proportioning of various aggregate sizes, within specified limits (when compared to the original JMF) as follows, without a redesign of the mix:

- ± 0.2% in asphalt content
- ± 5.0% in RAP proportion
- ± 5.0% passing the 19.0 mm sieve
- ± 4.0% passing the 12.7 and 9.5 mm sieves
- ± 3.0% passing the 4.75 and 2.00 mm sieves
- ± 2.0% passing the 0.425 and 0.150 mm sieves
- ± 1.0% passing the 0.075 mm sieve

The Contractor shall request JMF changes in writing, including supporting test results (a minimum of 3 sets of QC results as per 330.06.04.05 Establishing a Job Mix Formula). Upon approval by the Engineer in writing, revisions to the JMF will be applied to subsequent Lots only. In no case will changes to the JMF be accepted during production of a Lot. The Department will limit the number of field adjustments to the originally approved JMF to two.

The Contractor shall submit a revised DMF in accordance with 330.06.04.02 Requirements for Design Mix Formula, for the following changes:

- A change in the source of asphalt cement used in the asphalt concrete mix.
- A change in the source of the aggregate used in the asphalt concrete mix.
- A change in material (different aggregate sizes) from the same source.
- A change in the percentage of the aggregate components from that established in the JMF.
- A change in the asphalt cement content from that established in the JMF
- A change in the source of the anti-strip additive used in the asphalt concrete mix.

330.06.05 Construction Methods
FORM 330

330.06.05.01 General

Equipment shall be designed and operated to produce an end product complying with the requirements of this specification. Equipment used shall be of adequate rated capacity and shall be in good working order.

330.06.05.02 Production

Asphalt concrete exceeding a temperature of 165°C at any point of the operation shall be cause for rejection.

330.06.05.03 Transportation

Vehicles shall be equipped with tarpaulins of water repellent material (no open mesh types) of sufficient size to completely cover the truck box and overhang the box on all sides by a minimum of 150 mm. The tarpaulins shall have enough tie-down points so that they can be properly secured, and shall be in good condition and be free of holes and tears. They shall be securely tied down as an effective barrier against rain infiltration and air flow over the HMA mixture.

Tarpaulins are to be used at all times for protection of the load of Hot Mix Asphalt. Tarpaulins shall be rolled back to uncover the hot mix for inspection immediately prior to dumping the load into the paver. Trucks will stop ahead of the paver and allow the paver to smoothly pick up the truck.

Asphalt concrete shall be transported from the paving plant to the work site in trucks that are properly equipped and in good working order.

The use of hydrocarbon fuels or solvents to lubricate the truck bodies or to clean tools or equipment, will not be permitted. A biodegradable release agent shall be supplied by the Contractor to clean or lubricate tools, equipment and truck bodies.

330.06.05.04 Placement

The Contractor shall not place asphalt concrete during rain, or when the surface is frozen, nor when the pavement surface shows signs of free-standing water or when the air temperature at surface is below 7°C. A Material Transfer Device/Vehicle shall be used at no extra cost to transfer the asphalt mixture from the transport vehicles to the asphalt spreader.

Asphalt concrete shall be placed upon a prepared surface which is free of any loose or foreign material. The asphalt concrete shall be spread by a mechanical self-powered paver capable of achieving the specified grade, line and crown.

Placement of asphalt concrete shall only be conducted during daylight hours, unless specifically noted otherwise in the contract specifications.

Contact edges of existing mats and contact faces of curbs, gutters, manholes, sidewalks bridge structures, as well as any new mat joint having a temperature less than 60°C shall be coated with a thin film of hot liquid asphalt before placing the asphalt concrete all other joint edges shall be coated with asphalt tack coat.

Failed areas in existing surfaces (paved or gravel) shall be repaired, as directed by the Engineer. Areas requiring repair will be identified by the Engineer in consultation with the Contractor. Irregularities in the horizontal alignment and grade along the outside edge of the asphalt concrete shall be corrected by the addition or removal of mix before the edge is rolled. Paving of intersections, extra widths and other variations from standard lane alignment and as defined in the contract, whether by hand spreading or machine laying, shall be carried out concurrently with the machine laying operation of the regular mat, unless otherwise approved by the Engineer.

Fuel spills from the Contractor’s equipment shall be immediately repaired by the Contractor to the satisfaction of the Engineer.

Paving of intersections, ramps and driveway tie-ins are integral with the work. No separate payment or
compensation will be provided for this work.

330.06.05.05 Joint Construction

All joints shall be constructed to ensure a dense, well-bonded, continuous seal and to provide a smooth riding surface.

330.06.05.01 Transverse Construction Joints

Transverse joints shall be butt joints constructed at the end of each day’s work and at other times when paving is halted for a period of time which results in the asphalt concrete cooling to below 120°C. When paving resumes, temporary tapers or ramps from previously placed asphalt concrete shall be cut back to full mat thickness to expose fresh, straight vertical surfaces. Loose or broken material shall be removed and surfaces tacked, at the Contractors expense, in accordance with the latest edition of the Standard Specification.

330.06.05.02 Longitudinal Construction Joints

Longitudinal joints in the top lift shall not be constructed within a travel lane except when paving tapers where it can not be avoided, but not in the wheel paths. Joints in preceding lifts shall be offset a minimum of 150 mm to 300 mm for the Trans Canada Highway. Joint offset for all other classes of road shall be a minimum of 150 mm.

Longitudinal joints shall be rolled immediately upon placement of the fresh mixture and before the adjacent strip has completely cooled. The joint shall be set up with the back of a rake or lute at proper height and grade to receive the required compression under rolling. The depth of the newly laid mat shall be adjusted to allow for compaction. The paver shall overlap the existing mat by approximately 25 to 40 mm.

Asphalt mat edges having companion longitudinal joints shall be matched within the maximum allotted time period as determined by the engineer. All longitudinal joints shall be matched by the spreader with ski.

The maximum allotted time period shall be restricted to a lower limit of one hour with an upper limit of two hours. The allotted time limit will be proportioned on the paving lay-down conditions; with the lower time limit applied to least favorable placement conditions and the upper time limit applied to favorable placement conditions. Lay-down conditions considered by the engineer in establishing the time limit will include ground surface temperature, hot mix lay-down temperature, placement capacity, ultraviolet intensity, wind speed and air temperature.

Longitudinal joints shall be matched by the end of each day’s operations. Unmatched asphalt longitudinal joints left exposed at the end of the day, or exposed to moisture, shall be cut back to full depth to expose a fresh vertical face, and painted with a continuous thin coating of tack coat or hot asphalt cement to the full fresh vertical face.

330.06.05.03 Paving in Echelon

Where described in the contract specifications, pavers shall be used in echelon to lay the mat full width. Upon completion of each day’s paving, the maximum length of exposed joint edge shall be 60 meters.

330.06.05.04 Conventional Paving

Prior to placing the adjacent mat, the exposed edge of each longitudinal joint must be coated with emulsified asphalt (tack coat). Upon completion of each day’s paving, the maximum length of exposed joint edge shall be 60 meters.

330.06.05.05 Keyed Joints

When overlaying existing asphalt concrete pavement, keyed joints shall be constructed at both ends of the project, at all intersecting roads, ramps and at all bridge decks in the repaving area. The taper length for such keyed joints shall be a minimum of 15m. Keyed joints will only be required between the final lift of pavement and the existing pavement, unless otherwise directed by the Engineer.

When existing pavement has been removed in advance of paving the joint area, the Contractor shall construct a temporary (hot mix asphalt concrete ramp) taper at the joint area to a slope of at least 50 horizontal to 1 vertical
Temporary tapers (ramps) shall be installed immediately following milling of the keyed joint and prior to opening the area to traffic.

330.06.06 Compaction

Compaction equipment shall consist of at least one of each of the following:

- vibratory roller (a minimum of one roller must have double drum vibratory capacity)
- pneumatic-tired roller
- finish roller

Along curbs, manholes and similar structures and locations not accessible to full size rollers, the mix shall be compacted with smaller compaction equipment, such as vibrating plate tampers, or by hand tampers.

330.06.07 Surface Defects

The finished surface of any pavement course shall have a uniform texture and be free of visible signs of defects. The Engineer will identify any obvious defects and determine remedial requirements, which may include removal and replacement in accordance with 330.06.12.01 Removal and Replacement. Such defects shall include, but not necessarily be limited to, the following:

1. SEGREGATED AREAS
2. AREAS OF EXCESS OR INSUFFICIENT ASPHALT CEMENT
3. ROLLER MARKS
4. CRACKING OR TEARING
5. IMPROPER MATCHING OF LONGITUDINAL AND TRANSVERSE JOINTS

Segregation is defined here as areas with predominantly coarser texture than that of the surrounding pavement, and will normally be first identified visually.

Slight Segregation:
Area where the matrix is in place between the stones but there is slightly more stone in comparison with the surrounding acceptable mix. Slight segregation will normally be left in place without price adjustment. The severity of segregation can be determined through a number of test methods, as specified by the Engineer.

Medium Segregation:
Area has significantly more stone than the surrounding acceptable mat and usually exhibits some lack of surface matrix. Medium segregation in surface-courses will be subject to a penalty of $25/m² for the area in question, but for base-courses will normally be left in place with no price reduction. However, any areas of medium segregation that deteriorate prior to being overlaid by another pavement course must be repaired at the Contractor’s cost.

Severe Segregation:
Area appears very stony, with stone against stone and little or no matrix. All areas of severe segregation in any pavement course will require removal and repair across the full lane width.

Defects as determined by the Engineer, which occur in the finished surface of any pavement course during the two year warranty period resulting from poor workmanship, shall be repaired by the Contractor. The Contractor’s method of repair shall be approved by the Engineer and performed according to specifications.

330.06.08 Quality Control

The Contractor shall be totally responsible for quality control testing throughout every stage of the work from the crushing and production of aggregates to final product acceptance, to ensure materials and workmanship comply with the requirements of this specification. At no time, will the Engineer issue instructions to the Contractor as to setting of dials, gauges, scales and meters. However, the Engineer may advise the Contractor against the continuance of any operations or sequences of operations which will result in non-compliance with specification requirements.

March 2012
The Contractor shall also be responsible for Quality Control testing of asphalt concrete patching mix used within the limits of the Contract. Asphalt concrete patching mix shall not be considered as part of a Lot, however, QC records and documentation shall be made available in accordance with 330.06.08.02 Sampling and Test Results.

330.06.08.01 Quality Control Inspection Testing Plan (ITP)

Following award of Contract, and at least 10 (ten) working days prior to commencement of asphalt concrete aggregate production, the Contractor shall submit, in writing to the Engineer, an ITP covering all phases of the contract performance, including the name of the party retained to prepare the ITP.

The ITP shall include, but not be limited to, identification and description of inspection and required test procedures to be used to fulfill the conditions of the Contract. The ITP shall be sufficiently comprehensive and detailed to assure the Engineer of the Contractor's willingness and ability to control the construction production and processes. Once accepted by the Engineer the plan becomes a part of the Contract and shall be enforced accordingly.

If the Contractor elects to take loose samples from the roadway, the ITP shall describe the sampling procedure in sufficient detail to ensure that a minimum area is affected. The method used to reinstate the sample area must be outlined such that the resulting mix is uniform, non-segregated, and well compacted. Test methods that the ITP must include are listed in Table 10. The frequency of sampling and/or testing is left to the discretion of the contractor.

The Engineer will provide written approval of the ITP within 5 (five) working days of receiving the same. The Contractor may be required to update and resubmit the ITP to the Engineer for approval, as conditions warrant.

Table 10 Quality Control Tests

<table>
<thead>
<tr>
<th>Aggregate Characteristics/Mix Design</th>
<th>Standard</th>
<th>Minimum Frequency (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling</td>
<td>ASTM D 75</td>
<td>Preliminary aggregate testing</td>
</tr>
<tr>
<td>Sieve Analysis</td>
<td>ASTM C 117, C 136</td>
<td>Preliminary aggregate testing</td>
</tr>
<tr>
<td>Soundness (MgSO₄)</td>
<td>ASTM C 88</td>
<td>Preliminary aggregate testing</td>
</tr>
<tr>
<td>Los Angeles Abrasion</td>
<td>ASTM C 131</td>
<td>Preliminary aggregate testing</td>
</tr>
<tr>
<td>Micro Deval</td>
<td>ASTM D 6928</td>
<td>Preliminary aggregate testing</td>
</tr>
<tr>
<td>Freeze Thaw</td>
<td>CSA A23.2-24A</td>
<td>Preliminary aggregate testing</td>
</tr>
<tr>
<td>Petrographic Number</td>
<td>CSA A23.2-15A</td>
<td>Preliminary aggregate testing</td>
</tr>
<tr>
<td>Flat & Elongated Particles (4:1)</td>
<td>ASTM D 4791</td>
<td>Preliminary aggregate testing</td>
</tr>
<tr>
<td>Specific Gravity and Absorption, Coarse Aggregate</td>
<td>ASTM C 127</td>
<td>Preliminary aggregate testing</td>
</tr>
<tr>
<td>Specific Gravity and Absorption, Fine Aggregate</td>
<td>ASTM C 128 (¹)</td>
<td>Preliminary aggregate testing</td>
</tr>
<tr>
<td>Fine Aggregate Angularity, Method A</td>
<td>ASTM C 1252</td>
<td>Preliminary aggregate testing</td>
</tr>
<tr>
<td>Sand Equivalent</td>
<td>ASTM C 2419</td>
<td>Preliminary aggregate testing</td>
</tr>
<tr>
<td>Crushed Particles</td>
<td>ASTM D 5821</td>
<td>Preliminary aggregate testing</td>
</tr>
<tr>
<td>Stripping Test</td>
<td>AASHTO T283 (and visual)</td>
<td>Preliminary aggregate testing</td>
</tr>
<tr>
<td>Absorption</td>
<td>ASTM C 127</td>
<td>Preliminary aggregate testing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aggregate Production</th>
<th>Standard</th>
<th>Minimum Frequency (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling</td>
<td>ASTM D 75</td>
<td>Two coarse & two fine agg per lot</td>
</tr>
<tr>
<td>Sieve Analysis (Crushed)</td>
<td>ASTM C 136 & C 117</td>
<td>One per 300 tonnes</td>
</tr>
<tr>
<td>Sieve Analysis (Natural Sand)</td>
<td>ASTM C 136 & C 117</td>
<td>One per 1000 tonnes</td>
</tr>
<tr>
<td>Fractured Particles (Coarse)</td>
<td>ASTM D 5821</td>
<td>One per 5000 tonnes</td>
</tr>
<tr>
<td>Flat & Elongated (Coarse)</td>
<td>ASTM D 4791</td>
<td>One per mix design formula</td>
</tr>
<tr>
<td>Fine Aggregate Angularity, Method A</td>
<td>ASTM C 1252</td>
<td>One per mix design formula</td>
</tr>
<tr>
<td>Sand Equivalent</td>
<td>ASTM D 2419</td>
<td>One per mix design formula</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cold Feed</th>
<th>Standard</th>
<th>Minimum Frequency (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling</td>
<td>ASTM D 75</td>
<td>Two per lot</td>
</tr>
<tr>
<td>Sieve Analysis (Combined Gradation)</td>
<td>ASTM C 136 & C 117</td>
<td>Two per lot</td>
</tr>
<tr>
<td>Aggregate Moisture Content</td>
<td>ASTM D 2216</td>
<td>Two per day</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hot Bin (Batch Plants)</th>
<th>Standard</th>
<th>Minimum Frequency (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling</td>
<td>ASTM C 136 & C 117</td>
<td>As required</td>
</tr>
<tr>
<td>Sieve Analysis</td>
<td>ASTM C 136 & C 117</td>
<td>As required</td>
</tr>
</tbody>
</table>

March 2012
Mix Testing
- Mix Asphalt Binder Content
- Extracted Aggregate Sieve Analysis
- Mix Moisture Content
- Field Formed Marshall Briquettes
- Flow & Stability
- Maximum Theoretical Density
- Stripping

Other Related Tests
- Bulk Relative Density
- Void Calculations, Cores or Formed Specimens (B)
- Temperatures (plant and road)
- Sampling of Bituminous Mixes (for Compaction)
- Density of Bituminous Concrete (by Nuclear Methods)
- Random Test Site Locations
- Correction Factors, Nuclear Moisture-Density
- Smoothness of Pavements

Standards
- ASTM D 2172, D 6307
- ASTM D 5444
- AASHTO T 329
- ASTM D 6926
- ASTM D 6927
- ASTM D 2041
- AASHTO T283 (and visual)

Frequency
- Four tests per lot
- One per every two lots
- Four tests per lot
- One per 4000 tonnes

Notes:
(A) Conditions may require an increase in the frequency of any of the QC tests; the decision, arrangements and costs for which, are the responsibility of the Contractor.

(B) If two consecutive air void results fall outside the specified limits, the Contractor shall stop production. Prior to continuing production, the Contractor shall provide the Engineer with written details of what measures have been taken to improve the properties of the mix. The Contractor shall not continue production until such time that the Engineer has issued written approval to do so. Failure on the part of the Contractor to adhere to this requirement, may result in the portion of the Lot affected being ineligible for payment.

330.06.08.02 Sampling and Test Results
Where specified, random sampling procedures shall be followed, and where no specific random sampling procedure is specified, the sampling procedure shall be as identified by the Contractor in the ITP. The Contractor shall be responsible for the interpretation of the test results and the determination of any action to be taken to ensure that all materials and work conform to the requirements of the Contract.

The Contractor shall maintain all QC records and documentation. Results of all QC testing carried out in accordance with Table 10 shall be provided to the Engineer within 24 hours of sampling. All QC documentation shall also be made available for inspection by other Department personnel at all times during the course of the Contract.

At the end of the construction season, and no later than January 31 of the following year, the Contractor shall provide the Engineer with a final report detailing all quality control test data. The report shall be provided on CD ROM in Excel format. A copy shall also be provided to the Department’s Materials Engineering Division.

330.06.09 Quality Assurance
Quality assurance (QA) is the responsibility of the Department. In addition to QA testing used to determine unit price adjustments, the Department may, at its sole discretion, examine, inspect or test any aspect of the Contractor’s work as deemed appropriate. Such inspections and testing shall not relieve the Contractor of his responsibilities for quality control.

The Contractor shall supply a field laboratory for Quality Assurance purposes only as per Section 111 of the Department’s Specifications Book. The laboratory will be located and setup as approved by the Engineer at the nearest highway depot. The Contractor will make separate arrangements for QC testing.

330.06.09.01 Sampling
All QA samples shall be taken and labeled by the Contractor in the presence of the Engineer (or designated representative). Random sample locations (loose samples and core samples) for QA testing shall be generated by the Engineer for each Lot and trial mix. Cores damaged during sampling or handling shall be discarded and
new samples shall be taken immediately adjacent (within 0.3 meters) to the original sample location. For the trial mix, a minimum of 1 (one) random loose sample shall be taken for QA testing (i.e. for determination of maximum theoretical density).

The Engineer will be responsible for transporting the samples to the Department representative’s laboratory.

Neither loose nor core samples will be taken from small areas such as tapers, aprons, bridge approaches, areas of handwork, and asphalt mix used for isolated leveling and repair of failed areas, however, the tonnage contained therein will be included in the Lot.

Random samples will not be taken in areas of obvious surface defects as indicated in 330.06.07 Surface Defects. These areas will be marked and repaired in accordance with 330.06.12.01 Removal and Replacement.

The Engineer may use discretion in relocating random core locations that fall within areas of severe vertical curvature or grade (i.e. at the base or crest of a hill or >10% grade).

330.06.09.02 Asphalt Binder Content, Gradation and Air Voids

Loose samples will be taken on the road behind the paver and retrieved prior to compaction per Section 330.06.02.05.

The Engineer will provide the Contractor with approximately 30 minutes advance notice of loose sampling requirements, based on projected tonnage/production rates.

Each sample will be split into 2 (two) equal portions. One portion will be tested and the other will be set aside in the event that a re-test is required.

Performance for asphalt binder content, air voids and gradation will be evaluated for unit price adjustment in accordance to Tables 12, 13 and 14 utilizing the mean of deviations for the lot.

The following acceptance criteria shall apply for all mixes:

Table 11

<table>
<thead>
<tr>
<th>TYPE OF TEST</th>
<th>ACCEPTABLE ZONE (%)</th>
<th>PENALTY ZONE (%)</th>
<th>REJECTABLE ZONE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot Mean of Deviations</td>
<td>± 0.25</td>
<td>-0.26 TO -0.50</td>
<td><0.50 OR >+0.50</td>
</tr>
</tbody>
</table>

Table 12

<table>
<thead>
<tr>
<th>Penalty Zone AC Content Déviation %</th>
<th>Unit Price Payment Adjustment Factor %</th>
<th>Penalty Zone AC Content Déviation %</th>
<th>Unit Price Payment Adjustment Factor %</th>
<th>Penalty Zone AC Content Déviation %</th>
<th>Unit Price Payment Adjustment Factor %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.26</td>
<td>0.5</td>
<td>0.35</td>
<td>5</td>
<td>0.44</td>
<td>14</td>
</tr>
<tr>
<td>0.27</td>
<td>1</td>
<td>0.36</td>
<td>6</td>
<td>0.45</td>
<td>15</td>
</tr>
<tr>
<td>0.28</td>
<td>1.5</td>
<td>0.37</td>
<td>7</td>
<td>0.46</td>
<td>16</td>
</tr>
<tr>
<td>0.29</td>
<td>2</td>
<td>0.38</td>
<td>8</td>
<td>0.47</td>
<td>17</td>
</tr>
<tr>
<td>0.30</td>
<td>2.5</td>
<td>0.39</td>
<td>9</td>
<td>0.48</td>
<td>18</td>
</tr>
<tr>
<td>0.31</td>
<td>3</td>
<td>0.40</td>
<td>10</td>
<td>0.49</td>
<td>19</td>
</tr>
<tr>
<td>0.32</td>
<td>3.5</td>
<td>0.41</td>
<td>11</td>
<td>0.50</td>
<td>20</td>
</tr>
<tr>
<td>0.33</td>
<td>4</td>
<td>0.42</td>
<td>12</td>
<td>>0.50</td>
<td>Reject</td>
</tr>
<tr>
<td>0.34</td>
<td>4.5</td>
<td>0.43</td>
<td>13</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
Table 13
Unit Price Adjustment for Marshall Air Voids

<table>
<thead>
<tr>
<th>AVERAGE DEVIATION OF AIR VOIDS FROM 3.50 or 4.00% *(as per highway classification)</th>
<th>UNIT PRICE ADJUSTMENT ($ PER TONNE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00 to 1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1.01 to 1.10</td>
<td>-0.50</td>
</tr>
<tr>
<td>1.11 to 1.20</td>
<td>-1.00</td>
</tr>
<tr>
<td>1.21 to 1.30</td>
<td>-2.00</td>
</tr>
<tr>
<td>1.31 to 1.40</td>
<td>-4.00</td>
</tr>
<tr>
<td>1.41 to 1.50</td>
<td>-6.00</td>
</tr>
<tr>
<td>1.51 to 1.60</td>
<td>-8.00</td>
</tr>
<tr>
<td>1.61 to 1.70</td>
<td>-10.00</td>
</tr>
<tr>
<td>1.71 to 1.80</td>
<td>-12.00</td>
</tr>
<tr>
<td>1.81 to 1.90</td>
<td>-14.00</td>
</tr>
<tr>
<td>1.91 to 2.00</td>
<td>-16.00</td>
</tr>
<tr>
<td>> 2.00</td>
<td>REJECT</td>
</tr>
</tbody>
</table>

* For highway classifications RAU & RAD-100, RAU & RAD-90 as well as RCU-80 the average deviation of air voids shall be measured from 4.00%. While for highway classifications RLU-80, RLU-70, RLU-60 the average deviation of air voids shall be measured from 3.50%.

Table 14
Unit Price Adjustment for Gradation

<table>
<thead>
<tr>
<th>SIEVE SIZE (DESIGNATION)</th>
<th>AVERAGE DEVIATION OF THE GRADATION FROM THE JOB MIX FORMULA</th>
<th>UNIT PRICE ADJUSTMENT ($ PER TONNE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base & Levelling Type II Course</td>
<td>Surface & Levelling Type I Course</td>
<td></td>
</tr>
<tr>
<td>0.00 to 6.00</td>
<td>0.00 to 5.00</td>
<td>0.00</td>
</tr>
<tr>
<td>6.01 to 6.20</td>
<td>5.01 to 5.20</td>
<td>-0.50</td>
</tr>
<tr>
<td>6.21 to 6.40</td>
<td>5.21 to 5.40</td>
<td>-1.00</td>
</tr>
<tr>
<td>6.41 to 6.60</td>
<td>5.41 to 5.60</td>
<td>-1.50</td>
</tr>
<tr>
<td>6.61 to 6.80</td>
<td>5.61 to 5.80</td>
<td>-2.00</td>
</tr>
<tr>
<td>6.81 to 7.00</td>
<td>5.81 to 6.00</td>
<td>-2.50</td>
</tr>
<tr>
<td>7.01 to 7.20</td>
<td>6.01 to 6.20</td>
<td>-3.00</td>
</tr>
<tr>
<td>7.21 to 7.40</td>
<td>6.21 to 6.40</td>
<td>-3.50</td>
</tr>
<tr>
<td>7.41 to 7.60</td>
<td>6.41 to 6.60</td>
<td>-4.00</td>
</tr>
<tr>
<td>7.61 to 7.80</td>
<td>6.61 to 6.80</td>
<td>-4.50</td>
</tr>
<tr>
<td>7.81 to 8.00</td>
<td>6.81 to 7.00</td>
<td>-5.00</td>
</tr>
<tr>
<td>8.01 to 9.00</td>
<td>7.01 to 8.00</td>
<td>-10.00</td>
</tr>
<tr>
<td>9.01 to 10.00</td>
<td>8.01 to 9.00</td>
<td>-15.00</td>
</tr>
<tr>
<td>> 10.00</td>
<td>> 9.00</td>
<td>REJECT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Passing 4.75mm (#4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00 to 0.60</td>
</tr>
<tr>
<td>0.61 to 0.70</td>
</tr>
<tr>
<td>0.71 to 0.80</td>
</tr>
<tr>
<td>0.81 to 0.90</td>
</tr>
<tr>
<td>0.91 to 1.00</td>
</tr>
<tr>
<td>1.01 to 1.10</td>
</tr>
<tr>
<td>1.11 to 1.30</td>
</tr>
<tr>
<td>> 1.30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Passing 75μm (#200)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00 to 0.60</td>
</tr>
<tr>
<td>0.61 to 0.70</td>
</tr>
<tr>
<td>0.71 to 0.80</td>
</tr>
<tr>
<td>0.81 to 0.90</td>
</tr>
<tr>
<td>0.91 to 1.00</td>
</tr>
<tr>
<td>1.01 to 1.10</td>
</tr>
<tr>
<td>1.11 to 1.30</td>
</tr>
<tr>
<td>> 1.30</td>
</tr>
</tbody>
</table>
In addition to the acceptance/rejection requirements for gradation, the following shall apply:

1) The Lot will be rejected if the average of the Lot test results from the 4.75mm sieve size falls outside the gradation limits specified in Table 3.
2) The Lot payment will be reduced by $5.00 per tonne if the average of the Lot test results for the 75μm sieve size exceeds, up to the maximum of 1.0%, the upper gradation limit specified in Table 3.
3) The Lot will be rejected if the average of the Lot tests results from the 75μm sieve size exceeds, by more than 1.0%, the upper gradation limit specified in Table 3.

330.06.09.03 Asphalt Density

Lots and trial mix areas will be divided into 4 (four) segments of approximately equal quantity. Three core samples will be taken at each location designated by the Engineer. One core sample will be used for QC testing; another for QA and a third sample will be set aside in the event it is required for appeal testing. Cores shall be a nominal 100 mm diameter. Coring locations for each Lot will be selected as follows:

The Engineer shall provide the Contractor with sample locations (station and offset) following placement of all asphalt concrete within a given Lot or trial mix area. Where traffic control conditions warrant, consideration shall be given to providing random core sample locations for a given mat (i.e. before all asphalt concrete for the Lot has been placed).

Cores shall not be taken within 0.15 m of the pavement edge or longitudinal joint, nor closer than 6 m to a transverse joint. Areas not to be cored include; small areas such as tapers, bullnoses, aprons, bridge approaches, bridge decks, areas of handwork, and asphalt mix used for isolated leveling. Cores shall not be taken within 10 m of a loose sample location. The Engineer may use discretion in relocating random core locations that fall within areas of severe vertical curvature or grade (i.e. base or crest of a hill).

Cores shall be obtained in accordance with ASTM D5361 within a minimum of 12 hours and a maximum 24 hours after the placement of the asphalt concrete. The Contractor shall have the option of using dry ice to obtain the cores earlier than 12 hours after placement.

During the coring operation, the Contractor must provide all traffic control in the form of flag persons and signs which conforms to Division 7 Temporary Condition Signs and Devices of the Department and Transportation and Works Specifications Book. Coring will not be permitted until all traffic control devices are erected and flag persons are in position.

Immediately following each coring operation, the Contractor shall reinstate the pavement at the core sample location in conjunction with removal of the core by dewatering the core hole and filling it with hot mixed asphalt concrete in 50 mm lifts to the pavement surface elevation, compacting each lift with 25 blows using a standard Marshall hammer. Each coring operation and the reinstatement of core hole is to be conducted during a single traffic control and flag person set up.

Failure to meet the time requirements for the core hole repair may result in delayed paving of any subsequent asphalt production.

The percent compaction will be determined by comparing the core bulk densities, in accordance with ASTM D2726 with the average theoretical maximum density of the loose mix samples for the Lot, in accordance with ASTM D2041. For asphaltic base and leveling courses unit price adjustments will be applied utilizing Table 15 to each tonne of asphalt mix for the Lot represented by the segments cored and the percent compaction averaged. For asphaltic surface courses unit price adjustments will be applied utilizing Table 15 for each individual core’s percent of maximum theoretical, and the unit price adjustment will be applied to each tonne of asphalt mix for the Lot divided by the segments cored for the Lot.

For each asphaltic base, leveling and surface course mixture type per Lot, in addition to the requirements noted above, if an individual core’s percent of maximum theoretical falls below 92.5 % or above 97.5 % no bonuses will be paid for the entire Lot for that mixture. Also, irrespective of the Lot, the average of any four consecutive samples of a mixture type (base, leveling or surface) shall have a reject limit of 91.0 % based on the four individual core’s percent of maximum theoretical. The rejected material represented by the averaged four cores will be the sum of the four units of material represented by each core defined as the tonnes of the asphalt mixture type for the Lot divided by the
segments cored for the Lot.

Table 15
Unit Price Adjustment for Density

<table>
<thead>
<tr>
<th>% OF MAXIMUM THEORETICAL DENSITY</th>
<th>UNIT PRICE ADJUSTMENT ($ PER TONNE)</th>
<th>% OF MAXIMUM THEORETICAL DENSITY</th>
<th>UNIT PRICE ADJUSTMENT ($ PER TONNE)</th>
<th>% OF MAXIMUM THEORETICAL DENSITY</th>
<th>UNIT PRICE ADJUSTMENT ($ PER TONNE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>98.5 REJECT</td>
<td></td>
<td>93.2 + 0.20</td>
<td>91.2 - 3.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.5 -5.00</td>
<td></td>
<td>93.1 + 0.10</td>
<td>91.1 - 3.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.4 -4.00</td>
<td></td>
<td>93.0 0.00</td>
<td>91.0 - 4.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.3 -3.00</td>
<td></td>
<td>92.9 - 0.10</td>
<td>90.9 - 4.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.2 -2.00</td>
<td></td>
<td>92.8 - 0.20</td>
<td>90.8 - 4.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.1 -1.00</td>
<td></td>
<td>92.7 - 0.30</td>
<td>90.7 - 5.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98.0 -0.50</td>
<td></td>
<td>92.6 - 0.40</td>
<td>90.6 - 5.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97.9 -0.40</td>
<td></td>
<td>92.5 - 0.50</td>
<td>90.5 - 6.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97.8 -0.30</td>
<td></td>
<td>92.4 - 0.60</td>
<td>90.4 - 7.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97.7 -0.20</td>
<td></td>
<td>92.3 - 0.70</td>
<td>90.3 - 8.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97.6 -0.10</td>
<td></td>
<td>92.2 - 0.80</td>
<td>90.2 - 9.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97.5 0.00</td>
<td></td>
<td>92.1 - 0.90</td>
<td>90.1 - 10.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97.4 +0.10</td>
<td></td>
<td>92.0 - 1.00</td>
<td>90.0 - 11.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97.3 +0.20</td>
<td></td>
<td>91.9 - 1.20</td>
<td>89.9 - 12.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97.2 +0.30</td>
<td></td>
<td>91.8 - 1.40</td>
<td>89.8 - 13.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97.1 +0.40</td>
<td></td>
<td>91.7 - 1.60</td>
<td>89.7 - 14.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤97.0 thru ≥93.5</td>
<td></td>
<td>91.6 - 1.80</td>
<td>89.6 - 15.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>to ≥93.5</td>
<td></td>
<td>91.5 - 2.00</td>
<td>89.5 - 16.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93.4 + 0.40</td>
<td></td>
<td>91.4 - 2.40</td>
<td><89.5 REJECT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93.3 + 0.30</td>
<td></td>
<td>91.3 - 2.80</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

330.06.09.04 Thickness (New Construction)

The asphalt concrete shall be placed in lifts at the prescribed thickness as per the contract specifications and/or as directed by the Engineer. The pavement thickness shall be determined from the cores obtained in 330.06.09.03 Asphalt Density. Price adjustments for thickness will be applied to new construction only.

The maximum thickness for a Lot shall be determined on a Lot by Lot basis. Individual thickness results will be evaluated for Acceptance and Rejection requirements as indicated in Table 16.

Table 16
Unit Price Adjustment for Thickness

<table>
<thead>
<tr>
<th>Thickness (New Construction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For all hot mix asphalt types the penalty for thickness shall be as follows:</td>
</tr>
<tr>
<td>Full payment for at least 3 out of 4 samples meeting the below tolerances</td>
</tr>
<tr>
<td>Repair/Replace/Reject for 2 or more out of 4 samples failing to meet the below tolerances</td>
</tr>
</tbody>
</table>

a) Thickness = specified application rate/bulk relative density obtained from core samples

b) Lift thickness tolerance for base and surface course only

\[
\text{Tolerance} = 0.20 \times \text{specified thickness (base course)}
\]

\[
\text{Tolerance} = 0.15 \times \text{specified thickness (surface course)}
\]

c) If the Thickness for the first lift of asphalt concrete is less than the tolerance, and a second lift of asphalt concrete is to be placed under the Contract, the Contractor shall place the second lift of the asphalt concrete to achieve a thickness equivalent to the total combined thickness required. The total first lift thickness shall be verified, for the deficient Lot, by the cores taken from the second lift of the identified deficient Lot.
330.06.09.04.01 Material Application Rate (Rehabilitated Pavements)

On rehabilitated pavements, hot mix asphalt shall be applied to the roadway at the rate or rates specified by the Engineer. Material application rates will be determined by the tonnage delivered to the paver as recorded by weigh tickets generated by automated scales, divided by the area covered by the Lot after allowance has been made for entrances and/or intersections. The Contractor shall provide the material application rates to the Engineer at the completion of each Lot. The appropriate backup information (including calculations) for determining the application rate shall be provided with the application rate, including paving start and end stations, pavement widths, intersection areas, etc.

The pay adjustment for material application rate is shown in the following table. The acceptance limit is the limiting value of the actual material application rate, expressed as a percentage of the specified material application rate for the Lot, below which the Lot is rejected. If the application rate of a Lot is outside the acceptance limit, the Lot is rejected automatically regardless of the values of other acceptance parameters.

Table 17
Lot Pay Adjustments for Material Application Rate

<table>
<thead>
<tr>
<th>Actual Application Rate Expressed as % of Specified Application Rate*</th>
<th>Unit Price Adjustment ($ per tonne) for all material in the Lot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lower Lift or Single Lift</td>
</tr>
<tr>
<td>≥ 110</td>
<td>-$6.00 for all material in the Lot up to 110% and no payment for product in excess of 110.0%</td>
</tr>
<tr>
<td>106.0 – 109.9</td>
<td>-$4.00</td>
</tr>
<tr>
<td>105.0 – 105.9</td>
<td>$0.00</td>
</tr>
<tr>
<td>104.0 – 104.9</td>
<td>$0.50</td>
</tr>
<tr>
<td>96.0 – 103.9</td>
<td>-$1.00</td>
</tr>
<tr>
<td>94.0 – 95.9</td>
<td>-$2.00</td>
</tr>
<tr>
<td>92.0 – 93.9</td>
<td>-$3.00</td>
</tr>
<tr>
<td>90.0 – 91.9</td>
<td>-$5.00</td>
</tr>
<tr>
<td>85.0 – 89.9</td>
<td><$84.9</td>
</tr>
</tbody>
</table>

*The specified application rate will be based on the asphalt mat thickness as per the highway classification. A 50mm asphalt mat thickness shall have a specified application rate of 117.5 kgs/m2 while a 60mm asphalt mat thickness shall have a specified application rate of 141.0 kgs/m2

330.06.09.05 Pavement Smoothness

The smoothness of the finished surface of the top lift of the pavement structure shall be determined after final rolling of the surface to be tested. Normally, the outer wheel paths of all lanes will be tested, in 100 m sections, or lots. Other wheel paths may also be tested in addition to, or as a substitution for, the outer wheel path, as directed by the Engineer.

The profile measurement will normally be taken using a Class 1 inertial laser profiler, which will measure the profile in accordance with the manufacturer's recommendations and ASTM E950 – Standard Test Method for Measuring the Longitudinal Profile of Traveled Surfaces with an Accelerometer Established Inertial Profiling Reference. The resulting measurements will be compiled to produce a Profile Index (PI). This determination of smoothness will be made by the Department, or its representative.

The Profile Index (PI) for each lane is the cumulative profile reading of the outer wheel path in millimeters per 100 m section, in excess of the 5 mm blanking band.

330.06.09.05.01 Profile Index Limits

The surface of the profiled pavement shall conform to the following Smoothness requirements:
Table 18
Smoothness Requirements

<table>
<thead>
<tr>
<th>Roadway Alignment Section</th>
<th>Profile Index (mm / 100 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLU-80 CLASSIFICATION AND ABOVE</td>
<td>15 mm OR LESS</td>
</tr>
<tr>
<td>INTERCHANGE RAMPS, TAPERS*, AND HIGHWAYS OF LOWER CLASSIFICATION THAN RLU-80</td>
<td>N/A</td>
</tr>
</tbody>
</table>

If the Smoothness requirements are not met, the Contractor shall repair the sections, or pay a price adjustment based on the Profile Index. These price adjustments will be applied based on the square meters of the final pavement surface as outlined in Table 19. For price adjustment purposes, the width of the final pavement surface includes the driving lane and adjacent shoulders.

Table 19
Profile Index Price Adjustment Schedule

<table>
<thead>
<tr>
<th>PROFILE INDEX PI (mm / 100m)</th>
<th>PRICE ADJUSTMENT $ PER SQUARE METER</th>
<th>PROFILE INDEX PI (mm / 100m)</th>
<th>PRICE ADJUSTMENT $ PER SQUARE METER</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 4.0</td>
<td>$0.338</td>
<td>18.1 to 21.0</td>
<td>-$0.540</td>
</tr>
<tr>
<td>4.1 to 5.5 incl.</td>
<td>$0.270</td>
<td>21.1 to 22.5</td>
<td>-$0.810</td>
</tr>
<tr>
<td>5.6 to 7.0</td>
<td>$0.203</td>
<td>22.6 to 24.0</td>
<td>-$1.080</td>
</tr>
<tr>
<td>7.1 to 8.5</td>
<td>$0.135</td>
<td>24.1 to 25.5</td>
<td>-$1.350</td>
</tr>
<tr>
<td>8.6 to 10.0</td>
<td>$0.068</td>
<td>25.6 to 27.0</td>
<td>-$1.620</td>
</tr>
<tr>
<td>10.1 to 15.0</td>
<td>$0.00</td>
<td>27.1 to 28.5</td>
<td>-$1.890</td>
</tr>
<tr>
<td>15.1 to 18.0</td>
<td>-$0.270</td>
<td>28.6 to 30.0</td>
<td>-$2.160</td>
</tr>
<tr>
<td>EACH ADDITIONAL 1.5mm INCREMENT ABOVE 30.0</td>
<td>(NO OF INCREMENTS X $0.54 +$2.160)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 20
Bump and Dip Penalties

<table>
<thead>
<tr>
<th>Bumps / Dips Measured in the Vertical Direction</th>
<th>Penalty</th>
<th>Bumps / Dips Measured in the Vertical Direction</th>
<th>Penalty</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 - 9 mm</td>
<td>$200</td>
<td>13.1 - 14 mm</td>
<td>$1200</td>
</tr>
<tr>
<td>9.1 - 10 mm</td>
<td>$400</td>
<td>14.1 - 15 mm</td>
<td>$1400</td>
</tr>
<tr>
<td>10.1 - 11 mm</td>
<td>$600</td>
<td>15.1 - 16 mm</td>
<td>$1600</td>
</tr>
<tr>
<td>11.1 - 12 mm</td>
<td>$800</td>
<td>16.1 - 17 mm</td>
<td>$1800</td>
</tr>
<tr>
<td>12.1 - 13 mm</td>
<td>$1000</td>
<td>17.1 - 18 mm</td>
<td>$2000</td>
</tr>
<tr>
<td>Each Additional 1 mm Increment Above 18 mm</td>
<td>(No. of Increments x $500) + $2000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

330.06.09.05.02 Surface Deviations (Individual Bumps and Dips)

Individual bumps and dips shall not exceed 8 mm in 7.6 m in the vertical direction. Where individual bumps and dips exceed 8 mm in 7.6 m, they may be corrected or the Contractor may elect to accept a penalty as per Table 20. The 5 mm blanking band is not applied to the bump and dip measurements. Not withstanding, transverse joints are still subject to Section 330.06.05.05.01 and any irregularity should be immediately corrected.

Table 20
Bump and Dip Penalties

<table>
<thead>
<tr>
<th>Bumps / Dips Measured in the Vertical Direction</th>
<th>Penalty</th>
<th>Bumps / Dips Measured in the Vertical Direction</th>
<th>Penalty</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 - 9 mm</td>
<td>$200</td>
<td>13.1 - 14 mm</td>
<td>$1200</td>
</tr>
<tr>
<td>9.1 - 10 mm</td>
<td>$400</td>
<td>14.1 - 15 mm</td>
<td>$1400</td>
</tr>
<tr>
<td>10.1 - 11 mm</td>
<td>$600</td>
<td>15.1 - 16 mm</td>
<td>$1600</td>
</tr>
<tr>
<td>11.1 - 12 mm</td>
<td>$800</td>
<td>16.1 - 17 mm</td>
<td>$1800</td>
</tr>
<tr>
<td>12.1 - 13 mm</td>
<td>$1000</td>
<td>17.1 - 18 mm</td>
<td>$2000</td>
</tr>
<tr>
<td>Each Additional 1 mm Increment Above 18 mm</td>
<td>(No. of Increments x $500) + $2000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

330.06.09.05.03 Testing

Testing and Evaluation: Testing will be performed as soon as possible after final rolling of the surface.

March 2012
Profile measurements will terminate 15 metres from the end of each bridge deck, or from a joint between existing pavement and the new pavement. Profiles will be taken at approximately the outer wheel path for every lane of traffic, or as designated by the Engineer. Repeat profiles may be taken only to define the limits of an out-of-tolerance surface variation. Some sections may be omitted from testing, as determined by the Engineer. Tapers will be excluded from testing unless otherwise directed by the Engineer.

The Contractor shall give the Department at least 5 days notice prior to laying the final course of asphalt. A pre-paving meeting shall be convened on-site between the Contractor, the Engineer, and the Manager of Materials (or their representatives) to discuss any concerns either party might have regarding placement of the final course of asphalt. If the Contractor believes certain areas to be tested should be excluded from price adjustments, then those concerns should be submitted in writing for discussion at that meeting. Failure to submit those concerns in writing shall mean all areas shall be subject to price adjustments.

Re-testing to Verify Original Testing Results: Should the Contractor request retesting of pavement sections due to an excessive PI or excessive bump and dip heights, and the Department approves the re-test, then the Contractor shall bear all costs associated with testing if the original results are confirmed. If the retest results determine an improved PI or improved bump and dip heights over the original test, then testing costs shall be borne equally by the Contractor and the Department, and the average of the two results will be accepted as final. Only one retest, using the same profiler is permitted.

330.06.09.06 Reporting

The Engineer will provide the Contractor with a copy of the results of QA testing within 1 (one) working day of their availability. Acceptance test results for a given Lot will not be reported to the Contractor until the quality control results for that Lot have been reported to the Engineer. Tests performed by the Engineer will not be considered to be quality control tests. If the Lot results for any one of the QA properties are outside the acceptance limits as listed in Tables 11 to 17, the Lot will be evaluated in accordance with 330.06.11 Analysis of Rejected Lots.

330.06.10 Appeals

The Contractor may appeal the results of QA testing for density, asphalt binder content, gradation and thickness for any rejected or penalized Lot. The Contractor may appeal the results of QA testing for density and thickness for any rejected or penalized trial mix. In the event of an appeal, the Contractor shall serve notice of appeal to the Engineer, in writing, within 48 hours of receipt of the QA test results.

The Contractor may have a representative present during appeal testing. During the period of the testing, the Contractor’s representative shall comment on anything concerning the testing which he or she does not consider to be valid and the Engineer shall respond to all comments in order to resolve them.

Prior to leaving the testing laboratory any unresolved comments regarding the testing procedures are to be given to the Engineer in writing. Any comments, with respect to the testing procedures, which are made subsequent to the Contractor’s representative leaving the laboratory, will not be considered. The new Sample Result, Mean or Mean of the Deviations, whichever the case may be, so obtained shall be binding on both the Contractor and the Department.

330.06.10.01 Appeal of Individual Test Results

The Contractor may appeal individual results of acceptance testing for the asphalt binder content and gradation properties only. When an individual test result from a Lot is challenged, the validity of the test result in question will be determined in accordance with ASTM E 178, Standard Practice for Dealing with Outlying Observations, using a “t”-test at a 5 (five) percent significance level. If the outlier test procedure shows that the challenged test result is valid, then it will be used in the calculations. If the outlier test procedure shows that the challenged test result is not valid, then the test result will be discarded unless there is an obvious error in the calculations or in transposing of the numbers. If there is no obvious error, the referee sample will be tested by the Engineer. Regardless of the presence of outlying observations in the re-tested sample and remaining original results, the results from the referee sample will be binding on both the Contractor and the Department and will be used in the calculations. The results from the outlier testing will be used for any subsequent appeals. The referee sample shall be tested for the following mix properties: asphalt binder content, gradation, and maximum density, in the event that the results are needed for additional appeals, if required. A new Mean or Mean of the Deviations, for
the combined test results, will be determined and this value will be used for acceptance and unit price adjustments.

330.06.10.02 Appeal of Test Results for the Entire Lot

The Contractor may appeal the entire Lot QA test results for the density, binder content, gradation and thickness properties for any rejected or penalized Lot only once. Appeal of test results for the entire Lot will only be considered if just cause can be shown by the Contractor that the acceptance test results are not representative of the product placed. If the Contractor’s quality control test results indicate greater deviations from the JMF than the quality assurance test results, no appeal will be allowed.

330.06.10.02.01 Appeal of Lot Binder Content and Gradation

If the individual sample or Lot asphalt binder content and/or Lot gradation, and/or air voids are appealed, the Engineer will submit the referee samples obtained in 330.06.09.02 Asphalt Binder Content, Gradation and Air Voids for testing at the Department representative’s laboratory. All original test results of the property appealed will not be considered. Only the new test results from the appeal will be used.

330.06.10.02.02 Appeal of Lot or Trial Mix Density

If the Lot or Trial Mix density is appealed, the Engineer will submit the appeal core samples obtained in 330.06.09.03 Asphalt Density. Only the new test results from the appeal will be used.

330.06.10.02.03 Appeal of Lot or Trial Mix Thickness

If the Lot or Trial Mix thickness is appealed, the Contractor will take 7 (seven) more cores at random locations as determined by the Engineer. These cores shall be tested at the Department representative’s laboratory. The high and low test results from the original Lot will be discarded and the remaining test results will be combined with the test results for the new samples. For thickness appeals, 7 (seven) of the 9 (nine) test results must meet or exceed the lift thickness tolerance specified in Table 16.

330.06.10.02.04 Payment of Appeal Testing Costs

If the new test results after the appeal process indicate that a penalty no longer applies, then the testing costs incurred by the Department during the appeal process for that Lot shall be borne by the Department. The Contractor shall be responsible for any other costs that they may incur.

If the new test results after the appeal process verify that a unit price adjustment or rejection remains valid for that Lot, the sampling and testing costs incurred by the Department during the appeal procedure shall be charged to the Contractor.

330.06.11 Analysis of Rejected Lots

Following an appeal of the entire Lot, in accordance with 330.06.10.02 Appeal of Test Results for the Entire Lot, if the new test results continue to indicate rejection, the new test results will be analyzed, at the discretion of the Engineer, to determine whether or not a portion of the Lot is acceptable. An analysis, as determined by the Engineer, will be carried out to determine which segments may be acceptable. If the analysis indicates partial Lot acceptance, only those areas corresponding to the sample segment(s) in which rejected material placement occurred shall be subject to 330.06.12.01 Removal and Replacement. Any and all price adjustments corresponding to the recalculated test results (excluding those in the rejected segment(s)) shall apply.

330.06.12 Repairs

Rejected work shall be repaired, remedied, overlaid, or removed and replaced at the Contractor’s expense. The asphalt concrete replacement or overlay shall be the same asphalt concrete mix designation as that which is removed or overlaid. All joints and the underlying asphalt concrete mat shall be tack-coated prior to repair.

The mix tonnage associated with the repair shall be produced in accordance with this specification. The repair tonnage shall be sampled in accordance with 330.06.02.05 Lot. Asphalt concrete comprising repaired areas shall
be subject to testing in accordance with 330.06.08 (Quality Control) and 330.06.09 (Quality Assurance.) Unit price adjustments calculated in accordance with Tables 12 to 17 and price adjustments from Tables 19 and 20.

The cost of retesting shall be borne by the Contractor. All costs associated with repairs, removal and replacement, or overlays are the responsibility of the Contractor.

330.06.12.01 Removal and Replacement

Rejected Lots or segments of Lots shall be removed by cold milling the full width of the affected mat and full depth of the lift in which the work is being performed.

Material removed shall become the property of the Contractor, to haul and stockpile or otherwise dispose of in an environmentally acceptable manner, at the Contractor’s expense.

330.06.12.02 Overlaying

Overlaying as a method of repair will only be considered in areas designated by the Engineer, for Lots or segments of Lots which are subject to rejection based on thickness or smoothness. The asphalt concrete mix used to construct the overlay shall meet the same requirements as the pavement which is overlaid. The overlay shall extend the full width of the underlying pavement surface and have a finished compacted thickness of not less than 40 mm.

A keyed joint shall be constructed at each end of the overlaid section as per 330.06.05.05.05 Keyed Joints. If an acceptable grade and cross slope cannot be achieved, the Contractor shall repair the area in accordance with 330.06.12.01 Removal and Replacement. If an overlay results in the need for additional shouldering material or adjustments to guide posts and guardrail, this work shall be carried out, at the Contractor's expense, in accordance with the applicable items as per the Standard Specification.

330.06.13 Measurement for Payment

330.06.13.01 Measurement for Payment for Asphaltic Surface Course, Asphaltic Base Course, Asphaltic Levelling Course Type I and II

The quantity of asphalt concrete to be measured for payment shall be the number of tonnes of mix placed and accepted in accordance with this specification. Unit price adjustments calculated in accordance with Tables 12 to 17 shall apply.

330.06.13.02 Measurement for Payment for Asphalt Cement

The asphalt cement will be measured in tonnes, rounded to two decimal places. Payment for Asphalt Cement shall be as per the percentage (%) of asphalt cement required in the approved Job Mix Formula. However, where Asphalt Cement contents are found to be deficient to the point of being in the penalty zones subsequently described, Asphalt Cement will be paid on actual content only, as determined by ASTM D6307 Standard Test Method for Asphalt Content of Hot-Mix Asphalt by the Ignition Method. Any moisture content in the hot mix asphalt will be determined and deducted. The method of determination of this moisture content will be in accordance with AASHTO 329 Standard Method of Test for Moisture Content of Hot Mix Asphalt by Oven Method.

Samples of hot mix asphalt shall be taken randomly, in accordance with 330.06.09.02 and tested to ensure conformance with the specifications stated herein. Sampling and testing shall be performed in accordance with ASTM D979 and ASTM D6307, Method A. Additional samples may also be taken and tested in accordance with ASTM D2172, for verification purposes.

If the test results representing the Lot mean of deviations for asphalt cement content falls into the above-stated “Penalty Zone”, the payments for both Asphalt Cement and Hot Mix Asphalt shall be adjusted by deducting a percentage from the unit prices per Table 12 for the Lot mean of deviations as appropriate. These adjustments shall apply to the areas of pavement represented by these samples.

If the test results representing the Lot mean of deviations fall into the above-stated “Rejectable Zone”, then no payment will be made for either the asphalt cement or hot mix asphalt represented by those samples.
FORM 330

In the event of any and all disputes over asphalt content, the asphalt contents as determined by the Engineer, in accordance with the above stated method, shall govern in all cases.

330.06.14 Basis of Payment

330.06.14.01 Basis of Payment for Asphal tic Surface, Asphaltic Base Course, Asphaltic Leveling Courses Type I and II, and Patching

Asphalt concrete will be paid for at the contract unit price per tonne for mix incorporated and accepted in the work, which price shall be full compensation for furnishing and transporting of all materials including aggregates, natural sand, PGAB, heating, handling, mixing, placing and compacting the mix, the supply of all equipment, plant, labour, traffic control and incidentals necessary to complete the work.

All price adjustments determined in accordance with this specification will be calculated and issued on the final progress estimate.

330.06.14.02 Basis of Payment for Asphalt Cement

Payment at the contract price for Asphalt Cement shall be compensation in full for all labor, materials, and equipment to supply the Asphalt Cement cost shall include purchase, loading, transportation, unloading and storage at the asphalt plant.

330.06.14.03 Basis of Payment for Rejected Mix

The Department will pay for only the original mix quantity. The Contractor is fully responsible to bear all costs associated with repair of rejected areas, including all materials, equipment, plant, labour, traffic control and incidentals necessary to complete the work to the satisfaction of Engineer.

If the Department determines the rejected material may remain in the work, and the Contractor elects not to repair the affected area, payment for the rejected mix components will be at 50% of the various contract unit prices.
SECTION 403
EXCAVATION FOR FOUNDATIONS

INDEX

403.01 SCOPE

403.02 ENVIRONMENTAL REQUIREMENTS

403.03 EXCAVATION FOR FOUNDATION

403.03.01 Excavation for Foundation for Culverts Installed in All Places Other than Across Existing Roads

403.03.02 Excavation for Foundation for Culverts Installed Across an Existing Road in a Low Fill

403.03.03 Excavation for Foundation for Culverts Installed Across an Existing Road in a High Fill

403.03.04 Excavation for Foundation for Gabions

403.03.05 Excavation for Foundation for Footings

403.03.06 Excavation for Foundation for Bin-Type Retaining Wall

403.03.07 Excavation for Foundation for Welded Wire Retaining Wall

403.03.08 Backfill Material

403.04 CLASSIFICATION

403.05 MEASUREMENT FOR PAYMENT

403.05.01 Measurement for Payment for Excavation for Foundation for Culverts Installed in All Places Other than Across Existing Roads

403.05.02 Measurement for Payment for Excavation for Foundation for Culverts Installed Across an Existing Road in a Low Fill

403.05.03 Measurement for Payment for Excavation for Foundation for Culverts Installed Across an Existing Road in a High Fill

403.05.04 Measurement for Payment for Excavation for Foundation for Items Other than Culverts

403.06 BASIS OF PAYMENT

403.01 SCOPE

This work shall include labour, equipment and materials required to carry out excavation such as that required to obtain a foundation for such structures as bin-wall, culverts, footings, and gabions, and shall include hauling up to 1 km, handling and incorporation of all suitable materials into fill construction in accordance with Section 204 "Grading of Fill", and shall include the hauling up to 1 km, and handling of the unsuitable materials and the trimming of such unsuitable materials along embankment slopes or elsewhere, all as directed by the Engineer.

The work shall also include excavation required prior to disposal or salvage of culvert or pipe.
The work shall not include the excavation of those materials which the Contractor had previously placed, of his own choice as a temporary measure, and is required to excavate to facilitate the placing of, for example, select granulars. Any such excavation of materials which were placed as a temporary measure by choice of the Contractor, shall be at the Contractor's expense.

Where the quantity of excavation exceeds that required in the backfilling operation or to construct the fills as directed by the Engineer, the surplus shall be used to widen the fills or otherwise disposed of as directed by the Engineer.

403.02 ENVIRONMENTAL REQUIREMENTS

The Contractor shall be aware of Division 8. Where unwatering is required, it shall be carried out as specified in Section 180.

403.03 EXCAVATION FOR FOUNDATION

The Contractor shall excavate along the lines, to the width and to the grade required by the Engineer.

403.03.01 Excavation for Foundation for Culverts Installed in All Places Other than Across Existing Roads

In the particular case of excavation for foundation for culverts installed in all places except across existing roads, the Contractor will normally be required to excavate for a width equal to the nominal diameter of the pipe, or the nominal span of the arch in the case of pipe arches, plus a distance of 300 mm on each side of the culvert, unless required otherwise by the Engineer. The depth of the excavation shall be as shown on Form 1236 "Typical Culvert Bedding and Backfill Details", Form 1231 "Typical Structural Plate Round Pipe Bedding and Backfill Details", or Form 1232 "Typical Structural Plate Pipe Arch Bedding and Backfill Details", as appropriate, or as directed by the Engineer.

Excavation in addition to that required by the Engineer, will be considered incidental to the works.

403.03.02 Excavation for Foundation for Culverts Installed Across an Existing Road in a Low Fill

In the particular case of excavation for foundation for culverts installed across an existing road where the excavation is 1.25 m deep, or less, the Contractor will be required to excavate for a width equal to the nominal diameter of the pipe, plus 0.3 m on each side.

The depth of excavation shall be as shown on Form 1236 "Typical Culvert Bedding and Backfill Details", or as directed by the Engineer.

Excavation in addition to that required by the Engineer, will be considered incidental to the works.

403.03.03 Excavation for Foundation for Culverts Installed Across an Existing Road in a High Fill

In the particular case of excavation for foundation for culverts installed across an existing road where the excavation is deeper than 1.25 m, the Contractor will be required to excavate for a width at the bottom of the trench, equal to the nominal diameter of the pipe, plus 0.3 m on each side. However, at the top of the trench, the width shall be equal to the bottom width plus two times the depth of the trench.

For culverts where the depth of excavation is greater than 5.0m, calculated nominal excavation volumes will include the provision of a bench of nominal width 4.0m. The bench is intended to assist in the operation of removing the old culvert and installing the new one. The location of the bench will be such that their will be 5.0m from the bottom of the culvert to the bench or as determined in the field by the engineer.
The depth of excavation shall be as shown on Form 1236 "Typical Culvert Bedding and Backfill Details", Form 1231 "Typical Structural Plate Round Pipe Bedding and Backfill Details", or Form 1232 "Typical Structural Plate Pipe Arch Bedding and Backfill Details", or Form 1226 “Benching Detail” as appropriate, or as directed by the Engineer.

Excavation in addition to that required by the Engineer, will be considered incidental to the works.

403.03.04 Excavation for Foundation for Gabions

In the case of excavation for foundations for gabions, the Contractor will normally be required to excavate an area slightly larger than the nominal base area, to a depth as required by the Engineer.

403.03.05 Excavation for Foundation for Footings

In the case of excavation for concrete footings for structural plate arches, the excavation pay lines shall be the length of the footing plus 300 mm on each end times the width of the footing plus 300 mm on each side times the depth between original ground line and foundation elevation or as directed by the Engineer. All excavation in addition to the above will be considered incidental to the works.

When a footing is to rest on an excavated surface other than rock, special care shall be taken not to disturb the bottom of the excavation. In soft or wet conditions, the final removal of material to foundation level shall not be made until the Contractor is ready to proceed with the construction of the footing. When material at the founding elevation is Other Material and has been over excavated, the elevation shall be re-established by replacing with suitable material and compacting it to the bearing capacity of the original material as approved by the Engineer. When the founding material is Solid Rock and has been over excavated, the foundation elevation shall be re-established to the original elevation with mass concrete. First, all loose and compressible material shall be removed from the excavation to the satisfaction of the Engineer. Next, concrete shall be placed to the foundation elevation and shall fill the entire volume of the over excavation. Concrete shall be of a quality compatible with that used in the footing. No compensation will be provided for the cost of remedial measures required by the Engineer as a result of over excavation by the Contractor.

403.03.06 Excavation for Foundation for Bin-Type Retaining Wall

In the case of excavation for bin-type retaining wall, the excavation lines shall be the length of the structure plus one metre on each end times the width of the structure plus one metre on each side times the actual depth from original ground to the base elevation or 200 mm below the base elevation where an unyielding or rock foundation exists. When the foundation is soft or has non-uniform bearing capacity, the lines for the excavation shall be as directed by the Engineer.

All excavation in addition to the above will be considered incidental to the works.

403.03.07 Excavation for Foundation for Welded Wire Retaining Wall

In the case of excavation for welded wire retaining wall, the excavation lines shall be the length of the structure plus 0.3 m on each end times the width of the structure plus 0.3 m on each side times the actual depth from original ground to the base elevation or 200 mm below the base elevation where an unyielding or rock foundation exists. When the foundation is soft or has non-uniform bearing capacity, the lines for the excavation shall be as directed by the Engineer.

All excavation in addition to the above will be considered incidental to the works.

403.03.08 Backfill Material

Materials excavated as excavation for foundations will be used for backfill if the material is deemed suitable by the Engineer.

If there should be insufficient backfill material available from the excavations, then the Engineer will direct that material from a cut or from a borrow area will be used to complete the backfilling.

Frozen materials shall not be acceptable as backfill material.

March 2012
403.04 CLASSIFICATION

Excavated materials will be classified as either "Solid Rock" or "Other Material" in accordance with Section 205 "Classification of Excavated Materials".

403.05 MEASUREMENT FOR PAYMENT

Volumes of all classes of excavation described in 403.04 "Classification" will be measured in excavation and computed in cubic metres rounded to the nearest whole number.

During excavation operations whenever the character of material changes from one type to another, as classified in Section 205, then the Contractor shall strip the area, within the limits, of all overlying material, and notify the Engineer in order that proper measurements or cross sections may be made. No allowance will be made for material excavated before such measurements or cross sections have been made.

For boulders present in Other Material; the three maximum rectilinear dimensions of boulders, actually excavated, will be measured and the volume of each so determined. Volumes of the boulders which are equal to, or greater than, zero decimal five cubic metres will be included for payment as Excavation for Foundation Solid Rock.

Where excavation for foundation is carried out during existing pipe removal operations, the cross-sectional area of the pipe to be removed shall be determined, and deducted for excavation end areas used in volume of excavation determinations.

403.05.01 Measurement for Payment for Excavation for Foundation for Culverts Installed in All Places Other than Across Existing Roads

Measurement for payment for Excavation for Foundation for culverts installed in all places other than across existing roads shall be by means of the nominal volume of excavation.

The quantity to be measured shall be the number of cubic metres of excavated material as shown between the position of the ground lines as cross sectioned after grubbing operations have been completed (or when excavation for foundation is to be carried out in a cut, after grading of cut or excavation of muskeg or bog operations have been completed as the case may be), and the completed and accepted excavation lines. Material excavated outside of the required limits will not be included in measurement for payment. Nominal volume of excavation shall be computed by an adaption of the Average End Area method of volume computation, in which end areas are calculated as the product of the required depth of excavation, times the nominal width of excavation.

The nominal width of excavation shall be taken as either: 1.0 m, or the nominal diameter of the culvert plus 0.6 m, whichever is greater.

403.05.02 Measurement for Payment for Excavation for Foundation for Culverts Installed Across an Existing Road in a Low Fill

Measurement for payment for Excavation for Foundation for culverts installed across an existing road where all the excavation is 1.25 m deep, or less, shall be by means of the nominal volume of excavation.

Nominal volume of excavation shall be computed by an adaption of the Average End Area method of volume computation, in which end areas are calculated as the product of the required nominal depth of excavation, times the nominal width of excavation. The nominal depth of excavation shall be defined as the depth of the excavation on the centerline of the culvert at original ground to the bottom of the trench as specified by the Engineer.

The nominal width of excavation shall be taken as either: 1.0 m, or the nominal diameter of the culvert plus 0.6 m, whichever is greater.
403.05.03 Measurement for Payment for Excavation for Foundation for Culverts Installed Across an Existing Road in a High Fill

Measurement for payment for Excavation for Foundation for culverts installed across an existing road where the excavation is more than 1.25 m depth, shall be by means of the nominal volume of excavation.

Nominal volume of excavation shall be computed by an adaption of the Average End Area method of volume computation, in which the end areas used in the calculations are nominal end areas. For each culvert, the volume shall be calculated using the excavation nominal end area: at the inlet, at the edge of the road shoulder, at the road center line, at the edge of the other shoulder, at the outlet and at any other significant inflection point within the cross-section of the culvert. These individual nominal end areas shall each be calculated in accordance with the typical cross section shown on Form 1226, “Typical Culvert Excavation Pay Limit Cross Section for Fills Deeper than 5.0m”.

403.05.04 Measurement for Payment for Excavation for Foundation for Items Other than Culverts

Measurements shall be of the actual amount of material moved from within the limits required by the Engineer.

The quantity to be measured shall be the number of cubic metres of excavated material as shown between the position of the ground lines as cross sectioned after grubbing operations have been completed (or when excavation for foundation is to be carried out in a cut, after grading of cut or excavation of muskeg or bog operations have been completed as the case may be), and the completed and accepted excavation lines. Material excavated outside of the required limits will not be included in measurement for payment. The volume of the excavation to be computed by the average end area method of computation or as wedges or pyramids, as the case may be, when terminating at grade points.

403.06 BASIS OF PAYMENT

Payment shall be at the Contract Unit Price per cubic metre for Excavation For Foundation, Solid Rock or Other Material, as the case may be, hauled 1 km or under and the backfilling of the same in accordance with the plans or as directed by the Engineer. Such payment shall be full compensation for all work herein described together with the labour, materials, and equipment-use required for excavating, handling, hauling up to 1 km, placing, and compacting in a fill as described in Section 204 “Grading of Fill” or stockpiling and reuse of the materials excavated as excavation for foundations for backfill of the excavation if the material is deemed suitable by the Engineer or disposing over slopes or otherwise directed by the Engineer.

Where the Engineer requires that Excavation for Foundation material be hauled in excess of 1 km, additional payment for overhaul will be made in accordance with Section 215 "Overhaul on Excavation".

March 2012
SECTION 410

SELECT BEDDING FOR STORM SEWERS, SUB-DRAINS AND CATCH BASINS

INDEX

410.01 SCOPE

410.02 MATERIALS

410.03 PLACING OF BEDDING

410.03.01 Placing of Under Bedding in Trenches

410.03.02 Placing of Bedding on Each Side and Over Pipe

410.03.03 Placing of Bedding for Catch Basins

410.04 COMPACTION

410.05 MEASUREMENT FOR PAYMENT

410.05.01 Measurement for Payment for Pipe Bedding

410.05.02 Measurement for Payment for Catch Basin Bedding

410.06 BASIS OF PAYMENT

410.01 SCOPE

This work shall include labour, materials, and equipment use required to provide, place and compact select bedding for storm sewers, sub-drains, and the sides of catch basins.

410.02 MATERIALS

Select bedding material shall be crushed stone or pit run gravel and shall have the gradation of Class "B" as set forth in Section 315 "Selected Granular Base Course".

410.03 PLACING OF BEDDING

Prior to any placing of bedding, material from cave-ins, accumulations of water and muck and all other objectionable matters shall be removed, damaged sections repaired or removed and replaced, and any other repair or attention required for a workmanlike job shall be performed.

No placing of select bedding shall be carried out until the works to be covered by bedding have been inspected and passed for backfilling by the Engineer.

Chutes or other proper means shall be used to prevent segregation of materials or displacement of structures or pipes. Improper dumping of select bedding material will not be permitted.

Select bedding material for pipes and catch basins shall be placed in layers not exceeding 200mm in thickness loose measurement. Each layer shall then be compacted to the density specified before a further layer is placed.

Select bedding for storm sewers and sub-drains shall be placed as shown in Form 1235 "Typical Storm Sewer Bedding and Backfill Details".
FORM 410

410.03.01 Placing of Under Bedding in Trenches

In the case of rock bottomed trenches, select bedding shall be placed in the bottom of the trench to provide under bedding for the pipe.

In the case of Other Material bottomed trenches, no select bedding is required for corrugated steel pipe. However, if plastic pipes are to be used then select bedding shall be placed in the bottom of the Other Material bottomed trench to provide under bedding for the plastic pipe.

Under bedding shall be shaped to conform to the under side of the pipe and be graded to conform to the required grade for the pipe.

410.03.02 Placing of Bedding in Each Side and Over Pipe

When placing select bedding over pipes, bedding operations shall be kept back at least 3m from the advanced end of the pipe line, except for the completion of any section or at the termination of a day's work. Uncovered pipe, left overnight, shall be backfilled as soon as possible to the end of the pipe without covering it. The trench shall be filled with select bedding material to a height of at least 300mm above the top of the pipe, or when more than one pipe is laid in the trench, to a height of at least 300mm above the top of the highest pipe.

Select bedding material placed around a pipe shall be maintained at equal levels on each side of the pipe at all times, so that the intended alignment of the pipe be achieved.

410.03.03 Placing of Bedding for Catch Basins

The excavation surrounding the exterior of the catch basin shall be filled with compacted select bedding material up to subgrade elevation. Care shall be exercised in compacting the material to assure that the structure is not disturbed.

410.04 COMPACTION

Each layer of select bedding material shall be compacted to at least 95% of Standard Proctor Density (ASTM D698-78).

410.05 MEASUREMENT FOR PAYMENT

410.05.01 Measurement for Payment for Pipe Bedding

Measurement for payment for select bedding when used to cover storm sewers and sub-drains, will be by means of the net nominal volume of select bedding, measured in cubic metres rounded to the nearest whole number.

Net nominal volume of select bedding for storm sewers and sub-drains being defined as the gross nominal volume of select bedding material, less the nominal volume of the pipe, or pipes, treated with select bedding.

In trenches where under bedding is not required, such as Other Material bottomed trench in which a corrugated steel pipe is to be placed, then gross nominal volume of select bedding shall be defined as the volume of a rectangular prism calculated as the product of: width equal to the nominal diameter of the pipe in metres plus 0.6m (total width minimum = 1.0m), depth equal to the pipe nominal diameter in metres plus 0.3m, and the length in metres of pipe treated with select bedding.

In trenches where under bedding is not required and where a perforated pipe is placed in a trench alongside of a storm sewer, then the gross nominal volume of select bedding shall be calculated as the product of: width equal to only the storm sewer nominal diameter in metres plus 0.6m (total width minimum = 1.0m), depth equal to the storm sewer nominal diameter in metres plus 0.3m, and the length in metres of the storm sewer pipe treated with select bedding.
In trenches where under bedding is required, such as a trench with a rock bottom or any kind of trench in which a plastic pipe is to be placed, then gross nominal volume of select bedding shall be defined as the volume of a rectangular prism calculated as the product of: width equal to the nominal diameter of the pipe in metres plus 0.6m (total width minimum = 1.0m), depth equal to the pipe nominal diameter in metres plus 0.45m, and the length in metres of pipe treated with select bedding.

In trenches where under bedding is required and where a perforated pipe is placed in a trench alongside of a storm sewer, then the gross nominal volume of select bedding shall be calculated as the product of: width equal to only the storm sewer nominal diameter in metres plus 0.6m (total width minimum = 1.0m), depth equal to the storm sewer nominal diameter in metres plus 0.45m, and the length in metres of the storm sewer pipe treated with select bedding.

Nominal volume of each treated pipe being defined as the volume calculated from the manufacturer's nominal pipe diameter and the length of pipe treated with select bedding material.

410.05.02 Measurement for Payment for Catch Basin Bedding

Measurement for payment for select bedding when used for providing bedding for the sides of catch basins will be by means of the nominal volume of select bedding, measured in cubic metres rounded to the nearest whole number.

Nominal volume of select bedding for catch basins shall be defined as the product of catch basin outside perimeter measured in metres plus 1.25 metres, times the measured height in metres between underside of catch basin and subgrade elevation, times a nominal thickness of 0.3 metres.

410.06 BASIS OF PAYMENT

Payment shall be at the contract unit price per cubic metre for select bedding for storm sewers, subdrains and catch basins.

Such payment shall be full compensation for all work herein described together with the labour, materials, and equipment use required to: supply, haul, place and compact the select bedding material, together with any unwatering that may be required to carry out the work.
SUPPLY AND INSTALLATION OF PIPE CULVERTS

INDEX

421.01 SCOPE

421.02 MATERIALS

421.02.01 Corrugated Steel Pipe Materials
421.02.02 Plastic Pipe Materials
421.02.03 Aluminized or Double Zinc Corrugated Steel Pipe Materials

421.03 ENVIRONMENTAL PERMITS AND AUTHORIZATIONS

421.04 PIPE INSTALLATION

421.04.01 Corrugated Steel Pipe Installation
421.04.02 Plastic Pipe Installation

421.05 PROTECTION FROM TRAFFIC

421.06 MEASUREMENT FOR PAYMENT

421.07 BASIS OF PAYMENT

421.07.01 Basis of Payment for Supply and Installation of Pipe Culverts
421.07.02 Basis of Payment for Pipe Restocking
421.07.03 Basis of Payment for Pipe Purchase

421.01 SCOPE

This specification covers the requirements for the supply, installation and backfilling of factory fabricated pipe culverts, including the extension of existing culverts. Pipe culverts may be round or arched pipe. Should end-treatments such as concrete headwalls, gabions or rip rap be required, then the requirements for these will be covered separately in other items and specifications.

421.02 MATERIALS

Pipe shall consist of aluminized steel pipe type 2, concrete, or corrugated polyethylene pipe of profile type and strength as specified in the unit price table. However, contractors are advised that consideration will be given to proposals to substitute aluminized steel type 2 pipe with corrugated polyethylene pipe for diameters of up to and including 600 mm. The pipe shall be of the type, strength and size specified in the Unit Price Table.

421.02.01 Aluminized Steel Pipe Materials

Aluminized corrugated steel pipe, couplers, wyes, tees, bends, adapters, nuts and bolts shall conform to the requirements of the most recent revisions of the following specifications: AASHTO M274 and M36, ASTM A819 and A760 and CSA G401.

The pipe shall have a wall thickness of at least that specified in the Unit Price Table. However, should the wall thickness not be specified, then the wall thickness shall be at least the corresponding thickness given in the following table for pipe of the size and type required.
<table>
<thead>
<tr>
<th>PIPE DIAMETER</th>
<th>WALL THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mm to 500 mm</td>
<td>1.6 mm for Any Corrugation</td>
</tr>
<tr>
<td>600 mm to 1200 mm</td>
<td>2.0 mm for Any Corrugation</td>
</tr>
<tr>
<td>1400 mm to 1800 mm</td>
<td>2.0 mm for 125 mm X 25 mm Corrugation or 3.5 mm 68 X 13 mm Corrugation</td>
</tr>
<tr>
<td>2000 mm to 2400 mm</td>
<td>2.8 mm for 125 mm X 25 mm Corrugation or 4.2 mm for 68 X 13 mm Corrugation</td>
</tr>
</tbody>
</table>

The Contractor shall supply the pipe, couplers, nuts and bolts. Should strutting be required during backfill operations, then the Contractor shall provide the necessary timber.

Fill material to be placed within 300mm of the top, bottom and the sides of corrugated pipe shall consist of clean well graded Other Material, or small sized shot rock. The maximum dimension of any stone in the Other Material, or in the shot rock, shall not exceed 150mm.

421.02.02 Plastic Pipe Materials

Polyethylene pipe, couplers, wyes, tees, bends, and adapters shall conform to the requirements of the most recent revisions of the following specifications: AASHTO M252 and M294, ASTM F405 and F667 and CSA B182.6 and B182.8.

Couplers and plastic pipe, consisting of corrugated polyethylene pipe, shall be of a type, profile, size and strength class acceptable to the Engineer. The Contractor shall provide the plastic pipe and couplers.

Contractors are advised that should plastic pipe be used, then the pipe shall be installed in a Select Backfill Material consisting of well graded Other Material having no more than 10% passing the 0.075mm sieve with a maximum particle size not exceeding 40mm.

421.03 ENVIRONMENTAL PERMITS AND AUTHORIZATIONS

Authorization from the Fish Habitat Management Branch, Fisheries and Oceans Canada, is required for work in or near any watercourse or water body deemed to be viable fish habitat.

Where required by Fisheries and Oceans, a downstream pool shall be provided at the culvert outlet.

The Contractor shall provide such unwatering as is required. The unwatering shall be carried out in accordance with the requirements of Section 180 "Unwatering Incidental to Work".

The Contractor shall be aware of Division 8.

Where the stream is deemed to be viable fish habitat, then in order to assist fish passage during minimum flow periods, the culvert shall be installed such that the bottom of the culvert is at least 300mm below natural stream bed.

In multiple culvert installations, then to assist fish passage, only one culvert need be installed with the invert at least 300mm below natural stream bed.

421.04 PIPE INSTALLATION

Culvert pipes shall be laid to the alignment, length and grade staked by the Engineer.

Driveway culverts will typically be: a minimum length of 7 m if rip-rap end treatment is used, and a minimum length of 8 m if no rip-rap is used.

The culvert shall be installed in accordance with the requirements given in Form 1236 "Typical Culvert Bedding and Backfill Details" for aluminized steel pipe installation and with the requirements given in Form 1234a, 1234b or 1234c for polyethylene pipe installation.

March 2012
Should excavation be required to install the pipe at the required grade, then excavation shall be carried out and paid for in accordance with Section 403 "Excavation for Foundations".

Where unsuitable material is encountered at the proposed pipe invert grade, then the unsuitable material shall be excavated and replaced.

The replaced material shall be compacted to not less than 95% of Standard Proctor Density (ASTM D698-78).

The bed shall be shaped to conform to the bottom of the pipe and shall afford a uniformly firm bed throughout its entire length.

When extending an existing culvert, the Contractor shall brush off all soil sticking to that part of the existing pipe that will be lapped.

When laying pipe, should the required culvert length be unobtainable from a combination of pipe lengths available on the site, then the Contractor shall cut a piece of pipe to obtain the required length of culvert. The cut or short section shall be placed on the downstream end.

Pipe cuts shall be made neatly at right angles to the axis of the pipe.

Riveted or annular corrugated steel pipe and plastic pipe shall be laid with the inside circumferential laps pointing in the direction of the flow. The longitudinal laps shall be located in the upper half of the pipe.

Helical corrugated plastic and steel pipe shall be installed so that the helix angle is constant for the total length of the installation and each pipe section shall be installed next to the previous section such that the lock seam forms a continuous helix.

Should concrete headwall be installed under another item, then backfilling against the headwalls shall not commence until the concrete has been cured to the specified design strength at 28 days. Should the Contractor wish to commence backfilling before 28 days after pouring, then the Contractor will be required to prove that the 28 days specified design strength has been obtained before permission to commence backfilling will be granted.

The material shall be carefully placed so that the intended shape of the pipe is maintained and no damage or movement of the culvert occurs.

The backfill material shall be placed simultaneously on both sides of the pipe in layers not exceeding 200mm in thickness. Each layer shall be thoroughly tapped to a compaction not less than 95% of Standard Proctor Density before a further layer is placed.

Backfilling shall be continued until all parts of the pipe culvert have not less than 300mm of backfill cover.

Any pipe which is not in the alignment and to the grade required by the Engineer after laying shall be taken up and relaid at the Contractor's expense.

421.04.01 Aluminized Corrugated Steel Pipe Installation

Where excavation for foundation is required before an aluminized corrugated steel pipe may be placed in Other Material ground, then the excavation shall be to the proposed invert elevations and graded so as to provide a uniformly firm bed throughout the length of the culvert.

However, in solid rock, the excavation shall be carried out to a depth of 150mm below the proposed invert elevations so that fill material may be placed to provide a bed for the culvert. The fill material shall be placed and graded so as to provide a uniformly bed throughout the length of the culvert.

Where an aluminized corrugated steel pipe is cut, drilled or welded, the pipe shall be thoroughly cleaned with a wire brush to remove scale, rust, slag residue, weld splatter, and wiped clean. The clean surface shall receive at least one application of metal conditioner to de-oxidize, de-grease and phosphatize the
metal surface to be treated if the surface is oily. Pre-mixed, ready-to-apply, liquid-zinc compound shall be applied to the prepared clean dry metal surface. The cold galvanizing compound must be of a type that imparts cathodic action against corrosion. The cold galvanizing compound should have a minimum 50mm overlap of the surrounding undamaged aluminized metal.

When applying metal conditioner and cold galvanizing compound near a watercourse or water body, the Contractor shall ensure that the application is carried out carefully so as to prevent leakage or spillage.

Both metal conditioner and cold galvanizing compound must be approved by Underwriters Laboratories Inc. for component coatings (organic) and meet or exceed Canadian Government Specifications 1-GP-181A. All materials must be applied in accordance with the manufacturer's instructions.

Corrugated pipe sections shall be jointed together by means of couplers. The couplers shall be installed to lap approximately equal portions of the pipe being connected and such that the corrugations or projections of the coupler properly engage the pipe corrugations. As the coupler is being tightened, it shall be tapped with a mallet to take up the slack. On asphalt coated pipe, the contacting surfaces of the coupler and pipe shall be lubricated with fuel oil, or a similar solvent, prior to tightening the coupler.

Strutting will be required for corrugated steel pipe culverts of diameter or span greater than 1500mm in order to ensure that the original shape of the culvert is retained after completion of backfilling operations.

Strutting shall be placed as directed by the Engineer. Struts shall be placed such that they bear onto longitudinally placed members. Under no circumstances shall struts be placed so that they bear directly onto the walls of the pipe.

Struts shall be left in place until ordered removed by the Engineer at the completion of backfilling operations.

For aluminized corrugated steel pipe of diameter 2400mm or less, the minimum required cover to subgrade is 300mm. For aluminized corrugated steel pipe of diameter between 2400mm and 3600mm, the minimum required cover is 500mm.

421.04.02 Plastic Pipe Installation

Plastic pipe shall be laid on a bed of 150mm of Select Backfill Material.

Where excavation for foundation is required, the excavation shall be to 150mm below the proposed invert elevations so that Select Backfill Material may be placed to provide a bed for the culvert.

The Select Backfill Material shall be placed and shaped to conform to the underside of the culvert, and graded so as to provide a uniformly firm bed throughout the length of the culvert.

The cover shall not be less than the manufacturer's recommended minimum cover.

421.05 PROTECTION FROM TRAFFIC

Prior to allowing the movement of construction equipment or any vehicular traffic over the structure, the depth of cover over the culvert shall be at least equal to that stipulated under Section 421.04 "Pipe Installation". Cover for off highway construction equipment will be in addition to that specified above.

421.06 MEASUREMENT FOR PAYMENT

Measurement for payment for a culvert shall be the length of the culvert within the limits staked by the Engineer, measured in metres, to one decimal place, along the bottom of the new culvert.

March 2012
FORM 421

Should any part of the culvert extend beyond the limits as staked by the Engineer, then that part beyond the limits shall not be included in measurement for payment.

421.07 BASIS OF PAYMENT

421.07.01 Basis of Payment for Supply and Installation of Pipe Culverts

Payment at the contract price for the type and size of pipe culvert specified shall be compensation in full for all labour, materials and equipment use to: supply the pipe, couplers, nuts and bolts, transport the materials to the project, store the materials at the project, transport the materials to the site, cut the pipe if required, clean the cut end, supply and apply metal conditioner and cold galvanizing compound to all cuts and welds, assemble the culvert, place and compact bedding and backfill as required, supply and place any required strutting, remove the strutting and provide all required unwatering of the culvert site during installation.

Select Backfill for use with plastic pipe shall be paid for in accordance with Section 206 "Grading of Cuts", or 207 "Borrow", or Section 310 "Use of Pits, Quarries and Stockpiles for Production of Materials Supplied by the Contractor" as the case may be, but the additional requirements for these materials as stipulated in this specification shall be considered compensated for in the contract price for supply and installation of pipe culverts.

Backfill for use near aluminized corrugated steel pipes will be obtained from materials excavated to place the pipes. Should the engineer determine that the excavated material be unsuitable for backfill, or should additional backfill materials be required, the backfill materials shall be paid for in accordance with Section 206, Grading of Cuts or Section 207, Borrow, as the case may be, but the additional requirements for backfilling, as stipulated in this specification shall be considered compensated for in the contract price for supply and installation of pipe culverts.

421.07.02 Basis of Payment for Pipe Restocking

Contractors are advised that should less than the contract estimated quantity of pipe of a particular size and type be required, then the Contractor will be compensated for restocking this excess pipe at the rate of 15% of the Contract Unit Price for the supply and installation of pipe culvert of this size and type. Restocking shall include such things as handling, all transportation and any other expenses associated with removing the excess pipe from the project site, and returning it to the supplier or to the Contractor's permanent storage area.

421.07.03 Basis of Payment for Purchase of Pipe

Contractors are advised that should less than the contract estimated quantity of pipe of a particular size and type be required, the Department reserves the right to purchase the excess. Compensation for purchase will be at the invoiced price for that pipe from the pipe supplier plus 10%.

March 2012
SECTION 470

CONSTRUCTION AND ADJUSTMENT OF MANHOLES, CATCH BASINS AND DITCH INLETS

INDEX

470.01 SCOPE

470.02 MATERIALS

- 470.02.01 Concrete
- 470.02.02 Mortar
- 470.02.03 Grout
- 470.02.04 Bricks
- 470.02.05 Reinforcing Steel
- 470.02.06 Manhole and Catch Basin Steps
- 470.02.07 Weep Hole Pipes
- 470.02.08 Precast Reinforced Concrete Manhole, Catch Basin and Ditch Inlet Components and Precast Concrete Adjustment Units
- 470.02.09 Pipe Seals
- 470.02.10 Manhole and Catch Basin Frames, Grates, Covers and Lift Rings
- 470.02.11 Ditch Inlet Grating and Hardware

470.03 OPTIONS

470.04 CONSTRUCTION OF MANHOLES, CATCH BASINS AND DITCH INLETS

- 470.04.01 Excavation
- 470.04.02 Poured in Place Construction
- 470.04.03 Precast Construction
- 470.04.04 Pipe Connections
- 470.04.05 Installation of Manhole and Catch Basin Frames, Grates and Covers
- 470.04.06 Installation of Grating for Ditch Inlets
- 470.04.07 Backfilling

470.05 ADJUSTMENT AND REBUILDING OF MANHOLES, CATCH BASINS AND DITCH INLETS

- 470.05.01 Scope
- 470.05.02 Excavation
- 470.05.03 General Adjustment and Rebuilding Work
 - 470.05.03.01 Adjustment
 - 470.05.03.02 Rebuilding
- 470.05.04 Backfilling

470.06 BREAKING INTO MANHOLES, CATCH BASINS AND DITCH INLETS

- 470.06.01 Scope
- 470.06.02 Excavation
- 470.06.03 Construction

March 2011
470.06.04 Backfilling

470.07 CLEAN-OUT

470.08 MEASUREMENT FOR PAYMENT

470.08.01 Measurement for Payment for Construction of Manholes, Catch Basins and Ditch Inlets

470.08.02 Measurement for Payment for Adjustment and Rebuilding of Manholes, Catch Basins and Ditch Inlets

470.08.03 Measurement for Payment for Supply of Frames, Grates, Covers and Gratings

470.08.04 Measurement for Payment for Breaking into Manholes, Catch Basins and Ditch Inlets

470.09 BASIS OF PAYMENT

470.09.01 Basis of Payment for the Construction of Manholes, Catch Basins and Ditch Inlets

470.09.02 Basis of Payment for the Adjusting and Rebuilding of Manholes, Catch Basins and Ditch Inlets

470.09.03 Basis of Payment for Supply of Frames, Grates, Covers and Gratings

470.09.04 Basis of Payment for Breaking into Manholes, Catch Basins and Ditch Inlets

470.01 SCOPE

This specification covers the requirements for constructing, rebuilding, adjusting and breaking into manholes, catch basins and ditch inlets.

470.02 MATERIALS

470.02.01 Concrete

Concrete shall have the following specific requirements:

CLASS OF CONCRETE 35MPa AT 28 DAYS
AGGREGATE 20mm MAXIMUM SIZE
AIR CONTENT 5% TO 8%
SLUMP 20mm TO 80mm

All concrete shall conform with the requirements of Section 904 "Concrete Structures".

470.02.02 Mortar

Mortar shall have the following proportions by weight:

1 PART PORTLAND CEMENT 2 PARTS CLEAN SHARP SAND

Mortar shall be thoroughly mixed in a mechanical mixer of approved type or by hand on an impervious stage with only sufficient water to make the mixture plastic. Only clean water shall be used in mortar.

Mortar shall be applied in a fresh condition before any setting has commenced.

470.02.03 Grout

Grout shall have the following proportions by volume:

1 PART PORTLAND CEMENT 3 PARTS CLEAN SHARP SAND
Grout shall be thoroughly mixed to a consistency such that the grout will just flow evenly; too liquid a mixture will not be acceptable.

Grout shall be used in a fresh condition and any grout which has commenced to set shall not be worked up again but shall be removed from the works.

470.02.04 Bricks

Bricks shall be construction grade bricks.

470.02.05 Reinforcing Steel

Reinforcing steel shall conform to CSA CAN-A23.1-M77 "Concrete Materials and Methods of Concrete Construction". Yield point shall be not less than 400 MPa and size and type of bars shall be as stated on the drawings.

470.02.06 Manhole and Catch Basin Steps

Manhole and catch basin steps shall be ladder rungs of the approximate dimensions as shown on the drawings for catch basins.

The materials of the ladder rungs shall be galvanized steel or an aluminum alloy.

Galvanized steel ladder rungs shall conform to the requirements of CSA Standard G30.12M or G30.16N, and shall be hot dip galvanized according to CSA Standard G164 to provide a zinc coating of not less than 0.6 kg per square metre. The carbon content of the steel shall not exceed 0.25%.

Aluminum alloy rungs shall conform to the requirements of CSA Standard HA5.

470.02.07 Weep Hole Pipes

Weep hole pipes shall be of the diameters as shown on the drawings and shall consist of galvanized steel, aluminum, clay or plastic pipe.

470.02.08 Precast Reinforced Concrete Manhole, Catch Basin and Ditch Inlet Components and Precast Concrete Adjustment Units

Precast units shall conform to design approved by the Engineer. Materials used in the units shall conform to the requirements of this specification.

470.02.09 Pipe Seals

Pipe seals used in connecting pipes to manholes, catch basins and ditch inlets shall be of types approved by the Engineer.

470.02.10 Manhole and Catch Basin Frames, Grates, Covers and Lift Rings

All frames, grates and covers shall conform to the size and configuration indicated on the drawings for the particular type specified on the contract unit price table.

Castings shall conform to the requirements of Class No. 30C as specified in ASTM A48-74.

Castings shall be sound, free from pouring faults, sponginess, cracks, blow holes and other defects. Bearing surfaces shall be machined if necessary so that the grates and covers sit firmly on the frames without rocking.

Castings shall be thoroughly cleaned and coated with a commercial quality asphaltic paint of a type suitable as a protective coating for iron castings.

Lift rings shall be of a type approved by the Engineer.

March 2011
470.02.11 Ditch Inlet Grating and Hardware

Ditch inlet grating, I-beam, anchor bolts, nuts and washers shall be as shown in the appropriate drawing for the required size of ditch inlet manhole, and Section 1260 "Typical Ditch Inlet Grating Detail".

The Contractor shall construct each grating so that it is of the required dimensions to fit the ditch inlet for which it is required. The inlet grates shall be composed of materials conforming with Metal Grating Institute #RF-37-5, or approved equal. The end bearing bar shall be welded to the angle bar along both legs with a 5 mm fillet weld.

When fabrication of the grating is complete, the grating and the I-beam shall be shop painted with asphalt having a softening point not lower than 70°C. Alternatively a tar base black paint shall be used.

Anchor bolts, together with accompanying nuts and washers shall be galvanized.

470.03 OPTIONS

The Contractor may choose between poured in place or approved precast construction.

Should the Contractor wish to use precast units, then he shall submit plans and specifications to the Engineer for a review of their suitability for use in the type of structure required. Only precast units which conform to designs approved by the Engineer shall be used.

470.04 CONSTRUCTION OF MANHOLES, CATCH BASINS AND DITCH INLETS

Manholes, catch basins or ditch inlets of the type specified shall be excavated for and constructed to conform to the requirements of the contract drawings, or the approved precast structure, and shall be located at the points and elevations as staked by the Engineer.

470.04.01 Excavation

The Contractor shall carry out, and be paid for excavations in accordance with the requirements of Section 404 "Trenching and Excavation for Catch Basin".

470.04.02 Poured in Place Construction

The Contractor shall form and pour the specified unit plumb and true to alignment and grade as set by the Engineer.

Formwork shall be supplied by the Contractor and shall conform to the requirements of Section 907 "Formwork and Falsework".

Concrete shall be placed in accordance with the requirements of Section 904 "Concrete Structures".

The Contractor shall incorporate all built-in hardware as is shown on the appropriate drawings for the particular type of structure being built.

Once forms have been stripped the Contractor shall remove all inside wall protuberances.

Concrete shall be cured in conformity with the requirements of Section 904 "Concrete Structures".

470.04.03 Precast Construction

The precast unit shall be placed plumb and true to alignment and grade as set by the Engineer.

Precast bases shall be set to the grade as staked, shall be level, and shall have uniform overall contact with the underlying ground.

Any adjustment of the unit for plumb, alignment, and grade shall be carried out by lifting the unit free of the excavation, levelling the base, and replacing the unit to proper alignment and grade. Should the adjustment
Form 470

March 2011

470.04.04 Pipe Connections

When constructing cast-in place units, pipes may be built-in, or holes may be kept in the walls at the required grades and locations so that the pipes can be placed later.

For precast units, the Contractor shall cut holes into the side of the structure at required locations.

Pipes shall not extend out from interior walls more than 0.3 m unless specifically directed by the Engineer.

These pipes that are placed in a prepared or cut hole in the wall shall be securely sealed into place using grout or pipe seals. Grout shall be well and truly worked into all holes and spaces between the pipe and wall so as to completely fill the spaces and form a strong watertight bond. Seals shall be installed according to the manufacturer's directions.

470.04.05 Installation of Manhole and Catch Basin Frames, Grates and Covers

The manholes and catch basins shall be constructed or installed so that the surface on which the mortar bed is to be placed is at least 20 mm but not more than 150 mm below the bottom of the frame and grate or frame and cover assembly.

Before application of mortar to the manhole or catch basin, the Contractor shall thoroughly clean the surface to which mortar is to be applied.

Frames for grates or covers on manholes and catch basins shall be set in a full mortar bed.

Bricks or precast concrete adjustment units may be used to set the frame and grate or frame and cover at the required position and elevation. Bricks shall be laid in double width using a Flemish bond. The inside and outside surfaces of the brick shall be plastered with a 10 mm thick mortar coat.

The frames and grates or frames and covers shall be set to the lines and grades as staked by the Engineer.

470.04.06 Installation of Grating for Ditch Inlet

Gratings for ditch inlets shall be installed and securely fastened down with a washer and nut as indicated in the contract drawings.

470.04.07 Backfilling

Backfilling shall be carried out using select bedding material which shall be placed and paid for according to the requirements of Section 410 "Select Bedding for Storm Sewers, Sub-Drains and Catch Basins".

The placing of select bedding materials shall not commence until the structure has cured to the specified design strength at 28 days. Should the Contractor wish to commence the placing of material before 28 days after pouring, then the Contractor will be required to prove that the 28 day specified design strength has been obtained before permission to commence backfilling will be granted.

470.05 ADJUSTMENT AND REBUILDING OF MANHOLES, CATCH BASINS AND DITCH INLETS

470.05.01 Scope

The work to be carried out shall include change of elevation of either a manhole, catch basin or ditch inlet, regardless of type or size.

Adjustment of manholes, catch basins or ditch inlets will apply where the top of the structure is to be raised or lowered 1.0 m or less.
Rebuilding of manholes, catch basins or ditch inlets will apply to where the top of the structure is to be lowered or is to be raised more than 1.0 m.

470.05.02 Excavation

Where bituminous pavement must be removed to adjust or rebuild a structure the pavement shall be cut and excavated.

When concrete curb and gutter or concrete sidewalk must be removed to adjust or rebuild a structure, the curb and gutter or sidewalk shall be cut and excavated. This work of cutting and excavating shall be carried out and paid for in accordance with Section 511 "Cutting Concrete Slabs and Curb and Gutter" and Section 521 "Demolition and Removal of Sidewalks, Curb and Gutter, Manholes, Catch Basins, Ditch Inlets, Fences, Guide Rails and Guide Posts".

The Contractor shall excavate such granular base course materials together with catch basin backfill materials that it is necessary to excavate in order to carry out the adjustment or rebuilding. These materials shall be piled in a manner that will not endanger the work or obstruct traffic or pedestrians, but will permit the materials future use as backfill for the completed structure.

Prior to adjustment or rebuilding, the existing frame and grate or cover shall be carefully removed and salvaged in order that it may be re-used.

470.05.03 General Adjustment and Rebuilding Work

All existing mortar and brickwork shall be removed from the top of the existing structures prior to adjustment or rebuilding with precast adjustment units.

Where the work involves adjusting or rebuilding a ditch inlet, then the Contractor shall supply and place such new anchor bolts, nuts and washers as are required to carry out the work.

Where the work involves poured in place concrete or placing pre-cast units, then the work shall conform to the requirements of Section 470.04.02 "Poured in Place Construction" or Section 470.04.03 "Precast Construction" as the case may be.

Once a manhole, catch basin, or ditch inlet has been adjusted or rebuilt the salvaged or a new frame and grate or cover, as required, shall be set to the correct elevation on the adjusted or rebuilt structure. This shall be done in accordance with the requirements of Section 470.04.05 "Installation of Manhole and Catch Basin Frames, Grates and Covers" or Section 470.04.06 "Installation of Grating for Ditch Inlet" as the case may be.

All construction debris resulting from adjustment or rebuilding of the structures shall be kept separate from excavated backfill materials.

470.05.03.01 Adjustment

When manhole or catch basin covers are to be raised only to accommodate re-surfacing of the adjacent pavement, the Contractor may use manhole cover lift rings to raise the cover a sufficient height to accommodate the thickness of re-surfacing material.

Bricks may be used to raise structures up to 0.3 m. Precast concrete adjustment units may be used to raise structures up to 1.0 m. Where bricks are used, they shall be plastered inside and outside with a 10 mm thick mortar coat.

Where structures have already been extended using bricks and they are further adjusted upward with bricks, the total height of adjustment shall not exceed 0.3 m.

Where structures have already been extended using concrete adjustment units and they require further upward adjustment, the total height of adjustment shall not exceed 1.0 m.
Where the top of units are to be raised, including structures with a domed upper section, concrete adjustment units, manhole cover lift rings or bricks shall be removed or added as required to adjust the structure to the proper elevation.

470.05.03.02 Rebuilding

To lower the top of cast-in-place structures with a domed upper section the concrete in the structure shall be removed for the entire depth of the doming plus as much of the straight wall section as is necessary. The upper section of the structure shall then be rebuilt with a standard dome.

To lower the top of straight walled cast-in-place structures, the upper section of concrete shall be removed.

To raise the top of cast-in-place structures with a domed upper section, the concrete in the structure shall be removed for the entire depth of the doming. The upper section, including straight walls and dome shall then be rebuilt.

To raise the top of straight walled cast-in-place structures, the existing walls shall be extended upward in concrete.

Where poured-in-place units are to be raised with poured-in-place concrete, the top surface of all existing walls shall be roughened before the walls are extended upwards.

Where the top of a precast structure is to be lowered or raised, the cone section shall be removed and riser sections of suitable height shall be removed, substituted for, or added to the existing riser sections. The cone section shall then be replaced.

470.05.04 Backfilling

Backfilling shall be carried out using excavated granular base course materials and excavated catch basin backfill materials. The backfill shall be placed and compacted in accordance with the requirements for placing and compacting bedding material as given in Section 410 "Select Bedding for Storm Sewers, Sub-Drains and Catch Basins".

Backfilling shall be placed up to subgrade elevation.

Where poured-in-place construction has been used to carry out the adjustment or rebuilding, then the placing of backfilling material shall not commence until the structure has cured to the specified design strength at 28 days. Should the Contractor wish to commence the placing of material before 28 days after pouring, then the Contractor will be required to prove that the 28 day specified design strength has been obtained before permission to commence backfilling will be granted.

470.06 BREAKING INTO MANHOLES, CATCH BASINS AND DITCH INLETS

470.06.01 Scope

This specification concerns the connection of a storm sewer or sub-drain to a catch basin, manhole or ditch inlet, which was not built as part of this contract.

470.06.02 Excavation

Excavation shall be carried out and paid for as part of the excavation for the storm sewer or sub-drain in accordance with Section 404 "Trenching, and Excavation for Catch Basins and Storm Sewers".

470.06.03 Construction

The Contractor shall cut a hole into the side of the structure at the location and grade as staked by the Engineer. The pipe shall be securely and neatly grouted in place at the required grade. The grout shall be well and truly worked into all holes and spaces between the pipe and wall so as to completely fill the spaces and form a strong watertight bond.
470.06.04 Backfilling

The grout shall be allowed to cure for at least 7 days before any backfill may be placed next to the connection.

Backfilling shall consist of the placing of select bedding and backfill for the pipe. Backfill shall be placed, compacted and paid for in accordance with Section 410 "Select Bedding for Storm Sewers, Sub-Drains and Catch Basins" and Section 404 "Trenching and Excavation for Catch Basins and Storm Sewers" respectively.

470.07 CLEAN-OUT

During the progress of the work and until the completion and final acceptance, manholes, catch basins and ditch inlets shall be kept clean and free of all foreign material.

The Contractor shall dispose of debris and surplus materials at his own expense.

470.08 MEASUREMENT FOR PAYMENT

Dependent on the items specified, measurement will be made by one of the following methods:

470.08.01 Measurement for Payment for Construction of Manholes, Catch Basins and Ditch Inlets

Measurements will be based on the number of each type of required manhole, catch basin, or ditch inlet placed at the required locations and grades.

470.08.02 Measurement for Payment for Adjustment and Rebuilding of Manholes, Catch Basins and Ditch Inlets

The alteration to each structure will be measured in metres, rounded to one decimal place. Measurement for payment will be made by taking the difference in elevation of the top of grate or cover at the centre prior to and after the adjustment with the following exceptions:

(a) When rebuilding domed structures, the actual measured adjustment will be increased by the height of the dome portion.

(b) Where the measured adjustment is less than 0.3 m, the measurement for payment will be taken to be 0.3 m.

470.08.03 Measurement for Payment for Supply of Frames, Grates, Covers and Gratings

Measurement for payment for the supply of frame and grate, frame and cover or grating will be based on the number of each type of frame and cover, frame and grate or grating supplied for incorporation into the adjustment or rebuilding of manholes, catch basins and ditch inlets.

470.08.04 Measurement for Payment for Breaking into Manholes, Catch Basins and Ditch Inlets

Measurement will be based on the number of connections made at the required locations of the grades.

470.09 BASIS OF PAYMENT

470.09.01 Basis of Payment for the Construction of Manholes, Catch Basins and Ditch Inlets

Payment of the contract price for each of the required type of manhole, catch basin, or ditch inlet placed shall be full compensation for all labour, materials and equipment-use to supply all materials (including required grating, frame and cover, frame and grate, or frames and grates, as the case may be) required to construct the structure as shown on the drawings, construct and cure a cast-in-place unit or install a precast unit, carry out such required preparation and compaction of a bed as may be necessary for the base of a precast unit, install such reinforcement steel, anchor bolts, I-beams, ladder rungs, pipe for weeping holes and such other required hardware, install pipes in the walls, install the required type of grating, frame and cover, frame and grate or frames and gratings, place anchor bolts or full mortar bed as appropriate, place and parge bricks or place precast concrete adjustment units as required, provide any required unwatering and shearing and
shoring, and to carry out any necessary work to complete the structure in accordance with the contract requirements.

Excavation required prior to manhole, catch basin, or ditch inlet construction shall be paid for in accordance with Section 404 "Trenching and Excavation for Catch Basins and Storm Sewers".

Backfilling of new manholes, catch basins, or ditch inlets shall be paid for in accordance with Section 410 "Select Bedding for Storm Sewers, Sub-Drains and Catch Basins".

470.09.02 Basis of Payment for the Adjustment and Rebuilding of Manholes, Catch Basins and Ditch Inlets

Payment at the contract price per metre for adjustment and rebuilding of manholes, catch basins and ditch inlets shall be full compensation for all labour, materials and equipment-use to supply all materials (except frame and grate, frame and cover or grating) required to carry out the alteration regardless of size or type, cut, remove and dispose of existing asphalt, carry out all necessary excavation after pavement, sidewalk and curb and gutter have been removed, remove and dispose of concrete and bricks in the structure, salvage the grating, frame and cover, frame and covers or frames and grates, place and cure cast-in-place concrete, place precast concrete adjustment units, place and pargh bricks, place such additional ladder rungs as may be required, place any required manhole rings, place anchor bolts or full mortar bed as appropriate, re-install salvaged frame and cover, frame and grate, frames and grates or grating or install new frame and cover as required, provide any required unwatering and shearing and shoring, place and compact backfill, and supply, place and compact Granular “A”, Granular “B” and asphalt including liquid and blending sand, together with all other items of work necessary for the satisfactory completion of the work, except for the cutting and removal, curb and gutter and sidewalk which will be paid for under separate contract items.

470.09.03 Basis of Payment for Supply of Frames and Covers, Frames and Grates and Gratings

Payment at the contract price for each type and set of frame and grate, frame and cover and grating supplied shall be full compensation for all labour, materials and equipment-use to supply and deliver the required type of frame and grate, frame and cover, or grating to the location where the hardware is to be incorporated into the manhole, catch basin, or ditch inlet adjustment or rebuilding.

470.09.04 Basis of Payment for Breaking into Manholes, Catch Basins and Ditch Inlets

Payment at the contract price for each connection made shall be full compensation for all labour, materials and equipment-use to provide openings in existing structures and grout in the pipe to be connected, regardless of the size of the pipe.

Excavation and backfilling shall be paid for in accordance with Section 404 "Trenching and Excavation of Catch Basins and Storm Sewers" and bedding shall be paid for in accordance with Section 410 "Select Bedding for Storm Sewers, Sub-Drains and Catch Basins".
SECTION 480
INSTALLATION OF CONCRETE CURB AND GUTTER

INDEX
480.01 SCOPE
480.02 MATERIALS
480.03 PREPARATION WORK
480.04 FORMWORK
480.05 PLACING THE CONCRETE
480.06 JOINTS
480.07 CURING THE CONCRETE
480.08 TRIMMING
480.09 PROTECTION OF CURB AND GUTTER FROM TRAFFIC AND PEDESTRIANS
480.10 MEASUREMENT FOR PAYMENT
480.11 BASIS OF PAYMENT

480.01 SCOPE

This specification covers the requirements for the construction of various types of concrete curb and gutter on a prepared bed of granular base course. Curb and gutter of the type as stipulated in the Unit Price Table will include the provision of drop curbs, paraplegic ramps, and tapered ends together with the incorporation of catch basins and manhole gratings as staked by the Engineer.

480.02 MATERIALS

Concrete for use in constructing curb and gutter shall conform to the following specific requirements:

<table>
<thead>
<tr>
<th>CLASS OF CONCRETE</th>
<th>40MPa AT 28 DAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGGREGATE</td>
<td>20mm MAXIMUM SIZE</td>
</tr>
<tr>
<td>AIR CONTENT</td>
<td>6% ± 1%</td>
</tr>
<tr>
<td>SLUMP</td>
<td>60mm ± 20mm</td>
</tr>
</tbody>
</table>

All concrete shall conform with Section 904 "Concrete Structures".

Material for forming isolation joints shall be 12 mm thick bituminous fibre material.

Material for forming control joints shall be 12 mm thick bituminous fibre material for the set-in-place type, or a bituminous filler material for the groove or saw-cut type.

All materials including formwork, shall be supplied by the Contractor.

480.03 PREPARATION WORK

Should excavation be required prior to placing the bed for the curb and gutter, then such work shall be carried out and paid for in accordance with Section 206 "Grading of Cuts" or Section 403 "Excavation for Foundations".

March 2012
When fill is required prior to placing the bed for the curb and gutter, then this work shall be carried out in accordance with Section 204 "Grading of Fill".

After the site has been graded, as described above, a bed shall be laid composed of granular base course Class "B", or Class "A" should the Engineer so require. The bed shall be laid to the lines and grades as staked by the Engineer.

The compacted depth of the bed should not be less than 100 mm. The bed shall be compacted to not less than 95% of the Standard Proctor Density (ASTM D698-78).

480.04 FORMWORK

Formwork shall conform to the requirements of Section 907 "Formwork and Falsework".

Forms shall be set to provide curb and gutter of the required type, to the grades and lines as staked by the Engineer.

Curb and gutter shall be of Types "C", "D", "G", or "H" as shown in the drawing in Section 1275 "Concrete Curb, Types C, D, G & H" or of other types shown on the drawings.

At those places where a drop curb or a tapered end is required, the forms shall be set so as to obtain a finished concrete surface as shown in the drawings in Section 1276 "Typical Drop Curb With Sidewalk Layout" or Section 1277 "Typical Curb and Gutter Tapered End Treatment", Section 1278, "Paraplegic Ramps" as the case may be.

480.05 PLACING THE CONCRETE

Concrete shall be placed in accordance with the requirements of Section 904 "Concrete Structures".

The curb and gutter shall be laid so as to incorporate catch basin, and manhole frames and grates which lie on the line of the curb and gutter.

The concrete on the upper surfaces shall be floated to a smooth uniform finish of the required cross section, free of open textured aggregate and local projections. No deviation of greater than 3 mm in a 3 m straight edge shall be tolerated.

Care shall be taken to avoid over finishing or working more mortar to the surface than is actually required.

Back edges shall be rounded by use of a 6 mm radius edging tool.

Neat cement shall not be used as a drier to facilitate finishing.

Any honeycombed areas occurring along the formed surfaces shall be filled with mortar composed of one part Portland Cement and two parts sand.

The provisions of this specification may be modified by the Engineer at the Contractor's request to suit construction by extrusion methods if the Contractor can demonstrate to the Engineer's satisfaction that by such methods a quality will be achieved at least equal to that produced by standard methods. Notwithstanding approval of such modifications, the Engineer may, at any time, require the Contractor to revert to standard methods if, in his opinion, the required results are not being obtained.

480.06 JOINTS

When concrete curb and gutter is constructed immediately adjacent to another structure such as concrete pavement, concrete sidewalk, catch basin frame or gutter outlets, then the Contractor shall construct a full depth isolation joint between the structure and the curb and gutter. Isolation joints shall also be constructed at points of curvature for short radius curves.
Isolation joints shall consist of a 12 mm thick bituminous fibre panel cut to such size so as to provide a full depth joint extending for the full width. The bituminous fibre panels shall be set vertical in the forms before the concrete is poured.

Panels shall be pre-cut to the shape of the joint so as to provide a 6 mm recess on the exposed surfaces. The Contractor has the option of either providing a 6 mm deep, 12 mm wide cap strip, to be removed after the concrete has hardened and not edging the joints, or carefully removing all concrete immediately above the filler material to form a 6 mm deep, 12 mm wide recess then finishing both edges of each joint to 6 mm radius with a suitable short edging tool.

When concrete curb and gutter is constructed adjacent to asphalt pavement, control joints shall be spaced at intervals not exceeding 6 metres. However, when concrete curb and gutter is constructed adjacent to concrete pavement, control joints shall coincide with joints in the pavement. Control joints may be formed using a 12 mm thick bituminous fibre panel cut to such size so as to provide a joint extending not less than one quarter the depth of the curb and gutter for the full width. The bituminous fibre panel control joints shall be set vertical in the forms before the concrete is poured.

Panels shall be pre-cut to the shape of the joint so as to provide a 6 mm recess on the exposed surfaces. The methods of obtaining these 6 mm recesses shall be as previously stipulated for isolation joints.

Alternatively control joints may be formed by the use of a "guillotine" knife in fresh concrete or saw cutting the hardened concrete within a sufficient time of placing to prevent uncontrolled cracking. Groove or saw-cut control joints shall be of thickness between 3 and 5 mm, depth not less than one quarter the depth of the curb and gutter and width the full width of the curb and gutter. When the concrete is dry, the control joints shall be completely filled with a bituminous filler material. Immediately prior to the filling, the joint shall be thoroughly cleansed of all dust, and particles of foreign matter.

Construction joints shall be built at convenient stopping places in the placement of the concrete. They may be either butt type or isolation joints and they shall be the full depth and width of the curb and gutter. They shall be built at the end of each day’s construction or when there is a delay in the supply of concrete and cold joints might develop.

480.07 CURING THE CONCRETE

Concrete shall be cured in accordance with the requirements of Section 904 "Concrete Structures". Consideration will be given to the use of white pigmented curing compound applied according to the manufacturer’s recommendations.

480.08 TRIMMING

Trimming of adjacent materials shall be carried out behind the curb and gutter which is to remain in isolation without abutting a sidewalk.

After the removal of the forms and after the initial curing of the concrete, the Contractor shall grade and tamp adjacent granular materials against the rear of the curb and gutter to form shoulders to the sidewalk. These shoulders shall be made trim to sightly proportions.

480.09 PROTECTION OF CURB AND GUTTER FROM TRAFFIC AND PEDESTRIANS

The Contractor shall by barricades, security, or other means, protect all curb and gutter from harm by traffic or pedestrians, until the Engineer authorizes the curb and gutter open to those who wish to cross over the curb and gutter.

The Contractor shall at all times prior to the opening to traffic provide suitable bridging or other means of access to adjacent properties.

480.10 MEASUREMENT FOR PAYMENT

Measurement for payment for the installation of curb and gutter of a particular type of curb and gutter shall be the length in metres, rounded to one decimal place, as measured along the exposed face of the
curb of the type in question. Such measurements will include the space occupied by gutter outlets and frames and grates.

Curb and gutter installed outside of the lines and grades as staked by the Engineer will not be measured for payment.

480.11 BASIS OF PAYMENT

Payment at the contract price for curb and gutter for the type in question shall be full compensation for labour, materials and equipment-use to supply and place formwork and concrete, to provide tapered ends and drop curbs as required, to incorporate any catch basin frames into the curb and gutter, to construct joints, to provide and place joint filler, to cure the concrete, to protect the curb and gutter from traffic, to remove the forms, to shoulder the back of the curb with adjacent material, and to tamp the shoulders behind the curb.

Granular base course for providing the bed shall be paid for in accordance with the contract unit price for Granular "B" or Granular "A", as appropriate, but any additional labour required to place this bed as specified shall be considered compensated for in the contract price for curb and gutter.

480.12 Concrete Acceptance and Reduced Payment Criteria on Concrete Located in Curbs and Gutter

Concrete on a project for a specified Type of curb and gutter, and also as defined by its specified strength at 28 days, must have an average tested strength at 28 days equal to or greater than that specified for payment at the bid price.

Concrete for a certain Type of Curb and Gutter having an average strength of less than that specified will be accepted into the job at a reduced payment, provided the difference between specified strength and tested strength is no greater than 5MPa. If the average of tests in a particular predefined portion of curb and gutter is less than that specified by more than 5MPa then that concrete shall be rejected.

When concrete is rejected, those provisions outlined in CSA-A23.1-94 shall be followed to determine whether or not the concrete may remain in the work. Such work will be done at the Contractors cost. Notwithstanding the above, should the concrete remain in the work it will be subject to a reduction, as outlined below, for having a strength less than that specified.

Concrete of a specific Type of Curb and Gutter and otherwise acceptable but having an average strength deficiency as tested of less than 5 MPa compared with that specified, will be accepted but the bid price for all concrete in the predefined portion will be reduced according to the following procedure:

For concrete work where the Unit Price Table states the unit to be linear metres the adjusted price shall be calculated as follows:

\[(\text{Adjusted Concrete Price}) = \left(\frac{\text{Tested Strength}}{\text{Specified Strength}} \right) \times (\text{Bid Concrete Unit Price}) \]

Division of the curb and gutter into predefined portions will be done by the Engineer as the concrete placement is carried out. A predefined portion shall generally be established as that concrete placed within one operation.

There will be no bonus payment under the contract when the average strength is in excess of the specified strength.
SECTION 481
ROCK EMBEDDED CONCRETE GUTTER

INDEX
481.01 SCOPE
481.02 MATERIALS
 481.02.01 Concrete
 481.02.02 Rock
 481.02.03 Joints
481.03 PREPARATION WORK
481.04 FORMWORK
481.05 PLACING THE CONCRETE AND ROCKS
481.06 JOINTS
481.07 CURING THE CONCRETE
481.08 TRIMMING
481.09 MEASUREMENT FOR PAYMENT
481.10 BASIS OF PAYMENT

481.01 SCOPE

This specification covers the requirements for the construction of rock embedded concrete gutter on a prepared bed of granular base course.

The width, length and cross section of the gutter shall be as shown on the drawings.

481.02 MATERIALS

481.02.01 Concrete

Concrete for use in constructing the rock embedded gutter shall conform to the following specific requirements:

- CLASS OF CONCRETE: 40MPa AT 28 DAYS
- AGGREGATE: 20mm MAXIMUM SIZE
- AIR CONTENT: 6% ± 1%
- SLUMP: 60mm ± 20mm

Where gutter is to be placed on slopes it may be necessary for the concrete to have a slump of 20 mm in order for the wet concrete to stay in the forms while the concrete is setting.

All concrete shall conform with Section 904 "Concrete Structures".

481.02.02 Rock

Stones for embedding in the gutter shall consist of slab shaped clean, hard durable rock, free of cracks. Rock subject to marked deterioration by water or weather will not be accepted.

March 2012
The thickness of the individual stones shall not be less than 70 mm or greater than 130 mm and the maximum dimension shall not exceed 250 mm.

481.02.03 Joints

Material for forming isolation joints shall be 12 mm thick bituminous fibre material of depth equal to the depth of the gutter.

Material for forming control joints shall be 12 mm thick bituminous fibre material for the set-in-place type, or a bituminous filler material for the groove or saw-cut type.

All materials including formwork shall be supplied by the Contractor.

481.03 PREPARATION WORK

Should excavation be required prior to placing the bed for the gutter, then such work shall be carried out and paid for in accordance with Section 403 "Excavation for Foundations".

When fill is required prior to placing the bed for the gutter, then this work shall be carried out in accordance with Section 204 "Grading of Fill".

After the site has been graded, as described above, a bed shall be laid composed of Selected Granular Base Course Granular "B", or Granular "A" should the Engineer so require. The bed shall be laid to the lines and grades as staked by the Engineer.

The compacted depth of the bed should not be less than 100 mm. The bed shall be compacted to not less than 95% of the Standard Proctor Density (ASTM D698-78).

481.04 FORMWORK

Formwork shall conform to the requirements of Section 907 "Formwork and Falsework".

Forms shall be set to provide a gutter of the required cross section, to the grades and lines as staked by the Engineer.

481.05 PLACING THE CONCRETE AND ROCKS

Concrete shall be placed in accordance with the requirements of Section 904 "Concrete Structures".

As soon as the concrete has been placed and consolidated, it shall be struck off true to grade and required cross section by an oscillating movement of a template.

The surface shall then be floated with a wooden float until the mortar flushes to the top, and the entire surface presents a tight and compact appearance and the divisions between each block shall be marked, rounded and tooled with proper finishing tools in the neatest possible manner and to the approval of the Engineer. The jointing tool shall have a radius of 12 mm.

Immediately following finishing, the stones shall be moistened in water and placed in the concrete. The stones shall be placed in the concrete at a spacing as stipulated on the drawings, and with the thickness dimension into the concrete leaving about 20 mm of stone exposed above the concrete. When the stones are pushed into the concrete, any resulting depression in the surface of the concrete next to the sides of the stones shall be filled and trimmed by means of hand work with a trowel, or other suitable tool.

Should the Contractor choose to use the groove or saw-cut type of control joint, as opposed to the bituminous fibre type, then at those places where control joints are to be made, care shall be taken to ensure that no stones are placed in the path of a joint.
The Contractor shall take care in placing the stones in the concrete to ensure that the exposed parts of the stones are not smeared with concrete. Should stones become smeared during placing, they shall be immediately removed, thoroughly washed and then placed back in the concrete before it sets.

481.06 JOINTS

When the rock embedded concrete gutter is to be constructed abutting another structure such as concrete pavement, concrete sidewalk, concrete retaining wall, or catch basin frame, then the Contractor shall construct a full length isolation joint, of depth equal to the depth of the gutter. When abutting asphaltic pavement no joint is necessary.

Isolation joints shall consist of a 12 mm thick bituminous fibre panel cut to such size so as to provide a full depth joint extending for the full width. The bituminous fibre panels shall be set vertical in the forms before the concrete is poured.

Panels shall be pre-cut to the shape of the joint so as to provide a 6 mm recess on the exposed surface. The Contractor has the option of either providing a 6 mm deep, 12 mm wide cap strip, to be removed after the concrete has hardened and not edging the joints, or carefully removing all concrete immediately above the filler material to form a 6 mm deep, 12 mm wide recess then finishing both edges of each joint to 6 mm radius with a suitable short edging tool.

Control joints shall be placed at intervals of not greater than 6 m.

Control joints may be formed using a 12 mm thick bituminous fibre panel cut to such size so as to provide a joint extending not less than one quarter the depth of the gutter for the full width. The bituminous fibre panel control joints shall be set vertical in the forms before the concrete is poured.

Panels shall be pre-cut to the shape of the joint so as to provide a 6 mm recess on the exposed surface. The methods of obtaining these 6 mm recesses shall be as previously stipulated for isolation joints.

Alternatively control joints may be formed by the use of a "guillotine" knife in fresh concrete or saw cutting the hardened concrete with a sufficient time of placing to prevent uncontrolled cracking. Groove or saw-cut control joints shall be of thickness between 3 and 5 mm, depth not less than one quarter the depth of the gutter, and width the full width of the gutter. When the concrete is dry the control joints shall be completely filled with a bituminous filler material. Immediately prior to the filling, the joint shall be thoroughly cleansed of all dust, and particles of foreign matter.

Construction joints shall be built at convenient stopping places in the placement of the concrete. They may be either butt type or isolation joints and they shall be the full depth and width of the gutter. They shall be built at the end of each day's construction or when there is a delay in the supply of concrete and cold joints might develop.

481.07 CURING THE CONCRETE

Concrete shall be cured in conformity with the requirements of Section 904 "Concrete Structures". Consideration will be given to the use of white pigmented curing compounds applied in accordance with the manufacturer's recommendations.

481.08 TRIMMING

After the removal of the forms and after the initial curing of the concrete, the Contractor shall grade and tamp adjacent other material against the exposed edges of the gutter to form stable shoulders for the gutter. These shoulders shall be made trim to sightly proportions.

481.09 MEASUREMENT FOR PAYMENT

Measurement for payment will be by the length and width as laid according to the instructions of the Engineer and such measurements will be computed into square metres, rounded to one decimal place.
481.10 BASIS OF PAYMENT

Payment at the contract price for rock embedded concrete gutter shall be compensation for labour, materials and equipment-use to supply and place form work, reinforcing steel, concrete and stones, to construct joints, to provide and place joint filler, to cure the concrete, to remove the forms, to shoulder the exposed edges of the gutter with adjacent other material, and to tamp the other material shoulders of the gutter. Granular base course for providing the bed shall be paid for in accordance with the contract unit price for Selected Granular Base Course Granular "B", or Granular "A" as appropriate, but any additional labour required to place this bed as specified shall be considered compensated for in the contract price for rock embedded concrete gutter.
SECTION 501
WEIGHING MATERIALS IN TRUCKS

INDEX
501.01 SCOPE
501.02 GENERAL
501.03 LOCATION
501.04 WEIGH SCALES
501.05 TESTING AND CERTIFICATION
501.06 DETERMINING TRUCK TARES
501.07 WEIGHING COSTS
501.08 USE OF WEIGH SCALES BY ENFORCEMENT OFFICERS

501.01 SCOPE

This specification covers the Department's requirements for weighing materials in trucks for those instances where payment is based on the weight of the material.

501.02 GENERAL

Where the contract includes items that require measurement for payment by weighing, the Contractor, as part of the work to be carried out under these items, shall provide, install, and maintain as necessary, truck weigh scales meeting the requirements of the Government of Canada Weights and Measures Act and Regulations, and also the requirements of this specification. On completion of the work, the Contractor shall remove temporary scales and scale ramps and clean up and trim the site on which the scale was located.

501.03 LOCATION

Scales for weighing hot mix asphaltic concrete shall be located at a site convenient to the asphalt plant. Scales for weighing other materials shall be installed at locations selected by the Contractor subject to the approval of the Engineer.

When, for the above locations, in the opinion of the Engineer, there is a waste or loss of material between the point of origin and the materials intended destination on the contract, the hauling operation may be terminated by the Engineer until the Contractor has, at his own expense, provided on a site approved by the Engineer, a scale which is close enough to the intended destination to preclude the possibility of waste or loss.

501.04 WEIGH SCALES

The scales shall be of such capacity to accurately weigh any single loaded truck arriving on the site. The contractor is advised that split weighing will not be permitted under any circumstances. The vehicle being weighed must be fully supported by the scale platform. Split or axle weighing is a method to be used only for highway weight restriction control.

The scale shall be equipped with a portable scale house complete with furniture and adequate provision for heat and light.

March 2012
Scale house and furniture shall be of a standard not less than that shown on the Department's Portable Scale House plan which is shown in Section 1202 for Beam type Scales and Section 1204 for Electronic Scales. Should the Contractor wish to supply a scale house or furniture other than that shown on the plan then prior written approval by the department will be required before substitution may be made.

Scales may not be used for weighing materials on the contract unless the scale house heater and lights are in working order.

The Contractor shall periodically clean the scale house and maintain all lights and heating in good working condition at all times when the scales are in use. The lights shall provide adequate lighting for general office work and the heater must be able to maintain the temperature in the scale house at 20°C.

In order to minimize the effect of impact loads on the scale adjustment and to reduce the effect of vehicle braking and kickback on the scale platform and scale adjustments, the approach ramp shall be constructed on a straight and level grade at the same elevation as the scale platform, for a distance at least equal to the length of the scale platform. Vehicles shall enter and leave the platform at a speed not exceeding 8 km/h.

The scale platform and mechanism shall at all times be maintained clean and free from encumbrances such as gravel, asphalt, snow, and ice.

Scale houses must be equipped with suitable washroom facilities that meet the OHS Act and Regulations under Sections 61 and 62 of the Regulations. These facilities must be located within 100m of the scale house.

These facilities must be provided for use of the Department of Transportation and Works employees only for the duration of the project while scales are being used. Other accommodations must be provided for contractors/subcontractors personnel.

The sanitary provisions shall be in accordance with the various Provincial Government and Municipal Government Regulations.

If portable toilets are used they must be a minimum of 2m (height) x 1m x 1m and must be approved by the Government Service Center. The contractor shall transport the waste from these units, using a collection company (whenever possible) licensed by the Government Service Center.

Toilet facilities must also be approved by the Resident Engineer. These facilities must be cleaned twice weekly and in the case of a portable toilet, emptied of sewage as well. Contractor must also supply toiletries for the facility. Also, adequate and suitable provisions for washing (hot and cold water, soap, towels OR ample supply of hand sanitizer liquid) must be included with the facility. The door to the facility must contain a lock and key and shall be provided to the Resident Engineer.

All associated costs to provide and maintain the sanitary provisions as outlined above shall be considered incidental to the cost of weighing materials in trucks.

501.05 TESTING AND CERTIFICATION

The Contractor shall engage an independent company to test and certify the weigh scales in accordance with the current acts and regulations of Measurement Canada.

All scales shall be tested by the proper authority at the Contractor's expense after each set-up and prior to use on every contract. After certification, the Contractor must provide, to the Engineer, a certificate of compliance from the scale testing company before the scales may be used.

March 2012
When considered necessary by the Engineer, the Contractor shall have the scales re-tested and re-certified.

The re-testing shall be at the Contractor's own expense.

501.06 DETERMINING TRUCK TARES

When scales are being used on the contract, the tares of the hauling vehicles will be determined randomly at least once daily, and more frequently if required by the Engineer. Vehicles which are being weighed for the tare shall contain the normal hauling complement of driver and accessories such as spare tires and tools.

501.07 WEIGHING COSTS

The Contractor shall supply a scale operator to take measurements for weights. However, Department representatives may also operate the scales and take measurements for weights whenever the Engineer sees fit during weighing operations.

Should the Contractor use a scale with electronic controls and readings, the Department may forgo the requirement for the Contractor to provide a scale operator.

All costs of providing, installing, maintaining, and finally removing weigh scales complete with scales and furniture, together with all costs of testing and certification in accordance with this specification shall be borne by the Contractor as part of the work to be carried out at the contract price for items which are measured by weighing.

The Department shall not be liable for claims caused by delays in testing or certification of the scales.

501.08 USE OF WEIGH SCALES BY ENFORCEMENT OFFICERS

Weigh scales, during weigh scale operating hours, shall be at the disposal of Police Officers and Highway Enforcement Officers of Service NL for the purposes of checking the various weights of vehicles hauling materials for use on this contract or on any departmental or private work the Contractor may undertake.
SECTION 530
SUPPLY AND INSTALLATION OF TRAFFIC LIGHT CONDUIT

INDEX
530.01 SCOPE
530.02 MATERIALS
530.03 PROCEDURE
530.04 MEASUREMENT FOR PAYMENT
530.05 BASIS OF PAYMENT

530.01 SCOPE

This specification covers the requirements for the supply and installation of electrical conduit for the installation of traffic signal systems.

530.02 MATERIALS

Conduit will be rigid polyvinyl chloride (PVC) conduit suitable for electrical applications. The use of telephone duct will not be permitted. Concrete for encasement of the PVC conduit will be 40 MPa and meet the requirements for substructure concrete set forth in Section 904 “Concrete Structures”.

530.03 PROCEDURE

All electrical conduit must be installed by a registered electrical contractor. The electrical contractor must obtain a permit from the Department of Government Services and Lands or the local municipality as the case may be, prior to commencing work on the conduit. All inspections that are required are to be arranged with the proper authority by the electrical contractor. Copies of the permit and inspection certificates must be provided to the Engineer.

Conduit shall be laid in continuous lengths as far as possible not less than 1 m below finished grade in a trench. Where joints are necessary, they shall be made with couplings as approved by the Engineer. Conduits shall be placed in the trench on a uniform grade and compacted bed, free of sharp stones. No sharp bends will be permitted. Where two or more conduits are to be laid in a trench, they shall be laid side by side and spaced as shown in the contract drawings.

All conduit ends shall be terminated in junction boxes, pole bases or traffic signal controller foundation. All rigid PVC connections must be made with solvent cement.

The conduit is to be encased in 40 MPa concrete with a minimum cover thickness of 75mm around each conduit in the installation. At least 3 hours shall occur before the trench is backfilled to allow the concrete to stiffen.

Immediately after the concrete has been poured, the Contractor, by using a suitable size testing mandrel, or by other means acceptable to the Engineer, shall prove the complete system to ensure the conduits are clean and free of obstructions.

Except by permission from the engineer, the trenches shall be backfilled prior to completion of the days work and shall not be left open over night.

Except for such material as may be specified for bedding purposes or conduit protection, and unless otherwise directed by the Engineer, material used for backfilling trenches shall correspond in quality and
FORM 530

depth with the material in the faces of the trenches. Each material shall be compacted to 100% of maximum dry density.

The Contractor shall place 6mm twisted nylon fish lines into the conduits for the future easy installation of cables. The ends of the fish line are to be secured to the satisfaction of the Engineer.

All facilities and surface features affected by excavation shall be restored by the Contractor to their original condition or to a condition satisfactory to the Engineer.

530.04 MEASUREMENT FOR PAYMENT

Measurement will be made in metres, rounded to the nearest 0.1 metre, horizontally along the longitudinal axis of the trench and shall be from centre to centre of junction boxes, poles and traffic signal controller foundations for each type of conduit installation.

530.05 BASIS OF PAYMENT

Payment at the contract price shall be full compensation for all labour, equipment and material required to supply and install conduit, including: cutting, removal and disposal of asphalt, excavation of trench, supply and installation of conduit, couplings, elbows, and end caps; supply and installation of fish lines, supply and installation of concrete form work, supply and place concrete, backfilling and compaction of trench, removal of surplus material and repairing of trench area, including reinstatement of the disturbed area to its original condition.
SECTION 540
CAST-IN-PLACE CONCRETE MEDIAN BARRIER

INDEX
540.01 SCOPE
540.02 MATERIALS
 540.02.01 Concrete
540.03 CONSTRUCTION
 540.03.01 Concrete Mix Design
 540.03.02 Concrete Placement
 540.03.03 Finishing
 540.03.04 Curing
 540.03.05 Contraction Joints
 540.03.06 Construction Joints
540.04 MEASUREMENT FOR PAYMENT
540.05 BASIS OF PAYMENT

540.01 SCOPE

This item consists of the construction of concrete median barrier using the slipforming method, in accordance with the plans and specifications.

540.02 MATERIALS

 540.02.01 Concrete

Concrete shall meet the requirements outlined in Section 904 of the Specifications Book, Concrete Structures.

The concrete shall have a 28 day compressive strength of 40 MPa, with a minimum cement content of 380 kg per cubic metre. The maximum size of coarse aggregate shall be 20 mm. The entrained air content shall be 6.5% (plus 1% or minus 0.5%). The slump of the concrete used shall be less than 40mm.

540.03 CONSTRUCTION

 540.03.01 Concrete Mix Design

The Contractor shall submit to the Engineer for approval a proposed mix design 14 days prior to its use.

 540.03.02 Concrete Placement

The concrete for the median barrier shall be placed by the use of an approved slipform paver. The slip form shall be cleaned and oiled with an approved form oil prior to each use. The vibration technique used will be such as to ensure the concrete in place shall be void of air pockets.

Manpower shall be scheduled and truck mixers sequenced so as to provide for uniform placing of the concrete with a minimum of interruption.

March 2012
Precautions shall be taken to prevent any damage to the pavement by the slipform paver, truck mixers or other equipment. Damaged surfaces shall be repaired by the Contractor at his expense.

The surfaces of the median barrier shall not vary by more than 5mm when measured with a 3m straight edge. Concrete spilled on the highway shall be removed and the highway cleaned to the satisfaction of the Engineer.

540.03.03 Finishing

Hand finishing shall be kept to a minimum. Repair of air holes less than 15mm in diameter will not be required. Care shall be taken in any hand finishing that may be required to maintain the correct alignment and grade.

A textured broom or brush finish shall be applied to the finished surface. Hand finishing shall be done with a magnesium or wood float but shall be kept to a minimum.

540.03.04 Curing

White membrane curing compound, if used, shall be applied immediately after finishing. Curing shall consist of two spray applications of the compound with the second application applied in a direction perpendicular to the first.

540.03.05 Contraction Joints

Contraction joints shall be saw cut with an approved power saw, as soon as the concrete has hardened sufficiently to permit sawing without excessive ravelling and before shrinkage cracking takes place. Uncontrolled shrinkage cracks that occur shall be subject to the approval of the Engineer. If not acceptable, a section of concrete of not less than 1m surrounding the crack shall be removed and replaced.

Contraction joints shall be sawed to a minimum depth of 50mm and shall be spaced uniformly at a distance of not exceeding 6m, unless otherwise specified on the plans or specifications.

Contraction joints shall be cut neatly in a vertical plane.

540.03.06 Construction Joints

Vertical construction joints at the ends of slipformed barrier segments shall include a vertical key in the joint surface as shown on the plans or approved by the Engineer.

540.04 MEASUREMENT FOR PAYMENT

The quantity to be measured for payment shall be the number of linear metres of concrete median barrier constructed in accordance with the plans and specifications, measured to the nearest tenth of a metre.

540.05 BASIS OF PAYMENT

Payment at the contract price per lineal metre of concrete barrier median shall be compensation in full for all plant, labour, materials and equipment use to, supply and place concrete with an approved slipform paver to the line and grade established by the Engineer, cure the concrete, and finish the concrete.
SECTION 541

PRECAST CONCRETE TRAFFIC BARRIER

INDEX

541.01 SCOPE

541.02 MATERIALS

 541.02.01 Concrete
 541.02.02 Welded Steel Wire Fabric

541.03 CONSTRUCTION

 541.03.01 Welded Wire Mesh
 541.03.02 Forms
 541.03.03 Curing
 541.03.04 Finishing
 541.03.05 Tolerances
 541.03.06 Handling
 541.03.07 Installation

541.04 MEASUREMENT FOR PAYMENT

541.05 BASIS OF PAYMENT

541.01 SCOPE

This item consists of the supply and installation of precast concrete median barrier elements in accordance with the plans and specifications.

541.02 MATERIALS

 541.02.01 Concrete

Concrete shall meet the requirements outlined in Section 904 of the Specifications Book. Concrete Structures and shall have a 28 day compressive strength of 40 MPa, with a minimum cement content of 400 kg/m³. The maximum size of coarse aggregate shall be 19mm. The entrained air content shall be 6.5% (plus 1% or minus 0.5%). The concrete slump shall be 75mm (plus 12.5mm or minus 50mm).

 541.02.02 Welded Steel Wire Fabric

The welded wire fabric shall conform to “Specifications for Welded Steel Wire Fabric for Concrete Reinforcement” (A.S.T.M. A-185).

541.03 CONSTRUCTION

 541.03.01 Welded Wire Mesh

The reinforcing steel may be tack welded to the welded wire mesh. The bar cover tolerance for the reinforcing steel shall be plus 12.5mm and minus 6mm.
Supporting chairs for welded steel wire fabric shall be heavy plastic tipped, approved by the Engineer. The bar cover tolerance of the wire mesh shall be plus 1.5mm and minus 6mm.

541.03.02 Forms

Only steel side forms and steel bottom forms shall be used. Forms shall be clean and of a configuration to ensure compliance with the tolerances outlined in this particular specification. Forms previously used shall be thoroughly cleaned of all mortar and foreign material before being re-used. Inside formwork shall be, coated with a commercial quality form varnish or other equivalent coating before concrete is placed which will permit the ready release of the forms and will not discolour the concrete.

The Engineer shall be informed of the time and location of the concrete pour for the precast barrier elements.

541.03.03 Curing

Exposed sharp edges shall be chamfered with triangular fillets, 12.5mm by 12.5mm, to prevent mortar runs and to preserve smooth straight lines. Triangular fillets or chamfer strips shall be made of steel, plastic or milled from clear, straight grain lumber planed on the side exposed to concrete.

Curing shall be carried out naturally or artificially accelerated by the use of heat. When curing naturally, the methods outlined under “Curing” in Section 904.05 of the Specifications Book shall be followed.

Forms may be removed and no further curing required when the concrete has obtained 80% of its specified 28 day strength. When curing is artificially accelerated, the following methods shall be used for precast barrier elements.

Immediately after the concrete in each element is placed, the element shall be covered with an approved enclosure. During the initial curing period, which is from 4 to 5 hours after completion of casting, the temperature within the enclosure shall be maintained at approximately 20° C, with a maximum moisture content in the air. The element shall be kept wet by the application of sufficient water at the same temperature as the air within the enclosure. Condensate from steam will be an acceptable source of water.

During the next stage of curing, the temperature within the enclosure shall be raised to a minimum of 40° C and a maximum of 70° C at a rate not exceeding 15° C per hour. This temperature, combined with maximum moisture content in the air, shall be maintained until the required concrete strength is reached. Throughout the curing time, the element shall be kept wet by applying water of the same temperature as the air within the enclosure. Condensate from steam will be an acceptable source of water.

After the required strength has been reached the temperature shall be lowered at a rate of 15° C per hour until the element is at air temperature. The elements shall not be exposed to temperatures below freezing until they have undergone two days of drying in warm temperatures following the above curing. After drying, such elements shall be cooled at not more than 5° C per hour until the outside air temperature is reached.

When forms are removed during the curing period, particular care shall be taken to maintain the required temperature. Steam jets shall be directed so that the steam does not strike directly on the forms or concrete surfaces.

541.03.04 Finishing

In general the bottom surface (top surface when pouring) of the precast section shall be a smooth wood float finish.

March 2012
FORM 541

The permanently exposed surfaces shall be true, smooth and free from honeycomb. Small surface voids due to entrapped air shall be filled with an approved cement mixture. All ridges occurring at junctions of form panels and all bottom edges shall be ground smooth.

The Engineer’s permission must be received before patching any defects other than minor surface imperfections.

541.03.05 Tolerances

The barrier element surfaces shall be true line and dimensions within the following tolerances.

Overall Depth of Elements = ± 5 mm
Width of Elements = ± 3 mm
Exposed Element End Deviation from Square (Measured where Element is 762mm in width) Horizontal = 6mm
Exposed Element End Deviation from Square Vertical = 6mm

541.03.06 Handling

Elements shall not be shipped until the concrete in the elements has reached the specified 28 day strength.

Elements shall be stored and transported in the final upright position only and shall be supported on a dry firm base as required by the Engineer.

Elements shall not be placed on other elements unless otherwise approved by the Engineer.

Elements damaged by improper handling, storage or transportation by the Contractor will not be acceptable to the Department of Works, Services and Transportation until acceptable repairs have been made by the Contractor.

541.03.07 Installation

Barrier sections shall be installed at locations as directed by the Engineer. The barrier shall become the property of the Department.

541.04 MEASUREMENT FOR PAYMENT

The quantities to be measured for payment shall be the number of linear metres, rounded to the nearest 0.1 metre, of traffic barrier acceptably built, delivered to the job site and installed according to the plans and specifications.

541.05 BASIS FOR PAYMENT

Payment at the contract price per linear metre of barrier shall be full compensation for all plant, labour, equipment and materials used to construct formwork, supply and place reinforcing steel and wire mesh, supply, place and compact the concrete, cure the concrete, remove formwork, load, transport and unload the barrier at the work site and place the barrier at the line and grade established by the Engineer.

March 2012
SECTION 570
INSTALLATION OF CONCRETE SIDEWALK

INDEX
570.01 SCOPE
570.02 MATERIALS
570.03 PREPARATION WORK
570.04 FORMWORK
570.05 PLACING THE CONCRETE
570.06 JOINTS
570.07 CURING THE CONCRETE
570.08 TRIMMING
570.09 PROTECTION OF SIDEWALK FROM TRAFFIC AND PEDESTRIANS
570.10 MEASUREMENT FOR PAYMENT
570.11 BASIS OF PAYMENT

570.01 SCOPE

This specification covers the requirements for the construction of concrete sidewalk on a prepared bed of Granular Base Course.

570.02 MATERIALS

Concrete to use in constructing the sidewalk shall conform to the following specific requirements:

<table>
<thead>
<tr>
<th>CLASS OF CONCRETE</th>
<th>40MPa AT 28 DAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGGREGATE</td>
<td>20mm MAXIMUM SIZE</td>
</tr>
<tr>
<td>AIR CONTENT</td>
<td>6% ± 1%</td>
</tr>
<tr>
<td>SLUMP</td>
<td>60mm ± 20mm</td>
</tr>
</tbody>
</table>

All concrete shall conform with the requirements of Section 904 "Concrete Structures".

Material for forming isolation joints shall be 12 mm thick bituminous fibre material of depth equal to the depth of the sidewalk.

Material for forming control joints shall be 12 mm thick bituminous fibre material for the set-in-place type, or a bituminous filler material for the groove or saw-cut type.

All materials including formwork, shall be supplied by the Contractor.

570.03 PREPARATION WORK

Should excavation be required prior to placing the bed for the sidewalk, then such work shall be carried out and paid for in accordance with Section 206 "Grading of Cuts".

When fill is required prior to placing the bed for the sidewalk, then this work shall be carried out in accordance with Section 204 "Grading of Fill".

March 2012
FORM 570

After the site has been graded, as described above, a bed shall be laid composed of Selected Granular Base Course Granular "B". The bed shall be laid to the lines and grades as staked by the Engineer.

At those places where a sidewalk is to be placed behind a drop curb, then the bed shall be graded in such a way that will allow the finished sidewalk to have a configuration as shown in the drawing in Section 1276 "Typical Drop Curb with Sidewalk Layout".

The compacted depth of the bed should not be less than 100 mm. The bed shall be compacted to not less than 95% of the Standard Proctor Density) ASTM D698-78).

570.04 FORMWORK

After the bed has been prepared, suitable forms shall be placed to conform to the lines and graded furnished by the Engineer.

Formwork shall conform to the requirements of Section 907 "Formwork and Falsework".

The forms shall be placed as to provide for a slope of 2% towards the curb, or for such other slopes as may be set by the Engineer.

At those places where a sidewalk is to be placed behind a drop curb, then the forms shall be set so as to obtain a finished concrete surface and joints as shown in the drawing in Section 1276 "Typical Drop Curb with Sidewalk Layout", Section 1278 "Paraplegic Ramps".

570.05 PLACING THE CONCRETE

Sidewalk may be placed in isolation or it may be placed adjacent to a curb.

The thickness of the sidewalk slab shall be not less than 125 mm. The width shall be as staked by the Engineer.

Concrete shall be placed in accordance with the requirements of Section 904 "Concrete Structures".

As soon as the concrete has been placed and consolidated, it shall be struck off true to grade and cross-section, by an oscillating movement of a straight-edge or template inclining towards the curbing with an inclination of 2% or such other slope as may be determined by the Engineer.

The surface shall then be floated with a wooden flat until the mortar flushes to the top, and the entire surface presents a tight and compact appearance. No deviation of greater than 3 mm in a 3 m straight edge shall be tolerated. The divisions between each block shall be marked, rounded, and tooled with proper finishing tools in the neatest possible manner, and to the approval of the Engineer. The jointing tool shall have a radius of 12 mm. Under no circumstances will it be permitted to grout any portion the sidewalk which does not in the opinion of the Engineer present a satisfactory surface. Such portion or portions must be entirely removed and replaced by the Contractor, to the satisfaction of the Engineer, without extra remuneration.

570.06 JOINTS

When the sidewalk is to be placed adjacent to another structure, such as a curb, then the Contractor shall place a full length isolation joint between the back of the structure and the sidewalk. Isolation joints shall be placed at all places where a change in slope on the sidewalk occurs such as adjacent to drop curbs and tapered curbs. See drawing in Section 1276 "Typical Drop Curb with Sidewalk Layout" for an illustration of the location of isolation joints behind a curb and also at places where a change in slope of the sidewalk occurs.

Isolation joints shall also be placed around all water services, lamp posts, hydrants, and utility poles which occur within the limits of the sidewalk. The joint material shall be set so as not to protrude above the surface of the sidewalk.

March 2012
Control joints shall be constructed adjacent to all transverse control or isolation joints in the curb and gutter. In addition, control joints shall be placed at intervals not more than 2 m apart. They shall have a depth of not less than one quarter the thickness of the sidewalk, and extend the full width of the sidewalk. The cast-in-place control joint shall consist of 12 mm wide bituminous filler material of length equal to the width of the sidewalk. Alternative control joints may be cut using a saw or made with a tool before the concrete is completely set. The cuts or groove shall be between 3 mm and 5 mm wide. This groove or saw-cut type of control joint shall be completely filled with a bituminous filler material when the concrete is dry. Immediately prior to the filling, the groove or saw-cut shall be thoroughly cleansed of all dust and particles of foreign matter.

Construction joints shall be built at convenient stopping places in the placement of the concrete. They may be either a butt type joints, or an isolation type joint. They shall be built at the end of each day's construction or when there is a delay in the supply of concrete and cold joints may develop.

570.07 CURING THE CONCRETE

Concrete shall be cured in accordance with the requirements of Section 904 "Concrete Structures".

570.08 TRIMMING

After the removal of the forms and after the initial curing of the concrete, the Contractor shall grade and tamp adjacent other material against the exposed edges of the sidewalk to form shoulders to the sidewalk. These shoulders shall be made trim to sightly proportions.

570.09 PROTECTION OF SIDEWALK FROM TRAFFIC AND PEDESTRIANS

The Contractor shall use barricades, watchmen, or other means, to protect all sidewalk surfaces from harm by traffic or pedestrians, until the Engineer authorizes the sidewalk to be opened to public use.

The Contractor shall at all times prior to the opening to traffic provide suitable bridging as other means of access to adjacent properties.

570.10 MEASUREMENT FOR PAYMENT

This item will be measured by the length and width as laid according to the instructions of the Engineer and such measurements will be computed into square metres, rounded to one decimal place.

570.11 BASIS OF PAYMENT

Payment at the contract price for installation of concrete sidewalk shall be compensation for labour, materials, and equipment-use to supply and place formwork and concrete, to construct joints, to provide and place joint filler, to cure the concrete, to protect the sidewalk from traffic, to provide suitable bridging, to remove the forms, to shoulder the exposed edges of the sidewalk with adjacent other material, and to tamp the O.M. shoulders of the sidewalk.

Selected Granular Base Course Granular "B", for providing the bed shall be paid for in accordance to the Contract Unit Price for Selected Granular Base Course Granular "B", but any additional labour required to place this bed as specified shall be considered compensated for in the contract price for concrete sidewalk.

570.12 Concrete Acceptance and Reduced Payment Criteria on Concrete Located in Concrete Sidewalk

Concrete on a project for sidewalk, and also as defined by its specified strength at 28 days, must have an average tested strength at 28 days equal to or greater than that specified for payment at the bid price.

Concrete for concrete sidewalk having an average strength of less than that specified will be accepted into the job at a reduced payment, provided the difference between specified strength and tested strength...
is no greater than 5MPa. If the average of tests in a particular predefined portion of concrete sidewalk is less than that specified by more than 5MPa then that concrete shall be rejected.

When concrete is rejected, those provisions outlined in CSA-A23.1-94 shall be followed to determine whether or not the concrete may remain in the work. Such work will be done at the Contractors cost. Notwithstanding the above, should the concrete remain in the work it will be subject to a reduction, as outlined below, for having a strength less than that specified.

Concrete for concrete sidewalk otherwise acceptable but having an average strength deficiency as tested of less than 5 MPa compared with that specified, will be accepted but the bid price for all concrete in the predefined portion will be reduced according to the following procedure:

For concrete work where the Unit Price Table states the unit to be square metres the adjusted price shall be calculated as follows:

\[(\text{Adjusted Concrete Price}) = \left(\frac{\text{Tested Strength}}{\text{Specified Strength}}\right) \times \$(\text{Bid Concrete Unit Price})\]

Division of the sidewalk into predefined portions will be done by the Engineer as the concrete placement is carried out. A predefined portion shall generally be established as that concrete placed within one operation.

There will be no bonus payment under the contract when the average strength is in excess of the specified strength.
INDEX

580.01 SCOPE

580.02 CLASSIFICATION OF SIGN POST INSTALLATIONS

580.03 MATERIALS

580.03.01 Additional Material Requirements for Type A Installations
580.03.02 Additional Material Requirements for Type B Installations
580.03.03 Additional Material Requirements for Type C Installations
580.03.04 Additional Material Requirements for Type D Installations
580.03.05 Additional Material Requirements for Type E Installations
580.03.06 Additional Material Requirements for Type F, Type G and Type I Installations
580.03.07 Additional Material Requirements for Type H Installations
580.03.08 Materials Used for the Installation of Signs

580.04 ASSEMBLY

580.04.01 Assembly of Type A and Type B
580.04.02 Assembly of Type C
580.04.03 Assembly of Type D
580.04.04 Assembly of Type E
580.04.05 Assembly of Type F, Type G and Type I
580.04.06 Assembly of Type H

580.05 INSTALLATION

580.05.01 Additional Installation Requirements for Type A and Type B
580.05.02 Additional Installation Requirements for Type C, Type D, Type E, Type F, Type G, Type H and Type I
580.05.03 Additional Installation Instructions for the Sign Board

580.06 MEASUREMENT FOR PAYMENT

580.07 BASIS OF PAYMENT

580.01 SCOPE

This specification covers the requirements for the supply and installation of various types of signposts and the actual placing of highway signs on those signposts.

580.02 CLASSIFICATION OF SIGNPOST INSTALLATIONS

There are nine basic types of signpost installations, namely; Type A, Type B, Type C, Type D, Type E, Type F, Type G, Type H and Type I.

Type A and Type B signpost installations are of various dimensions, but all are intended to support signs which require only one wooden vertical member for support. For Type A and Type B signpost installations,
the number following the letter denotes the required height of the sign to be placed on the post, measured in millimetres. See section 1290, "Sign Post Installation Details Type A", and Section 1291, "Sign Post Installation Details Type B", for an illustration.

Type C and Type D signpost installations are of various dimensions, but all are intended to support signs which require two wooden vertical members for support. Type C installations are intended for signs of width less than or equal to 2440 mm and a height of less than or equal to 1220 mm. Type D installations are intended for signs wider than 2440 mm but less than 4880 mm and/or higher than 1220 mm.

For Type C and Type D signpost installations the upper number following the letter denotes the required height of the sign board in millimetres, and the lower number denotes the length of the sign board in millimetres. See Section 1292 "Sign Board Installation Details Type C", and Section 1293, "Sign Post Installation Details Type D", for an illustration.

Type E signpost installations will be of various dimensions and are intended to support signs less than or equal to 2440 mm in height and between 4880 mm and 6096 mm in length which require three wooden vertical members for support. For Type E signpost installations, the upper number following the letter denotes the height of the signboard in millimetres and the lower number denotes the length of the signboard in millimetres. See section 1294 "Sign Post Installation Details Type E", for an illustration.

Type F signpost installations are intended to support signs between 2440 mm and 3050 mm in height and less than or equal to 4880 mm in length which require two vertical structural steel members for support. For Type F signpost installations, the upper number following the letter denotes the height of the sign panel in millimetres and the lower number denotes the length of the sign panel in millimetres. See section 1295 "Sign Post Installation Details Type F", for an illustration.

Type G signpost installations are intended to support signs greater than 2440 mm in height and less than or equal to 6100 mm in length which require three vertical structural steel members for support. For Type G signpost installations, the upper number following the letter denotes the sign panel height in millimetres and the lower number denotes the sign panel length in millimetres. See section 1296 "Sign Post Installation Details Type G", for an illustration.

Type H signpost installations will be of various dimensions and are intended to support signs less than or equal to 2440 mm in height and between 6706 mm and 7925 mm in length which require four wooden vertical members for support. For Type H signpost installations, the upper number following the letter denotes the height of the signboard in millimetres and the lower number denotes the length of the signboard in millimetres. See section 1296a "Sign Post Installation Details Type "H", for an illustration.

Type I signpost installations are intended to support signs greater than 2440 mm in height and between 6700 mm and 7925 mm in length which require four vertical structural steel members for support. For Type I signpost installations, the upper number following the letter denotes the sign panel height in millimetres and the lower number denotes the sign panel length in millimetres. See section 1296a "Sign Post Installation Details Type "I", for an illustration.

580.03 MATERIALS

The Contractor shall supply all materials required to complete sign and signpost installations in accordance with these specifications.

All posts, footings, and braces for Types A to E and H shall be pressure treated eastern hemlock, western hemlock, or BC fir and be of the size specified for each post type.

Nails shall be galvanized with a length of 100 mm.

Lag bolts shall be galvanized with a length of 80 mm and a diameter of 10 mm and with Hex or Square Head only (carriage type head is not to be used on signs).
Washers shall be galvanized flat washers to fit 10 mm diameter lag bolts.

Posts for Type F, Type G and Type I shall be W250x49 structural steel members, grade 350W in accordance with CSA G40-21, latest edition. All welding is to conform to CSA W59 and companies are to be certified to W47.1, latest edition. All fabrication of structural steel shall be done in accordance with Section 910 “Structural Steel”. No splicing of the vertical member will be permitted. The sign post shall be painted in accordance with Section 921 “Blast Cleaning and Painting of Structural Steel”. The complete penetration groove weld between the vertical member and the base plate shall be designed by a qualified welding engineer to handle a factored moment of 135 kN-M (ultimate limit states), 103.85kN-M (fatigue limit states) a factored horizontal shear force of 32.5 kN (Ultimate limit states), 25.0 kN (fatigue limit states). The fatigue category shall be “B” for 2,000,000 cycles. Shop drawings bearing the seal of a registered professional engineer, licensed to practice in the Province of Newfoundland, shall be submitted for approval.

Brackets for attaching the aluminum panels to the steel post shall be manufactured from 8mm steel plate to the dimensions shown on Forms 1295, 1296 and 1296a. The brackets are to be painted in accordance with Section 921 “Blast Cleaning and Painting of Structural Steel”.

A 6mm thick x 245mm wide neoprene gasket shall be placed between the steel post and aluminum sign panels. The gasket is to extend the full height of the aluminum panels.

580.03.01 Additional Material Requirements For Type A Installations

Vertical members shall be 114 mm x 114 mm pressure treated lumber of length not less than that as calculated for the appropriate sign drawings as explained by Section 580.02 "Classification of Signpost Installations", and as illustrated on Section 1290 "Sign Post Installation Details Type A".

Footings for each post shall consist of six pieces of 38 mm x 89 mm pressure treated lumber of length not less than 450 mm.

Cross bracing shall consist of one or two pieces of 38 mm x 89 mm pressure treated lumber of sufficient length to provide cross bracing for the installation of the required size and shape.

580.03.02 Additional Material Requirements For Type B Installations

Vertical members shall be 140 mm x 140 mm pressure treated lumber of length not less than that as calculated for the appropriate sign indicated by the contract drawings, as explained by Section 580.02 "Classification of Signpost Installation" and as illustrated on Section 1291 "Sign post Installation Details Type B".

Footings for each post shall consist of six pieces of 38 mm x 89 mm pressure treated lumber of length not less than 450 mm.

Cross bracing shall consist of one or two pieces of 38 mm x 89 mm pressure treated lumber of sufficient length to provide cross bracing for the installation of the required size and shape.

580.03.03 Additional Material Requirements For Type C Installations

Vertical members shall be 140 mm x 140 mm pressure treated lumber. Footings for each installation shall consist of two pieces of 38 mm x 89 mm pressure treated lumber. The length of vertical members and footings shall not be less than that as calculated for the appropriate sign board indicated by the contract drawings, as explained by Section 580.02 "Classification of Signpost Installations" and as illustrated on Section 1292 "Sign Post Installation Details Type C", and Section 1299 "Sub-Grade Widening for Types C, D, and E Signpost Installations".

Cross bracing shall consist of two pieces of 38 mm x 89 mm pressure treated lumber of sufficient length to provide cross bracing for the installation of the required size.
580.03.04 Additional Material Requirements For Type D Installations

Vertical members shall be 184 mm x 184 mm pressure treated lumber. Footings for each installation shall consist of two pieces of 38 mm x 89 mm pressure treated lumber. Cross members for each installation shall consist of two pieces of 89 mm x 89 mm pressure treated lumber.

The length of vertical members, footings, and cross members shall not be less than that as calculated for the appropriate sign board indicated by the contract drawings, as explained by Section 580.02 "Classification of Signpost Installations" and as illustrated on Section 1293 "Sign Post Installation Details Type D", and Section 1299 "Sub-Grade Widening For Types C, D and E Signpost Installations".

Cross bracing shall consist of two pieces of 38 mm x 89 mm pressure treated lumber of sufficient length to provide cross bracing of the installation of the required size.

Nuts, bolts, and washers for connecting cross members shall be galvanized. The bolt shall be of length 150 mm and be of diameter not less than 15 mm or greater than 25 mm.

580.03.05 Additional Material Requirements For Type E Installations

Vertical members shall be 184 mm x 184 mm pressure treated lumber. Footings for each installation shall consist of two pieces of 38 mm x 89 mm pressure treated lumber. Cross members for each installation shall consist of three pieces of 89 mm x 89 mm pressure treated lumber.

The length of vertical members, footings, and cross members shall not be less than that as calculated for the appropriate sign board indicated by the contract drawings, as explained by Section 580.02 "Classification of Signpost Installations" and as illustrated in Section 1294 "Sign Post Installation Details Type "E", and Section 1299 "Sub-Grade Widening for Types C, D and E Signpost Installations".

Cross bracing shall consist of four pieces of 38 mm x 89 mm pressure treated lumber of sufficient length to provide cross bracing of the installation of the required size.

Nuts, bolts, and washers for connecting cross members shall be galvanized. The bolt shall be of length 300 mm and be of diameter not less than 12 mm or greater than 25 mm.

580.03.06 Additional Material Requirements For Type F, Type G And Type I Installations

Vertical members shall be W250x49 Structural Steel sections as specified by drawings 1295,1296 and 1296a. Footings for each installation shall consist of reinforced concrete complete with anchor bolts as shown on the contract drawings. Neoprene gaskets shall be used to isolate the aluminum panels from the vertical members.

The length of vertical members shall not be less than that as calculated for the appropriate sign board indicated by the contract drawings, as explained by Section 580.02 "Classification of Signpost Installations" and as illustrated in Section 1295 "Sign Post Installation Details Type F", Section 1296 "Signpost Installation Details Type G", Section 1296a "Signpost Installation Details Type "I" and Section 1299a "Sub-Grade Widening For Types F, G, H and I Signpost Installations."

580.03.07 Additional Material Requirements For Type H Installations

Vertical members shall be 184 mm x 184 mm pressure treated lumber. Footings for each installation shall consist of two pieces of 38 mm x 89 mm pressure treated lumber. Cross members for each installation shall consist of six pieces of 89 mm x 89 mm pressure treated lumber.

The length of vertical members, footings, and cross members shall not be less than that as calculated for the appropriate sign board indicated by the contract drawings, as explained by Section 580.02
"Classification of Signpost Installations" and as illustrated in Section 1294-2 "Sign Post Installation Details Type "H", and Section 1299a "Sub-Grade Widening for Types F, G, H and I Signpost Installations".

Cross bracing shall consist of six pieces of 38 mm x 89 mm pressure treated lumber of sufficient length to provide cross bracing of the installation of the required size.

Nuts, bolts, and washers for connecting cross members shall be galvanized. The bolt shall be of length 150 mm and be of diameter not less than 15 mm or greater than 25 mm.

580.03.08 Materials Used For The Installation Of Signs

Signs will be made by the Department of Works, Services and Transportation and must be picked up by the Contractor.

Signs will be made available to the Contractor at the nearest main Depot, (i.e. White Hills Depot, Clarenville Depot, Grand Falls Depot, Deer Lake Depot, or Goose Bay Depot).

Signs will be placed on wooden signposts with 80 mm x 10 mm lag bolts and washers in accordance with Section 1290 "Sign Post Installation Details Type A", Section 1291 "Sign Post Installation Details Type B", Section 1292 "Sign Post Installation Details Type "C", Section 1293 "Sign Post Installation Details Type "D", and Section 1294 "Sign Post Installation Details Type "E".

Signs will be placed on steel posts with 6mm x 100mm brackets. Bolts are to be stainless steel. See Section 1295 "Sign Post Installation Details Type "F", Section 1296 "Sign Post Installation Details Type "G", and Section 1296a "Sign Post Installation Details Type "I".

580.04 ASSEMBLY

Should any piece of lumber become split or cracked during nailing or installing the sign, then the Contractor shall replace the damaged piece with sound lumber at his own expense. For aluminum installations, posts or panels which become damaged in any manner shall be replaced by the Contractor at his own expense.

580.04.01 Assembly Of Type A And Type B

The footings shall be secured to the vertical member at the spacing shown on Section 1290 "Sign Post Installation Details Type A", and Section 1291 "Sign Post Installation Details Type B".

Each piece of footing and cross bracing shall be nailed near its centre to the vertical member, by means of two nails as shown on Section 1290 "Sign Post Installation Details Type A", and Section 1291 "Sign Post Installation Details Type B".

580.04.02 Assembly Of Type C

The footings, cross bracing, and vertical members shall be assembled and secured at the spacing shown on the drawing, Section 1292 "Sign Post Installation Details Type C and Section 1299 "Sub-grade Widening for Types C, D, and E Signpost Installations".

Each piece of footing and cross bracing shall be secured to the vertical members with four nails, that is, with two nails at each joint.

580.04.03 Assembly Of Type D

The footings, cross bracing, cross members and vertical members shall be assembled and secured at the spacing shown on the drawings, Section 1293 "Sign Post Installation Details Type D" and Section 1299 "Sub-grade Widening for Types C, D, and E Signpost Installations".

Each joint shall be secured with a nut, bolt, and washer. The head of the bolt shall be placed at the front of the installation. The head shall be counter sunk so that the top of the bolt is flush with the front of the installation.
Each piece of footing and cross bracing shall be secured to the vertical members with four nails, that is, with two nails at each joint.

580.04.04 Assembly Of Type E

The footings, cross bracing, cross members and vertical members shall be assembled and secured at the spacing shown on the drawings, Section 1294 "Sign Post Installation Details Type E", and Section 1299 "Sub-grade Widening for Types C, D, & E Sign Post Installations". Each joint shall be secured with a nut, bolt, and washer. The head of the bolt shall be placed at the front of the installation. The head shall be counter sunk so that the top of the bolt is flush with the front of the installation.

Each piece of footing and cross bracing shall be secured to the vertical members with four nails, that is, with two nails at each joint.

580.04.05 Assembly Of Type F, Type G and Type I

The footings shall be constructed of reinforced concrete as shown on Form 1295, 1296 or 1296a as the case may be and Section 1299a "Sub-grade Widening for Types F, G, H & I Sign Post Installations". All concrete is to be 35MPa and shall conform to the requirements of Section 904 “Concrete Structures” for substructures. However, the slump must be 60mm ± 20mm. Reinforcing steel shall be hard grade, YP400MPa. The top of the footing is to be steel float finished dead level.

The foundation backfill material shall be compacted to 95% of the maximum standard dry density (ASTM D698-78).

Prior to placing the post, bottom nuts are to be placed and levelled. The post is then to be set and the top nuts tightened. Ensure that the post is true and plumb. Hand pack non-shrink grout under base plate and trowel exposed edges to a smooth bevel.

580.04.06 Assembly Of Type H

The footings, cross bracing, cross members and vertical members shall be assembled and secured at the spacing shown on the drawings, Section 1294 "Sign Post Installation Details Type "H", and Section 1299a "Sub-grade Widening for Types F, G, H and I Sign Post Installations". Each joint shall be secured with a nut, bolt, and washer. The head of the bolt shall be placed at the front of the installation. The head shall be counter sunk so that the top of the bolt is flush with the front of the installation.

Each piece of footing and cross bracing shall be secured to the vertical members with four nails, that is, with two nails at each joint.

580.05 INSTALLATION

The Engineer will stake the locations where signpost installations are to be installed and designate the sign number of the signpost installation that is required for each location.

The Contractor shall place signpost installations at these locations only of the required type and size for the sign as noted on the drawings.

The Contractor shall excavate holes for the footings, such that when installed the installation is at least the required minimum depth in the ground.

Signpost installations shall be placed with the vertical axis plumb, and with at least the required minimum depth in the ground. The vertical post edge nearest the road shall be 2500 mm from the edge of the shoulder, as illustrated in drawings, Section 1298 "Sub-grade Widening for Type
A and Type B Sign Post Installations” and Section 1299 “Sub-grade Widening for Types C, D, and E Sign Post Installations”. The vertical post edge nearest the road shall be 3500 mm from the edge of the shoulder, as illustrated in drawings, Section 1299a “Sub-grade Widening for Types F, G, H and I Sign Post Installations”.

Footings shall be backfilled with selected fill which meets with the Engineer's approval. Backfill material shall not contain stones larger than 150 mm in any one dimension.

Backfill material shall be placed in layers of thickness not greater than 150 mm. Each layer shall be thoroughly compacted before the successive layer is placed. Dry granular backfill shall be moistened before tamping.

Backfill material around the signpost installations shall be brought up level with the surrounding ground and surplus excavated material together with surplus backfill material shall be disposed of on the sides of fills, or as directed by the Engineer.

The Contractor shall be responsible for placing each sign on the correct posts, and at the location as set by the Engineer, taking care to ensure that each sign is placed undamaged, horizontally levelled, and attached to the posts and cross members with 80 mm x 10 mm galvanized lag bolts and galvanized washers. Nails cannot be substituted for this job.

Sign board size, sign post type, and the location of each will be specified on drawings as set by the Engineer.

580.05.01 Additional Installation Requirements For Type A and Type B

Type A and Type B sign post installations shall be placed so that at least 1250 mm of the vertical member is in the ground. They shall be installed so that the face of the post that is to take the sign is perpendicular to the direction of traffic, or as directed by the Engineer.

580.05.02 Additional Installation Requirements For Type C, Type D, Type E, Type F, Type G, Type H And Type I

Type C and Type D sign post installations shall be placed so that both vertical members are at least 1500 mm in the ground.

Type E installation shall be placed so that the three vertical members are at least 2500 mm in the ground.

Type F, Type G, Type H and Type I installations shall be placed as shown on the contract drawings.

Special care should be taken with the placing of the above sign post installations so as to minimize specular glare.

On straight stretches of roadway, Type C, Type D, Type E, Type F, Type G, Type H and Type I sign post installations shall be set with the horizontal axis at an angle of 93 degrees with the traffic lane which the proposed sign will serve, or as directed by the Engineer.

On the horizontal curves, these installations shall be set with the horizontal axis at an angle of 93 degrees with a straight line brackets between the sign and the point at which the sign is to be read, or as directed by the Engineer.

580.05.03 Additional Installation Instructions For The Sign Board

On Type A and Type B sign posts, the sign board will be mounted flush with the top of the sign post.

On Type C and Type D signposts, the sign board will be mounted with the top of the sign board, 100 mm above the signpost.

On Type A and Type B signposts, the top and bottom lag bolts must be placed 100 mm from the top and bottom edges of the sign board, EXCEPT for those pre-drilled sign boards that are
normally supplied to the Contractor. See also Section 1290 "Sign Post Installation Details Type A", and Section 1291 "Sign Post Installation Details Type B".

On Type C, Type D, Type E and Type H signposts, lag bolts must be placed 250 mm down from the top edge of the sign board and follow down the sign board at a maximum spacing of 600 mm apart with the lowest lag bolt placed approximately 100 mm above the bottom edge of the sign board (for each post).

See also Section 1292 "Sign Post Installation Details Type C", Section 1293 "Sign Post Installation Details Type D", Section 1294 "Sign Post Installation Details Type E", and Section 1294-2 "Sign Post Installation Details Type H".

On Type C, Type D, Type E, and Type H signposts, lag bolts must be placed 300 mm from each outside edge of the sign board and spaced a maximum of 600 mm apart (for each cross member). See also Section 1292 "Sign Post Installation Details Type C", Section 1293 "Sign Post Installation Details Type D", Section 1294 "Sign Post Installation Details Type E", and Section 1294 "Sign Post Installation Details Type H".

The Contractor is advised that care must be taken when installing the sign board to see that all lag bolts are seated into the frame and without the washer indenting the signs reflective sheeting. Care must be taken to see that damage to the sign while installing it to the post is minimal.

For Type F, Type G and Type I signposts, all aluminum sign panels must be bolted together with 3/8" x 1" stainless steel stitch bolts and washers (supplied by Department) at a maximum spacing of 600 mm. The entire aluminum sign must be attached to the steel posts with brackets at a spacing not exceeding 900 mm with a bracket band at the extreme top and bottom panels of the sign. See Section 1295 "Sign Post Installation Details Type F", Section 1296 "Sign Post Installation Details Type G" and Section 1296a "Sign Post Installation Details Type I".

For signs with tabs in the upper corners, the Contractor is to supply and install 2 pieces of aluminum T-Bar, 75mm x 100mm x 6mm thick x 1600mm long with 10-9.5mm x 25mm stainless steel bolts with 15 x 25 x 5 rectangular heads and nuts to brace the tabs to the back of the sign.

580.06 MEASUREMENT FOR PAYMENT

Measurement for payment will be by means of the number of each type of signpost installation placed at the required locations.

580.07 BASIS OF PAYMENT

Payment at the contract price for sign and signpost installation of a particular type shall be compensation in full for all labour, handling, materials, and equipment-use to: supply all materials, handling of signs from Department Depots, assemble the installation, excavate a hole for the footings, install the signposts, backfill the hole, compact the backfill, install the sign board and dispose of all surplus materials, all in accordance with this specification. Concrete footings, reinforcing, anchor bolts, neoprene gaskets, base plates, posts, brackets, and hardware to install the signs for Type F, Type G and Type I installations are also included in the contract price for these items.

Should excavation of solid rock be required to complete the installation of a signpost, payment for the rock excavation will be made according to Section 403, Excavation for Foundations, Solid Rock.
SECTION 632
HYDROSEEDING

INDEX
632.01 SCOPE
632.02 MATERIALS
 632.02.01 Grass Seed
 632.02.02 Fertilizer
 632.02.03 Mulch
 632.02.04 Binder
 632.02.05 Water
632.03 HYDROSEEDING OPERATIONS
632.04 PROTECTION OF ENVIRONMENT
632.05 MAINTENANCE
632.06 CONTRACTOR’S WARRANTY PERIOD
632.07 MEASUREMENT FOR PAYMENT
632.08 BASIS OF PAYMENT

632.01 SCOPE
This section covers the requirements for the supply and application of fertilizer, grass seed and mulch by hydroseeding and hydromulching, together with the provision of maintenance during a one year warranty period provided by the Contractor.

The supply and application of lime is covered separately in Section 635 "Lime for Hydroseeding".

632.02 MATERIALS
The following materials shall be supplied by the Contractor and shall conform to the requirements as stated:

 632.02.01 Grass Seed

Grass seed shall meet the requirements of the Seeds Act for Canada No. 1 seed, and shall be of the following varieties and respective percentages for standard applications:

 BIRDSFOOT TREFOIL, VARIETY LEO 45%
 WILD WHITE CLOVER 30%
 CREEPING RED FESCUE, VARIETY BOREAL 10%
 ANNUAL RYE GRASS 15%

The White Clover and Birdsfoot Trefoil seed must be inoculated with the following bacterial cultures at the specified rates in order to produce nodules. The inoculum is added to the hydroseed tank with the seed.

 WHITE CLOVER INOCULUM RATE: 100 GRAMS PER KG. OF WHITE CLOVER SEED
 BIRDSFOOT TREFOIL INOCULUM: BIRDSFOOT TREFOIL INOCULUM:

For late summer applications of hydroseeding the following seed mixture shall be used for slope treatment with this late condition of application:
FORM 632

<table>
<thead>
<tr>
<th>Seed Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIRDSFOOT TREFOIL, VARIETY LEO</td>
<td>25%</td>
</tr>
<tr>
<td>WILD WHITE CLOVER</td>
<td>10%</td>
</tr>
<tr>
<td>CREEPING RED FESCUE, VARIETY BOREAL</td>
<td>20%</td>
</tr>
<tr>
<td>ANNUAL RYE GRASS</td>
<td>15%</td>
</tr>
<tr>
<td>CANADA BLUEGRASS</td>
<td>10%</td>
</tr>
<tr>
<td>TIMOTHY</td>
<td>10%</td>
</tr>
<tr>
<td>HARD FESCUE</td>
<td>10%</td>
</tr>
</tbody>
</table>

632.02.02 Fertilizer

Fertilizer shall be granular, non-burning, free flowing and free of lumps.

The fertilizer to be placed in the hydroseeding mixture shall have a plant food ratio of 10 nitrogen, 20 phosphorus and 20 potash plus 2% Fritted Trace Elements or 12 nitrogen, 24 phosphorus, 24 potash plus 2% Fritted Trace Elements. The fertilizer mixture shall be applied at the rate of 400 kg/ha. The fertilizer to be spread the following spring during the maintenance period shall be 5-10-30, applied at the rate of 300 kg/ha, or approved equivalent.

632.02.03 Mulch

The mulch shall be of a type consisting of natural sundried straw or wood fibres.

Straw fibres shall include; oat, barley, alfalfa or wheat fibres and shall be free from any weeds or other foreign matter which may be detrimental to plant life. Any straw fibre combination shall be maintained in a dry condition to allow even distribution when processed through a blower. The addition of other vegetative material consisting of hay, chopped corn stalks or other similar substances may be used with prior approval of the Engineer.

Wood fibres shall include any wood or wood cellulose fibres and shall be free from any germination or growth inhibiting components.

Any fibres to be included in a mulch mixture shall be processed in lengths of 20 mm - 40 mm and supplied air dry in packages not exceeding 50 kg in weight for proper storage and handling.

The mulch shall be capable of dispersing in water to form a homogeneous slurry and remain in such a state when agitated or mixed with other additives.

When applied, the mulch shall be capable of forming an absorptive mat, which will allow moisture to percolate into the underlying soil.

632.02.04 Binder

The binder must be capable of joining seeds, mulch and soil particles together on slopes and erodible surfaces until plant growth has been established. The binder must not form an impervious seal which would prevent the penetration of moisture to the underlying soil.

The binder shall be supplied as a water-soluble powder composed of polymerised and organic substances and must be absolutely non-toxic.

632.02.05 Water

Water used in hydroseeding and hydromulching shall be free of any impurities which would inhibit germination or otherwise adversely affect growth.
632.03 HYDROSEEDING OPERATIONS

The Engineer shall designate the boundaries of areas for hydroseeding and mulching treatment. These areas will usually include a 300 mm wide overlap over adjoining vegetation so as to eventually provide a continuous cover of vegetation.

No area shall be hydroseeded until surface preparation has been completed to the approval of the Engineer, and the lime applied.

Hydroseeding shall be carried out as soon as possible after completion of the surface preparation, in order to prevent erosion by wind and water.

Contractor should wait for several days after the application of lime before hydroseeding.

The hydroseeding procedure to be applied to designated areas shall be undertaken in one operation. The operation shall consist of the distribution of a slurry composed of: the required seed mixture, the fertilizer, mulch, and binder.

The rate of application of the ingredients of hydroseeding slurry shall be as follows for standard applications:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Rate of Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEED MIXTURE</td>
<td>80 kg/ha</td>
</tr>
<tr>
<td>FERTILIZER</td>
<td>400 kg/ha</td>
</tr>
<tr>
<td>BINDER</td>
<td>20kg/ha</td>
</tr>
<tr>
<td>MULCH</td>
<td>1600kg/ha</td>
</tr>
<tr>
<td>INOCULUM</td>
<td>IN ACCORDANCE WITH SECTION 632.02.01</td>
</tr>
</tbody>
</table>

For late summer applications of hydroseeding the following seed mixture shall be used for slope treatment with this late condition of application:

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Rate of Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEED MIXTURE</td>
<td>150 kg/ha</td>
</tr>
<tr>
<td>FERTILIZER</td>
<td>600 kg/ha</td>
</tr>
<tr>
<td>BINDER</td>
<td>20kg/ha</td>
</tr>
<tr>
<td>MULCH</td>
<td>1250kg/ha</td>
</tr>
<tr>
<td>INOCULUM</td>
<td>IN ACCORDANCE WITH SECTION 632.02.01</td>
</tr>
</tbody>
</table>

The Contractor shall measure the quantities of each of the materials to be charged into the seeder, either by mass or by a system of mass-calibrated volume measurements approved by the Engineer and the Contractor shall provide all equipment required for this purpose.

The ingredients required for the hydroseeding operation shall be thoroughly mixed with water in a hydroseeding tank.

In order to prevent all of one type of seed being planted on one part of the job, and all of another type of seed being planted on another part of the job, it is imperative that the hydroseeding slurry be continuously agitated during the hydroseeding operation to ensure that a homogeneous slurry is spread.

The distribution of the slurry shall be by means of an approved hydroseeder and shall be applied uniformly and in such a manner as to prevent puddling and movement of the soil surface.

Work shall proceed only in calm weather and on ground free of frost, snow, ice or standing water and when, in the opinion of the Engineer, weather and seasonal conditions are suitable. Hydroseeding shall not be carried out during periods of rainfall.

632.04 PROTECTION OF ENVIRONMENT

The Contractor shall take all reasonable care to prevent the contamination by his operations, of structures, signs, guide rails, fences, utilities and all such installations and, where such contamination occurs, he shall remove it to the satisfaction of, and by means approved by the Engineer.
FORM 632

The Contractor shall take whatever precautions may be necessary and shall ensure that fertilizer in solution shall not come in contact with the foliage of any trees, shrubs or other susceptible vegetation.

Should the Contractor fail to meet this requirement, he shall immediately spray the affected vegetation with water, as required by the Engineer, to remove such contamination.

Mechanical damage to trees and shrubs shall, at the Contractor's expense, be repaired by trimming and painting or replacement, as required.

Such action as is herein required shall not relieve the Contractor of further responsibility should it not effectively remedy the damage, or of his liability as set out elsewhere within the contract.

632.05 MAINTENANCE

The Contractor shall be responsible for maintaining hydroseeded areas to ensure proper and adequate growth of the vegetation during the warranty period. The Contractor shall also be responsible for an additional application of fertilizer the following spring. This application shall be by a method approved by the Department. The fertilizer shall be 5-10-30 and shall be applied at a rate of 300 kg/ha. No additional payment will be made for maintenance or the extra application of fertilizer.

632.06 CONTRACTOR'S WARRANTY PERIOD

All areas hydroseeded under this contract shall have a warranty period of one year starting from the date of initial acceptance. This warranty shall cover any defects in materials and workmanship, and damages caused by the elements of weather. During this period, any defect brought to the attention of the Contractor by the Engineer shall be fixed, repaired or made good to the satisfaction of the Engineer and at no additional cost to the Department.

632.07 MEASUREMENT FOR PAYMENT

The slope area actually hydroseeded, from within the limits as staked by the Engineer, will be measured in square metres, rounded to the nearest whole number.

632.08 BASIS OF PAYMENT

Payment of the contract price for hydroseeding shall be compensation in full for all labour, materials and equipment-use for: supplying the inoculated seed mixture as specified; supplying the fertilizer, binder and mulch; carrying-out the hydroseeding operation; and supplying and placing the fertilizer in the following spring; together with a one year warranty period, during which time the Contractor shall be responsible for making good any defect to the growth of the vegetation.

Full payment shall not be made until the final acceptance of the work on satisfactory completion at the end of the warranty period. A holdback in the amount of 25% of the total payment for hydroseeding shall be retained for the warranty period and until additional application of fertilizer the following spring as per Section 632.05 of this specification.
SECTION 643
SALVAGE AND REINSTALLATION OF GUIDE RAIL

INDEX
643.01 SCOPE
643.02 ENVIRONMENTAL REQUIREMENTS
643.03 MATERIALS
 643.03.01 Rail Sections and Rail Terminal Sections
 643.03.02 Bolts, Nuts, Washers and Spikes
 643.03.03 Signal Reflectors
 643.03.04 Nails for Reflectors
 643.03.05 New Posts and Anchors
 643.03.06 Re-usable Posts and Anchors
 643.03.07 Wood Preservative
643.04 DISMANTLING OF EXISTING GUIDE RAIL
643.05 REMOVAL AND SALVAGE OF EXISTING POSTS
643.06 BACKFILLING POST HOLES
643.07 INSTALLATION
643.08 MEASUREMENT FOR PAYMENT
643.09 BASIS OF PAYMENT
 643.09.01 Basis of Payment for Salvage and Reinstallation of Guide Rail with New Posts
 643.09.02 Basis of Payment for Salvage and Reinstallation of Guide Rail with Salvaged Posts

643.01 SCOPE

This specification covers the requirements for the salvage of existing guide rail, including buried ends, terminal ends and hardware, and posts from one location, and the reinstallation of the guide rail at another location using either the salvaged rail, including buried ends, terminal ends and hardware and posts, or the salvaged rail including buried ends, terminal ends and hardware, and new posts.

643.02 ENVIRONMENTAL REQUIREMENTS

Guiderail posts located in Protected Water Supply areas shall only be chromated copper arsenate treated type.

643.03 MATERIALS

 643.03.01 Rail Sections and Rail Terminal Sections

Only salvaged rail sections, angled rail sections and rail terminal sections deemed acceptable by the Engineer shall be used in the re-assembly.

March 2012
643.03.02 Bolts, Nuts, Washers and Spikes

All bolts, nuts and washers shall conform to the specifications of ASTM Designation A-307 or A-325, except that rail splice bolts shall be button headed.

Post bolts and splice bolts shall have shoulders of such shape and size that they fit into the bolt slots in the rails and thus prevent the bolt from turning.

Post bolts shall be 16mm diameter and 200mm long unless otherwise required. Post bolt washers for the back of the post shall be 45mm round and 4mm thick.

Bolts for anchors shall be 16mm diameter and 350mm long unless otherwise required and washers shall be 45mm round and 4mm thick.

Spikes for anchors shall be 125mm galvanized spikes.

Bolts, nuts washers and other fittings shall be hot-dip galvanized in accordance with the specification of ASTM Designation A-153.

The Contractor shall supply the bolts, nuts washers and spikes.

However, should any of the salvaged bolts, nuts and washers be suitable for re-use, then the Contractor may use these.

643.03.03 Signal Reflectors

Silver signal reflectors and yellow signal reflectors shall be of size 75mm x 100mm. The Department will supply both types of signal reflector free to the Contractor at the following district depots: White Hills in St. John's, Clarenville, Grand Falls, Deer Lake and Goose Bay.

643.03.04 Nails for Reflectors

Nails for securing signal reflectors, shall be supplied by the Contractor and shall consist of 30mm galvanized flat head nails.

643.03.05 New Posts and Anchors

Timber for new posts and anchors shall be sound, well seasoned structural grade lumber.

Only birch wood will be acceptable for new 150 x 150 guide rail posts. Hemlock or other approved species will be acceptable for 200 x 200 guide rail posts.

Posts shall have minimum dimensions of 150mm x 150mm x 2400mm, except in the particular case of posts to be used in Tender Items worded “Guided Rail with Additional Posts”, as shown in Form 1282, in which case posts shall have minimum dimensions of 200mm x 200mm x 2400mm.

Anchors shall consist of either one piece of 150mm x 150mm x 450mm timber, or two pieces of 38mm x 140mm x 450mm lumber.

Posts and anchors shall be pressure treated with an acceptable wood preservative.

The minimum required depth of penetration of wood preservative shall be 13mm. To determine penetration, a borer core shall be taken from 20 pieces in each charge. If 80% of the borings meet the penetration requirements, the charge shall be accepted.

The minimum retention of preservative shall be as follows:

March 2012
FORM 643

<table>
<thead>
<tr>
<th>PRESERVATIVE</th>
<th>MINIMUM RETENTION</th>
<th>METHOD OF DETERMINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PENTACHLOROPHENOL</td>
<td>6.4 kg/m3</td>
<td>BY ASSAY</td>
</tr>
<tr>
<td>CHROMATED COPPER ARSENATE</td>
<td>6.4 kg/m3</td>
<td>BY ASSAY</td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
<td>IN ACCORDANCE WITH CSA 080-M 89</td>
</tr>
</tbody>
</table>

Incising will normally be required. However, this requirement will be waived if specifications for both penetration and retention are satisfied.

If requested by the Engineer, the Contractor shall provide penetration and retention test reports for the guide posts and guide rail posts supplied for the project.

Where the contract item is given as "Salvage and Reinstallation of Guide Rail with New Posts" then, the Contractor shall supply all the required wood preservative treated new posts and anchors.

643.03.06 Re-usable Posts and Anchors

Only salvaged posts and anchors deemed acceptable by the Engineer shall be used in the re-assembly, and then only if the contract item is given as, "Salvage and Reinstallation of Guide Rail with Salvaged Posts". Where the contract item is given as, "Salvage and Reinstallation of Guide Rail with New Posts" then, salvaged posts shall not be used.

643.03.07 Wood Preservative

Wood preservative for use in treating field cut ends of posts shall be of the same type and chemical composition as that used in the original treatment.

The Contractor shall supply the wood preservative.

643.04 DISMANTLING OF EXISTING GUIDE RAIL

The Contractor shall exercise care in dismantling and removing rails and terminal sections so that they are not damaged and remain suitable for re-use. The rails and terminal sections shall be transported to, and stored at, a secure storage site provided by the Contractor at his own expense, pending their re-assembly at a new location.

Should any material, designated for reinstallation, be damaged or lost by the Contractor, then the Contractor shall be charged with the costs of replacement with equivalent new material. Damaged material shall become the property of the Contractor and shall be disposed of.

643.05 REMOVAL AND SALVAGE OF EXISTING POSTS

The Contractor shall exercise care in excavating posts so that they are not damaged and remain suitable for re-use.

Where the contract item is given as, "Salvage and Reinstallation of Guide Rail with New Posts" then, the salvaged posts shall be transported to, and stored at, the nearest Department Depot.

However, should the contract item be given as, "Salvage and Reinstallation of Guide Rail with Salvaged Posts" then, the posts shall be transported to and stored at, a secure storage site provided by the Contractor at his own expense pending their re-use at a new location.

Should any post designated for salvage, be damaged or lost by the Contractor, then the Contractor shall be charged with the cost of replacement. Damaged posts shall become the property of the Contractor and shall be disposed of.
643.06 BACKFILLING POST HOLES

The Contractor shall backfill to the required grade using the excavated materials if suitable. Should the excavated material be unsuitable, or should there be insufficient suitable backfill material from the excavation, then the Engineer will direct that material from a cut or from a borrow area will be used to complete the backfilling.

Backfilling shall be placed in layers not exceeding 200mm in thickness loose measurement. Each layer shall then be compacted to the required compaction before a further layer is placed.

Backfill consisting of other material or other material borrow shall be compacted to not less than 95% of the Standard Proctor Density (ASTM D698-78).

In rock backfill material where Standard Proctor tests cannot be carried out, compaction shall be continued until a compaction is achieved that is equivalent to that obtained in a fill when there is no visible movement of fill under a vibrating vibratory compactor with vibratory roller of length not less than one decimal five metres.

The backfilled hole or trench shall be levelled and trimmed to provide sightly contours and adequate drainage.

643.07 INSTALLATION

The rail sections, buried end sections, terminal sections and posts shall be transported to the location where they are required.

Guide rail shall be placed to the lengths, lines and grades set by the Engineer. The guide rail shall be installed in accordance with the requirements of the drawing Section 1279 "Typical Guide Rail Installation Types", and Section 1280 "Guide Rail Standard Installation", except where directed otherwise by the Engineer.

An angled rail section shall be placed at each end of a run of guide rail unless directed otherwise by the Engineer.

The end post at an angled rail section shall have an anchor secured to the bottom of the post.

Where a 150mm x 150mm x 450mm timber anchor is used it shall be secured to the post by means of a galvanized nut and 16mm diameter bolt 350mm long together with two 45mm round 4mm thick galvanized washers.

Where a double 38mm x 140mm x 450mm lumber anchor is used it shall be secured to the post by means of four 125mm galvanized spikes.

Field boring and cutting to length of anchors will be permitted, provided that the hole is treated with two coats of wood preservative before driving the bolts and provided that the cut end is treated with two coats of wood preservative before burying.

Where the contract item is given as, "Salvage and Reinstallation of Guide Rail with Salvaged Posts" then, posts with the original anchors may be used provided that the anchor is sound. Should the anchor have been damaged during salvage then the Contractor shall replace the anchor on the post using new materials.

The Contractor shall excavate holes for the posts such that when placed in the holes the bottom of the posts are at least 1200mm below the ground surface.

Posts shall be set plumb and to the established lines and grades and shall be placed at 3810mm intervals, unless directed otherwise by the Engineer.
The posts shall be firmly backfilled with selected material, free of large rock, placed in layers of thickness not greater than 100mm. Each layer shall be thoroughly compacted before the next layer is placed. Should the backfill be dry then each layer shall be moistened before tamping.

All backfill shall be compacted to 95% of Standard Proctor Density (ASTM D698-78).

All surplus excavated material shall be disposed of along the sides of fill, or in other locations as directed by the Engineer.

The rails shall be secured to even lines such that the centre of the rail is 500mm above the edge of pavement.

The Contractor shall bore holes in the posts for the post bolts and treat the holes with two coats of wood preservative before driving the bolts.

Rail elements and terminal sections shall be lapped so that the exposed ends will not face approaching traffic.

The bolted connections of the rail element to the post shall be capable of withstanding a 22.5 kN pull at right angles to the lines of the railing.

When the attachment of the rail elements to the posts has been completed, the tops of the posts shall be cut to a point 75mm above the top of the rail as shown by Section 1279 “Typical Guide Rail Installation Types” and Section 1280 “Guide Rail Standard Installation”. The tops of the posts shall be treated with two coats of wood preservative after cutting.

Signal reflectors shall be attached to posts at terminal sections, posts at the buried end sections, and to every fourth post in a length of guide rail. Silver reflectors shall be placed facing oncoming traffic and yellow reflectors shall be placed on the opposite side except for divided highway. On divided highways, silver reflectors will be placed facing oncoming traffic on the outside shoulder and yellow reflectors will be placed facing traffic on the median shoulder.

The Contractor shall drill nail holes in the reflectors, bend the reflectors to the required shape and secure the reflectors with 30mm galvanized flat head nails as shown on drawing Section 1281 “Signal Reflectors on Guide Rail Post”.

When reinstalling salvaged posts, the original reflectors shall be removed and new reflectors shall be attached.

643.08 MEASUREMENT FOR PAYMENT

Measurement for payment for the Salvage and Reinstallation of Guide Rail shall be the length of the reinstalled guide rail placed within the limits designated by the Engineer, measured in metres, rounded to one decimal place, measured end to end along the face of the railing and terminal sections.

643.09 BASIS OF PAYMENT

643.09.01 Basis of Payment for Salvage and Reinstallation of Guide Rail with New Posts

Payment at the contract price for Salvage and Reinstallation of Guide Rail with New Posts, shall be compensation in full for all labour, materials and use of equipment to: dismantle the rail sections, transport the rail sections and terminal sections to a secure storage site provided by the Contractor at his own expense, store the rail sections, excavate and salvage the guide rail posts and transport them to the nearest Department Depot, backfill and compact the excavation, excavate holes for posts at the required new location, supply new preserved wood posts and anchors, transport the stored rail sections and rail terminal sections from the storage site to the place of installation, supply the bolts, nuts, washers and spikes, assemble and secure the anchors to the posts, assemble the guide rail to the required lines and grade, bend rail sections where required to a uniform radius, backfill post holes, compact backfill, dispose of surplus excavation material, trim posts, supply and apply wood preservative to cut ends and drill holes, and install reflectors.

March 2012
Payment at the contract price for Salvage and Reinstallation of Guide Rail with Salvaged Posts, shall be compensation in full for all labour, materials and use of equipment to: dismantle the rail sections, excavate and salvage the guide rail posts, transport the rail parts and posts to a secure storage site provided by the Contractor at his own expense, store the rail parts and posts, backfill and compact the excavation, excavate holes for posts at the required new location, transport the stored rail parts and posts from the storage site to the place of installation, supply the bolts, nuts, washers and spikes, supply assemble, and secure new anchors where the original anchors are damaged, assemble the guide rail to the required lines and grade, bend rail sections where required to a uniform radius, backfill post holes, compact backfill, dispose of surplus excavation material, trim posts, supply and apply wood preservative to cut ends and drill holes, remove original reflectors, and install new reflectors.
SECTION 810

USE OF HERBICIDES FOR BRUSH CONTROL OPERATIONS

INDEX
810.01 SCOPE
 810.01.01 General
810.02 MATERIALS
810.03 HERBICIDE STORAGE & HANDLING PROCEDURES
810.04 EQUIPMENT
810.05 GENERAL APPLICATION REQUIREMENTS
 810.05.01 Spray Conditions and Restrictions
 810.05.02 Daily Logs and Written Reports
 810.05.03 Safety
 810.05.04 Clean Up
 810.05.05 Spills
 810.05.06 Newspaper Notice
 810.05.07 Signs
 810.05.08 Notices to Adjacent Property Owners
 810.05.09 Guarantee
810.06 MEASUREMENT FOR PAYMENT
810.07 BASIS FOR PAYMENT

810.01 SCOPE

This specification covers the supply and application of herbicide to broadleaf brush and trees.

Specific locations to be sprayed, and areas to be omitted, shall be designated by the Engineer.

810.01.01 General

The Contractor and Subcontractor(s) are required to comply with environmental protection measures contained in this section and all applicable environmental protection regulations of Federal, Provincial, and Municipal Authorities.

No pesticides or other products shall be used without prior approval of the owner and the Department of Environment & Conservation. Each pesticide to be used, its application rate, and area of use, shall be subject to regulations under the Environmental Protection Act, 2002 and the Pesticide Control Regulations, 2003. A copy of the Material Safety Data Sheet (MSDS) and Pesticide Label Information shall be supplied to the Resident Engineer 5 days prior to any use by the Contractor. Two copies of any approval issued to the Contractor for chemical usage under these Regulations shall be provided to the Engineer. As part of the Contractors Hazard Assessment prior to the start of contract work an emergency/contingency plan shall be developed in case of a spill and provide a copy of this plan to the Resident Engineer.
810.02 MATERIALS

The herbicide to be used to execute the work of this contract shall be, as specified in the contract documents, and shall be approved on the Pesticide Operator Licence issued to the pesticide operator by the Department of Environment & Conservation.

All herbicide brought onto site for the execution of the contract shall be contained in sealed containers and will be inspected by the owner to ensure that such herbicides are properly registered under the Pesticides Control Act RSN 1990, and approved by the Newfoundland Department of Environment, and are of the type, strength and quality specified therein. Any herbicide not meeting these requirements shall be rejected. "BLAZON" dye shall be used as colouring agent at the manufacturer's recommended concentration.

810.03 HERBICIDE STORAGE & HANDLING PROCEDURES

Contractor shall ensure that herbicides are handled only by personnel who are licensed, trained and qualified in handling these materials in accordance with manufacturers' instructions and government regulations (Section 13 of the Pesticides Control Regulations). The Contractor will be required to verify personnel qualifications as they pertain to this item and provide written confirmation of same to the Engineer. The Contractor shall supply a copy of the product safety data sheet to the Engineer of all herbicides or hazardous substances which will be used during the course of the contract. Tank refilling operations shall be supervised at all times. Under no circumstances shall any tank refilling procedure be left unattended by the operator.

Handling and tank filling/transferring procedures shall be carried out to prevent the contamination of soil or water. Tank filling or servicing of mobile equipment shall not be allowed within 100 m of a watercourse, water body, or designated wetlands. Herbicides and other chemicals shall be stored at least 100m (horizontal distance) from any water course, water body, or designated wetland unless otherwise approved by the Engineer and/or the Department of Environment and Conservation.

Any pesticide storage sites must meet the requirements of Section 13 of the Pesticides Control Regulations, 2003 as follows:

- A source of water must be kept in an area in or adjacent to the storage area;
- Approved safety equipment as required which is properly maintained, functional and available at all times for personnel handling and working with pesticides;
- Flooring in a storage area shall not contain a floor drain or catch basin which is directly or indirectly connected to a private or municipal sewage system or public water course;
- Flooring shall be capable of being cleaned and decontaminated of pesticides stored within;
- Adequate ventilation by either natural or mechanical means so as to prevent the accumulation of toxic and/or flammable vapours;
- A "Danger Stored Pesticide" sign posted on all entrances which is printed in block letters 5 centimeters or more in height;
- Cleanup procedures, materials, and equipment available to cleanup spills or leakage;
- Security procedures consistent with the instructions of the Minister or persons designated by the Minister.

In addition to these storage requirements each pesticide storage site shall have prominently displayed on all entrances contact telephone numbers for the operator and the Department of Environment & Conservation, Pesticides Control Section, and indicated accordingly.

All entrances to the storage sites must be locked when the owner or an employee of the owner is not present.

Pesticides shall be stored in their original container or a substitute container approved by the manufacturer. Substitute containers shall be labelled appropriately with labels provided by the manufacturer.
Concentrated pesticides transported in a vehicle during spray operations shall be contained in a locked box, secure area or compartment which must be locked while unattended. Pesticides shall not be transported in the passenger compartment of any vehicle.

810.04 EQUIPMENT

Prior to acceptance of the tender, the Contractor shall provide proof that the spray equipment, auxiliary mixing and storage equipment, and associated equipment that is intended to be used meets the requirements of the manufacturer of the herbicide. Equipment shall be in good working condition with tanks secured properly, have hoses of good integrity (not cracked) and all pumps seals and joins tight with no leaks.

All equipment applying liquid herbicide solution shall be capable of ensuring that all active ingredients are contained in the target area.

The Contractor shall provide all material, construction plant and personnel necessary for the continued operation of application equipment. All vehicles used in the application of pesticides shall have a copy of the contingency plan located within the vehicle.

810.05 GENERAL APPLICATION REQUIREMENTS

Herbicides shall be applied by low volume broadcast spray ground application in all areas to be treated utilizing a spray delivery system (such as the Radiarc sprayer or approved equivalent) which offers effective drift control. Aerial spraying from planes and helicopters will not be permitted. The spray system utilized must be acceptable to both the herbicide manufacturer the Resident Engineer assigned to monitoring the herbicide application and Pesticides Control Section of the Department of Environment & Conservation.

The Contractor is required to obtain a Pesticide Operator’s License from the Pesticide Control Section, Department of Environment.

Prior to the commencement of specific work elements, the Contractor shall immediately provide the Engineer with two copies of all permits.

Any contravention of environmental requirements, including employee actions accidental or otherwise, resulting in environmental damage shall be reported to the Engineer without delay.

Contractor shall be responsible for clean-up, reclamition and/or restorative measures as may be directed by the Engineer, or by provincial or federal agencies through the Engineer.

810.05.01 Spray Conditions and Restrictions

The Contractor shall provide proof satisfactory to the Engineer that the strength of spray solution and the method of application meet the requirements of the manufacturer supplying the herbicide as specified on the product label. A supervisor from the Department will be appointed to monitor the Contractor at all times when he is working with the herbicide and shall be supervised by Department personnel trained in the application of pesticides.

Contractors are advised that, notwithstanding the stipulations included with the Contractor’s Pesticide Operators License issued by the Pesticide Control Section of the Department of Environment, the Contractor will ensure that:

(a) The herbicide shall be applied only to the highway right-of-way which has been previously cut, and subsequently designated for treatment.

(b) The Contractor shall be aware that some watercourses may be in close proximity to the designated spray area. Due care and caution shall be taken to ensure that herbicide spraying operations do not impact on any watercourses or water bodies and meet approved buffer zone requirements of the Department of Environment and Conservation and the manufacturer.
(c) Ground based spraying is permitted only when: wind speeds are between 2 and 15 km/h, air temperatures are below 25°C, the relative humidity is above 50%, it is not raining, and rain is not anticipated over the next two hour period.

(d) The Engineer in consultation with the Contractor and officials of the nearest weather office shall determine daily the suitability of weather conditions to undertake the application of herbicide. The Engineer has the authority to stop the spraying of herbicide at any time based on local conditions and weather measurements. The site supervisor for the Department of Transportation & Works shall be given access to an anemometer on site to determine the wind speed, temperature and humidity at the site.

(e) There shall be no herbicide application within densely populated areas. Spray areas within commercial or residential developments, house or cottage areas are to be determined in the field by the Engineer. A 50 m buffer shall be maintained.

(f) Areas designated by the Engineer, in consultation with the Department of Environment, as areas to be omitted from spraying, shall not be sprayed.

(g) The Contractor shall take due care and caution when applying herbicide in close proximity to land used for agricultural purposes. Drifting of spray onto land utilized for agricultural purposes shall not be permitted.

(n) Equipment is not permitted to operate in any watercourse or ditch containing or which may contain water which enters a watercourse.

810.05.02 Daily Logs and Written Report

Contractors are advised that reports and records are required by the provincial Department of Environment. Their use is of the utmost importance to any right-of-way management program and they shall form an important part of this contract. The Contractor shall ensure that all logs, records and reports are completed fully, are legible, and are signed by authorized personnel.

The submission of appropriate documentation as may be required shall be a requirement to the satisfactory completion of this contract.

810.05.03 Safety

The Contractor shall be responsible for the proper handling and safe use of all herbicides.

The Contractor shall be responsible for the safety of its employees in the application of herbicides and for the supply and use of all recognized safety equipment.

The Contractor shall have with each crew, a minimum of one person who is qualified in First Aid. This person(s) shall also be in possession of a valid Standard First Aid Certificate.

In addition to standard First Aid Kits, Contractor shall, at its own expense, have on site with each of its crews adequate first aid supplies that are unique to accidental herbicide exposure.

The Contractor shall rinse empty herbicide containers three times and use the rinse in the spray mixture. If the rinsed containers are not to be returned for refilling with herbicide then the rinsed containers shall be punctured several times to ensure they will not be used for filling with other substances and then disposed of in a manner approved by the Department of Environment.

The Contractor shall ensure the safety of all individuals including pedestrians, residents, vehicular passengers and operators or others as may be encountered during spray operations.
Upon completion of herbicide application, the Contractor shall remove all of their rubbish, debris, surplus materials and equipment from the site.

The Contractor shall place rubbish and refuse in proper containers and shall dispose of same at an approved waste disposal site with permission of the waste disposal site owner/operator.

The Contractor shall not wash equipment or containers, nor dump herbicides in or near any fresh or salt water bodies, or at any location where the herbicide may enter a body of water.

(a) The Contractor shall maintain on site with each crew engaged in the mixing and application of the herbicide mixture, an approved supply of absorbent materials as part of the overall spill cleanup kit.

Absorbent materials shall consist of activated charcoal, sawdust, peat moss or other materials in quantities as may be required by appropriate authority and the Engineer.

In the occurrence of spillage or leakage, the Contractor shall undertake prompt action to minimize the extent of damage through the application of absorbent materials or other procedures as may be required.

Any soils or other materials contaminated as a result of spillage, leakage or inappropriate actions taken by applicators shall be removed and the affected areas subsequently rehabilitated at the Contractor's expense.

Disposal of contaminated soils and other materials shall be the responsibility of the Contractor subject to approval by the appropriate authority, the Engineer and the Pesticide Control Section.

(b) All spills involving greater than 10 litres of mixed formulation or the equivalent of unmixed formulation shall be reported immediately to the Pesticides Control Section as described below. All spills involving mixed or unmixed pesticide in or within 500m of water bodies, wells or areas frequented by people, shall be reported immediately to the Pesticides Control Section, St. John's (Ph: 729-3395) and Environment Canada (EPS) St. John's (Ph: 772-2083).

The Contractor shall submit a corresponding written report within two (2) days of occurrence to the project supervisor who will in turn forward the report to the Director of Design and Construction. The report shall identify cause, actions taken to clean up area, actions taken to prevent a recurrence, actions taken to dispose of contaminated material and any environmental damage.

The Contractor shall advise the public of the purpose and scope of the project by means of newspaper notices. The Contractor shall place the notices in at least one newspaper with circulation in the municipalities whose boundaries encompass treatment areas. The newspaper ad will appear in any issue at least one week prior to commencing the program. The ad will state the area that is proposed for treatment over the next 21 calendar days at the end of which another ad is to be placed until the program is completed. The ad will contain a phone number at which the Contractor may be contacted for information regarding the spraying operation and the Department of Environment Pesticides Control Section 729-3395.

The Contractor shall provide and erect signs indicating that the right-of-way has been treated with herbicide. These signs shall be posted at the time of treatment and indicate the type of herbicide (name of formulation) used, PCP Act Registration Number, Date of Application, Company Name carrying out the application of herbicide and phone number for additional information, Department of Environment and Conservation phone number 1-800-563-6181 and the locations treated as stipulated in the Pesticide Operator’s Licence Terms and Conditions issued by the Department of Environment and Conservation.
810.05.08 Notices to Adjacent Property Owners

The Contractor shall make every reasonable attempt to verbally notify adjacent property owners, prior to the spray program. In the event this cannot be done, the Contractor shall use written notification to all dwellings to the satisfaction of the Resident Engineer and the Pesticides Control Section of the Department of Environment & Conservation.

810.05.09 Guarantee

The Contractor shall achieve a 95% brush kill in the target area. The brush kill is to be inspected near the end of the warranty period in the growing season following the treatment application. If spot checks, after the herbicide treatment is completed, reveals that the 95% brush kill was not achieved at the end of the warranty period, then the Contractor will be required, at his own expense, to retreat these areas to obtain the 95% brush kill in the target area.

810.06 Measurement for Payment

Measurement will be made of the horizontal area actually sprayed with herbicide within the area indicated to be sprayed or as staked out by the Engineer. These measurements shall be computed to obtain the area in hectares, measured to three decimal places.

Spraying of areas beyond the limits as designated by Engineer will not be measured for payment.

810.07 Basis of Payment

Payment at the contract price for supply and application of herbicide shall be compensation in full for all labour, materials and equipment use to carry out the work indicated in these specifications, and shall include all costs involved in: placing newspaper notices, providing signs, and obtaining and conforming to the conditions of required permits, together with the removal of any debris (containers, absorbent, etc.) including obtaining an approved waste disposal area and hauling away and disposing of the debris in the waste disposal area, if required.

Full payment shall not be made until the final acceptance of the work on satisfactory completion at the end of the warranty period. A holdback in the amount of 15% of the total payment for herbicide treatment shall be retained for the warranty period and until checking the achievement of the 95% brush kill the following growing season as per Section 810.05.09 of this specification.
SECTION 903
CONSTRUCTION SPECIFICATION FOR PILING

INDEX
903.01 SCOPE
903.02 MATERIALS
 903.02.01 Timber - Round Piles
 903.02.02 Steel Sheet Piles and H-Piles
 903.02.03 Steel Tube Piles
 903.02.04 Pile Tips
 903.02.05 Concrete And Reinforcement For Steel Tube Piles
 903.02.06 Storage And Handling
903.03 PILE DRIVING
 903.03.01 General Requirements And Restrictions
 903.03.02 Tolerances
 903.03.03 Driving Equipment
 903.03.04 Jetting
 903.03.05 Helmets
 903.03.06 Records
 903.03.07 Redriving
 903.03.08 Driving Of Tube And H-Piles When Boulders Are Anticipated Or Driving To Bedrock
903.04 SPLICES
 903.04.01 Timber Piles
 903.04.02 Steel Piles
903.05 CONCRETE FILL IN TUBULAR STEEL PILES
903.06 UNASSIGNED
903.07 UNASSIGNED
903.08 MEASUREMENT FOR PAYMENT
 903.08.01 Sheet Piles Supplied
 903.08.02 Piles Other Than Sheet Piles Supplied
 903.08.03 Sheet Piles Installed
 903.08.04 Piles Other Than Sheet Piles Installed
 903.08.05 Pile Tips And Splices
 903.08.06 Rejection
 903.08.07 Vertical Piles
 903.08.08 Battered Piles
903.09 BASIS OF PAYMENT
903.09.01 Sheet Piles Supplied
903.09.02 Piles Other Than Sheet Piles Supplied
903.09.03 Piles Installed
903.09.04 Piles Splices
903.09.05 Pile Tips, Supply And Install
903.09.06 Jetting

903.01 SCOPE

The scope of this specification is to cover the supply and driving of piles, sheet piles and associated work, in steel or timber. Piles to be "Supplied By The Contractor" or "Supplied By The Department".

903.02 MATERIALS

All materials shall be new and previously unused. The Contractor shall provide Mill Certificates and a Letter of Compliance for all piling and piling related materials used in the project.

903.02.01 Timber - Round Piles

Timber piles shall be clean peeled and shall comply to the standards of CSA Standard CAN3-056. Piles shall be pressure treated with creosote in conformance with CSA Standard 080 at a rate of retention of 130 to 260 kg/m³, any cuts or breaks in the surface of treated piling shall be given three brush coats of hot creosote oil.

903.02.02 Steel Sheet Piles And H-Piles

Steel sheet piles and steel H-piles shall comply with the requirements of CSA G40.21-M 300W or ASTM A328. The straightness tolerance shall be 25mm in 20 metres.

Two copies of the mill certificates, indicating that the steel meets the requirements of the appropriate standards for Sheet and H piles shall be submitted to the Engineer prior to shipment to the job site.

Where mill test certificates originate from a mill outside of Canada or the United States of America the Contractor shall have the information on the mill certificates verified by testing by a Canadian laboratory. The laboratory shall be certified by an organization accredited by the Standards Council of Canada to comply to comply with the requirements of ISO/IEC 17025 for the specific tests or type of tests required by the material standard specified on the mill test certificate. The mill test certificates shall be stamped with the name of the Canadian testing laboratory and appropriate wording stating that the material conforms to the specified material requirements. The stamp shall include the appropriate material specification number, the date (i.e., yyyy-mm-dd), and the signature of an authorized officer of the Canadian testing laboratory.

903.02.03 Steel Tube Piles

Steel tube piles shall be welded or seamless tube piles and shall comply with the requirements of ASTM Specification A252 Grade 2 or Grade 3. If welded, they shall be welded by the Electric Arc method in accordance with CSA Standard W59.

The straightness tolerance shall be 25mm in 20 metres.

Two copies of the mill certificates, indicating that the steel meets the requirements of the appropriate shall be submitted to the Engineer prior to shipment to the job site.

Where mill test certificates originate from a mill outside of Canada or the United States of America the Contractor shall have the information on the mill certificates verified by testing by a Canadian laboratory. The laboratory shall be certified by an organization accredited by the Standards Council of Canada to comply to comply with the requirements of ISO/IEC 17025 for the specific tests or type of tests required by the material standard specified on the mill test certificate. The mill test certificates shall be stamped with the name of the Canadian testing laboratory and appropriate wording stating that the material
conforms to the specified material requirements. The stamp shall include the appropriate material specification number, the date (i.e., yyyy-mm-dd), and the signature of an authorized officer of the Canadian testing laboratory.

903.02.04 Pile Tips

As per contract specifications.

903.02.05 Concrete And Reinforcement For Steel Tube Piles

Concrete and reinforcement shall be in accordance with Section 904 and Section 905 respectively.

903.02.06 Storage And Handling

All piles shall be stored and handled in such a manner that damage is prevented and that design strengths will not be affected by deterioration or deformation.

903.03 PILE DRIVING

903.03.01 General Requirements And Restrictions

Piles shall not be driven until other excavation is completed to below cut-off level. Any material forced up between the piles shall be removed to the correct elevation. Any fill material shall be placed to the underside of the footing before driving piles.

Piles shall not be driven within 15m of concrete placed during the preceding seven days. The Contractor shall not drive piles in such a manner that the piles are subjected to excessive or undue abuse. Forcing piles into their proper position by the use of excessive manipulation is prohibited.

The Contractor's driving operations shall not cause vibration sufficient to harm the construction or adjacent property.

903.03.02 Tolerances

Piles shall be driven as nearly as possible in the exact position specified on the drawings. After driving, piles at the cut-off elevation shall not be more than 75mm from the location shown on the drawings.

Deviation from the vertical or required batter shall not be more than 20mm per lineal metre of pile. Any pile so out of line or plumb as to impair its usefulness shall be pulled and redriven or an additional pile shall be driven as required by the Engineer. The piles shall not be jacked or pulled laterally to bring their tops into correct location.

903.03.03 Driving Equipment

All piles shall be driven with a hammer developing an energy per blow of not less than that shown in the contract document. The energy should be capable of remote regulation to prevent damage to the piles. The piles and hammer shall be held securely in the correct alignment by rigid leads extending down to the lowest point the hammer must reach.

The use of vibratory hammers to drive or partially drive either H-piles or pipe piles must be approved by the engineer.

903.03.04 Jetting

Jetting shall not be used unless written permission has been given by the Engineer. Appropriate special conditions will be given should jetting be authorized.

903.03.05 Helmets

Pile heads shall be protected by helmets having adequate cushioning material next to the pile head. The helmet shall distribute the blow of the hammer evenly throughout the pile cross-section.
Timber piles shall be prevented from splitting by collars.

903.03.06 Records

The Contractor shall not commence driving piles in the absence of the Engineer.

Blows per 300mm for each 300mm shall be recorded. For the final 300mm the blows per 25mm shall be recorded.

When driving is interrupted before final penetration is reached, the final record of penetration shall not be taken until, on resumption of driving, a further penetration of 300mm has been obtained.

903.03.07 Redriving

Piles pushed up by driving or loosened by jetting of adjacent piles shall be redriven to comply with the requirements of the contract. Similarly, if a pile(s) is suspected to have hung up on a boulder, the Contractor shall re-drive the pile(s) in question as well as others in the immediate vicinity.

After all piling is complete and all piles are driven to meet project criteria, the contractor shall return to each footing and re-drive at least ten (10) percent of the piles in each footing rounded to the next highest number of piles plus one. The piles selected for re-driving shall be randomly selected by the Engineer. If movement exists on one or more piles, additional piles shall be re-driven until the Engineer is satisfied that all piles have met the design criteria as established on the contract drawings or in the specifications.

The contractor is advised that piling shall not be cut-off until all re-driving is complete.

903.03.08 Driving Of Tube And H-Piles When Boulders Are Anticipated Or Driving To Bedrock

When boulders are anticipated, pile tips should be fitted. Driving shall be carried out until the pile tips make contact with rock. Driving energy shall be decreased to about a quarter and the pile shall be subjected to twenty blows. Energy can be increased with approval from the Engineer by about a quarter at twenty blows for each interval until the Engineer is satisfied that the requirements of the contract are complied with. Adjacent piles should then be redriven.

When steel tube and H-piles are to be driven to and chipped or socketed into bedrock, rock injector pile tips shall be fitted to the ends of the piles. The piles shall be chipped into the bedrock using low energy. When the piles are firmly seated, the energy shall be increased in stages or intervals and eventually driven to refusal at the rated energy as stipulated in the contract documents.

903.04 SPLICES

903.04.01 Timber Piles

No splices will be permitted for timber piles.

903.04.02 Steel Piles

No splices will be permitted for steel piles except where allowed for in the contract or as authorized by the Engineer unless the toe elevations for the pile should extend beyond those specified in the contract drawings.

Welding shall be according to CSA W59 and shall be done by a qualified welder employed by a firm certified according to CSA W47.1, Division 1 or Division 2.1.

If splices are within 5.0 meters of the pile cut off elevation specified then they shall be made with complete penetration welds as per the details on the contract plans and all welds shall receive 100% ultrasonic or radiographic inspection.

Pile splices specified as part of the design specifications which are below 5.0 meters from the pile cut off elevation shall be made with complete penetration welds as per the details on the contract plans. All piles shall receive visual Inspection with 20% of the piles rounded to the next highest number receiving
100% ultrasonic or radiographic inspection. Piles chosen for testing shall be determined by the resident engineer.

The Contractor shall employ an independent testing company with no corporate affiliation to carry out the visual inspection and non-destructive testing of welds. The independent testing company shall be certified by the Canadian Welding Bureau to the requirements of CSA W178.1 for bridge structures by radiographic or ultrasonic test methods. The welding inspector shall have documented evidence of training, professional knowledge, skill and experience in visual inspection of structural steel welds and material, and have a valid certificate showing qualification to a Level II or III according to CSA W178.2.

903.05 CONCRETE FILL IN TUBULAR STEEL PILES

After acceptance by the Engineer, the pile shells including rejected shells left in the ground shall be cut off at the required elevation and shall be filled with concrete.

Prior to filling each pile, the inside shall be inspected with an electric lamp attached to a drop cord of sufficient length to reach the bottom of the pile. Any debris and water shall be removed before placing the concrete.

Reinforcing steel shall be installed in the concrete fill at the top of all the piles as shown on the drawings.

No concrete shall be placed until all driving within a radius of 15m has been completed. If this cannot be done, driving within these limits shall be stopped until the concrete in the last pile has set for at least seven days.

Concrete shall be placed continuously until the shell is filled.

The concrete shall be worked thoroughly down into place and compacted with a vibrator to the lowest extent of the reinforcement.

After placing, the concrete shall be protected from frost for at least three days.

903.08 MEASUREMENT FOR PAYMENT

903.08.01 Sheet Piles Supplied

The measurement for sheet piles supplied will be in square metres to the nearest one decimal place. For payment purposes the measurement for sheet piles supplied will be based upon the actual quantity installed provided this quantity equals or exceeds the quantity estimated in the Structure Unit Price Table. If the actual quantity installed is less than the quantity estimated then payment will be made for supplying the quantity installed plus the total area of unused sheet piles but not exceeding the estimated quantity. Unused sheet piles will include only uncut sheet piles in lengths originally supplied to the Contractor and, if necessary, cut-off sections of sheet pile whose lengths are 3 m or longer. For payment purposes the length of cut off sections will be calculated based upon the difference between the estimated pile toe elevation as shown on the contract drawings and the actual pile toe elevation.

903.08.02 Piles Other Than Sheet Piles Supplied

The measurement for piles supplied other than sheet piles will be in linear metres to the nearest one decimal place. For payment purposes the measurement for piles supplied other than sheet piles will be based upon the actual quantity installed provided this quantity equals or exceeds the quantity estimated in the Structure Unit Price Table. If the actual quantity installed is less than the quantity estimated then payment will be made for supplying the quantity installed plus the total length of unused piles but not exceeding the estimated quantity. Unused piles will include only uncut piles in lengths originally supplied to the Contractor and, if necessary, cut-off sections of piles whose lengths are 3 m or longer. For payment purposes the length of cut off sections will be calculated based upon the difference between estimated pile toe elevation as shown on the contract drawings and the actual pile toe elevation.

903.08.03 Sheet Piles Installed

The measurement for sheet piles installed will be in square metres to the nearest one decimal place based upon the actual quantity of pile installed and left in place after cut off as approved by the engineer.
903.08.04 Piles Other Than Sheet Piles Installed
The measurement for piles other than sheet piles installed will be in linear metres to the nearest one
decimal place based upon the actual quantity of pile installed and left in place after cut off as approved
by the engineer.

903.08.05 Pile Tips And Splices
These will be measured according to the actual number used, authorized and accepted by the Engineer.

903.08.06 Rejection
Any piles or tips which are rejected for reasons of improper driving, positioning or damage shall not be
included in the above measurements.

903.08.07 Vertical Piles
All piles shown on the plans vertically will be considered and paid for as vertical piles.

903.08.08 Battered Piles
All piles shown on the plans with a batter angle will be considered and paid for as battered piles.

903.09 BASIS OF PAYMENT

903.09.01 Sheet Piles Supplied
Payment at the contract price for sheet piles supplied shall be full compensation for all labour, materials,
supplies and equipment required to complete the work associated with the supply of piling, loading and
transportation to the jobsite, unloading, handling and storage of piling materials.

Unused sheet piles shall be loaded, transported and off-loaded by the Contractor to a designated area at
the nearest maintenance depot as part of the demobilization item as per section 157 of the Specifications
Book. When the Contractor transports the unused piles he shall present a receipt for the piles, signed by
the Depot Foreman, to the Engineer.

The quantity of wastage (defined as the quantity supplied to the site less the pay quantity) shall be the
Contractor's responsibility and payment will not be made for such. The Engineer shall determine the
quantity of wastage.

903.09.02 Piles Other Than Sheet Piles Supplied
Payment at the contract price for piles other than sheet piles supplied shall be full compensation for all
labour, materials, supplies and equipment required to complete the work associated with the supply of
piling, loading and transportation to the jobsite, unloading, handling and storage of piling materials.

Unused piles shall be loaded, transported and off-loaded by the Contractor to a designated area at the
nearest maintenance depot as part of the demobilization item as per section 157 of the Specifications
Book. When the Contractor transports the unused piles he shall present a receipt for the piles, signed by
the Depot Foreman, to the Engineer.

The quantity of wastage (defined as the quantity supplied to the site less the pay quantity) shall be the
Contractor's responsibility and payment will not be made for such. The Engineer shall determine the
quantity of wastage to the Engineer.

903.09.03 Piles Installed
Payment at the contract price per square meter for sheet piles installed and per linear meter for piles
other than sheet piles installed shall be full compensation for positioning, driving, cleaning, painting,
protecting and pile cut-off.
The re-driving of piles shall be considered incidental to the work and extra payment will not be made for the same. However, where the contractor succeeds in increasing the length of piling in the works he shall be compensated for supply and installation in accordance with the contract specifications.

Where pile capacity is established by dynamic analysis and relaxation occurs the Contractor shall have the pile capacity re-evaluated. Piles are defined to have relaxed when more than 125 mm average movement occurs in those piles subject to re-driving as defined in Section 903.03.07 above. Dynamic analysis re-evaluation shall be conducted by an agency approved by the Engineer. The cost of the dynamic analysis re-evaluation shall be paid for by the Department. All other costs including but not limited to the cost of delay shall be considered incidental to the tendered price for piles driven.

No payment will be made for falsework piling.

All costs involved in filling tube piles with concrete and reinforcing shall be included in the contract price for piles installed.

Payment for pile template(s) shall be considered incidental to the work and payment will not be made for such.

903.09.04 Pile Splices

Payment at the contract price shall be full compensation for all labour, equipment, materials and services necessary to install pile splices and provide the specified visual and non-destructive testing.

903.09.05 Pile Tips, Supply And Install

Payment at the contract price shall be full compensation for all labour, equipment and materials necessary to supply, deliver and install the pile tips.

903.09.06 Jetting

No additional payment shall be made for jetting, if authorized.
SECTION 904
CONCRETE STRUCTURES

INDEX

904.01 SCOPE

904.02 MATERIALS
 904.02.01 Cement
 904.02.02 Aggregate
 904.02.03 Water
 904.02.04 Air Entraining Agent
 904.02.05 Admixtures
 904.02.06 Reinforcement
 904.02.07 Formwork and Falsework
 904.02.08 Burlap
 904.02.09 Filter Fabric
 904.02.10 Moisture Barrier
 904.02.11 Miscellaneous Materials

904.03 EQUIPMENT

904.04 CONCRETE PRODUCTION, DELIVERY AND PLACING
 904.04.01 Measurement of Materials
 904.04.02 Concrete Quality
 904.04.03 Mixing Concrete
 904.04.04 Placing Concrete
 904.04.05 Depositing Concrete Under Water
 904.04.06 Mass Concrete
 904.04.07 Construction Joints
 904.04.08 Contraction Joints
 904.04.09 Concrete Beam Seats and Bearing Surfaces
 904.04.10 Tolerances
 904.04.11 Confilm
 904.04.12 Caulking of Joints

904.05 CURING
 904.05.01 Fog Misting of Bridge Decks
 904.05.02 Moist Curing
 904.05.03 Air Drying
 904.05.04 Plastic Shrinkage
 904.05.05 Liquid Membrane Curing

904.06 HOT WEATHER CONCRETING

904.07 COLD WEATHER CONCRETING
904.07.01 General
904.07.02 Placing
904.07.03 Protecting Placed Concrete
904.07.04 Heating the Protective Housing

904.08 SURFACE FINISHING

904.09 SAMPLING AND TESTING

904.10 MEASUREMENT FOR PAYMENT

904.10.01 Measurement for Payment for concrete work where the Unit Price Table states the unit to be cubic metres
904.10.02 Measurement for Payment for concrete work where the Unit Price Table states the unit to be a unit other than cubic metres

904.11 BASIS OF PAYMENT

904.11.01 Basis of Payment for concrete work where the Unit Price Table states the unit to be cubic metres
904.11.02 Basis of Payment for concrete work where the Unit Price Table states the unit to be a unit other than cubic metres
904.11.03 Concrete Acceptance and Reduced Payment Criteria on Concrete Located in New Structures
904.11.04 Concrete Acceptance and Reduced Payment Criteria on Concrete Located in Rehabilitated Structures

904.01 SCOPE

The scope of this specification is to cover the supply of materials for concrete structures, production, delivery, placement, sampling and testing of concrete, curing, and the subsequent protection. All work, plant, equipment and materials shall be in strict accordance with CSA Standard CAN/CSA A23.1-M.

The plant from which the ready mix concrete is supplied shall be certified in accordance with the requirements for certification as published by the Atlantic Provinces Ready Mix Concrete Association or equivalent. A copy of the certification of conformance shall be provided to the Engineer prior to the start of delivery under the proposed contract.

In the event that the contractor selects a ready mixed concrete supplier not certified by APRMCA, approval must be obtained from the Materials Engineering Division at least 14 days prior to concrete supply.

A job meeting shall be held prior to the deck concrete placement to discuss all aspects of the concrete work including production, supply, delivery, placing, curing and any other related items. This meeting is to be called by the Engineer; the Contractor and all others deemed necessary by the Engineer shall be in attendance.

904.02 MATERIALS

All concrete materials shall be in accordance with CSA Standard CAN/CSA-A23.1-M.

904.02.01 Cement

All cementing materials shall be in accordance with CAN/CSA A3000.

Cement for Superstructure, Substructure, MSE Panels and Reinforced Wharf Deck Concrete (with the exception of Pile, Mass and Tremie Concrete) shall be a blended Portland, fly ash, silica fume cement, Type GUbF/SF. Contractors are advised that the minimum proportion by mass of the total cementing materials for silica fume
shall be 6% and a maximum of 8%. Contractors are advised that the maximum proportion by mass of the total cementing materials for fly ash is 25%.

Cement for deck and curb resurfacing in Section 919 Rehabilitation of Concrete Structures shall be Portland cement Type GU unless otherwise specified.

Cement for all other concrete shall be Portland cement Type GU, a portion of which may be replaced by fly ash up to 25% by mass of the total cementing material.

904.02.02 Aggregate

The source of the aggregate will be determined by the Contractor but all aggregate shall meet the requirements of CSA Standard CAN/CSA-A23.1-M. The maximum petrographic number will be 135.

Concrete aggregate shall consist of natural sands and gravels, crushed rock or other inert materials having clean, uncoated grains of strong and durable minerals.

Fine and coarse aggregate shall be stored in separate stock piles sufficiently removed from each other to prevent the materials at the edges of the piles from becoming intermixed.

Aggregate shall be free from alkali, organic matter or other deleterious substances and shall not contain soft, friable, thin, flaky, elongated or laminated particles totalling more than 3% nor contain shale in excess of 1½%, nor silt and crusher dust finer than 75μm sieve size, in excess of 2%. The percentages shall be based on the weight of the combined aggregate as used in the concrete. When all three groups of these deleterious materials are present, the combined amounts shall not exceed 5% by weight of the combined aggregate.

The maximum size of stone to be used for the different thickness of concrete shall be 20mm unless otherwise ordered by the Engineer. In no case shall the maximum size of stone used be greater than either 2/3 the clear distance between the reinforcement or 2/3 the clear distance between the exterior bars and the face of the structure except for girders where the latter criteria shall be 0.8 times the clear distance between the exterior bars and the face of the structure.

Stock piles of approved fine and coarse aggregate, in amounts of one quarter to one half of that required for the job, shall be placed on the site of the work at least one month previous to concrete placing operations. The stockpiles shall be protected by tarpaulins or plastic sheeting against formations of ice and accumulation of snow.

The Contractor shall provide with the concrete mix design relevant test data for all aggregate materials indicating conformance to the requirements of CSA-A23.1 and this specification. The sources and test results of all aggregate materials shall be clearly identified. The aggregate tests shall be conducted by a testing laboratory CCIL or CSA Certified in accordance with CSA Standard A-283-06 or latest edition. Test results are only considered valid for up to two years in advance of the date of the project mix design submission. The test data required but not be limited to shall include:

- Sieve Analysis of Fine and Coarse aggregate CSA-A23.2-2A
- Amount of Material Finer than 75 μm in Aggregate CSA-A23.2-5A
- Bulk Relative Density and Absorption of Fine and Coarse Aggregate (SSD basis) CSA-A23.2-6A
- Fineness Modulus of Fine Aggregate CSA-A23.2-2A
- Clay Lumps and Light Weight Pieces CSA-A23.2-3A
- Test for Organic Impurities in Fine Aggregate CSA-A23.2-7A
- Flat and Elongated Particles in Coarse Aggregates CSA-A23.2-13A
- Petrographic Analysis of Coarse Aggregate CSA-A23.2-15A
- Resistance to Degradation of Coarse Aggregate by Abrasion and Impact in the Los Angeles machine CSA-A23.2-16A
- Micro-Deval test for Coarse and Fine Aggregate CSA-A23.2-23A and 29A
- Soundness of Coarse & Fine Aggregate by Use of Magnesium Sulphate CSA-A23.2-9A
- Test for Detection of Alkali-Aggregate Reactivity (AAR) on Coarse and Fine Aggregate CSAA23.2-25A
- Unconfined Freeze Thaw test CSA-A23.2-24A
904.02.03 Water

All water shall be clear and free from injurious substances and shall be potable.

All water used for curing shall be clean and free of any material which would cause staining or discoloration of the concrete. The contractor shall not use water from shallow, stagnant or marshy sources.

904.02.04 Air Entraining Agent

All concrete shall be air entrained with the air entraining agent conforming to CSA Standard CAN3-A266.1-M.

904.02.05 Admixtures

Any other admixture must be approved by the Engineer and shall conform to CSA Standard CAN3-A266.2-M.

904.02.06 Reinforcement

Reinforcement shall conform to Section 905, "Concrete Reinforcement".

904.02.07 Form work and Falsework

Form work and falsework shall conform to Section 907, "Form work and Falsework".

904.02.08 Burlap

Burlap shall conform to AASHO M182 "Specification for Burlap Cloth made from Jute or Kenaf".

904.02.09 Filter Fabric

Filter fabric shall be a, non woven geotextile with a minimum mass of 340gm/m² and a minimum thickness of 3.3mm; all properties tested in accordance with C.G.S.B. CAN 24.2-M77 test methods.

Filter fabric or non-woven geotextile may be used for curing on flat horizontal surfaces but not on vertical surfaces. Vertical surfaces, i.e. abutments shall be cured using saturated burlap only.

904.02.10 Moisture Barrier

Moisture barrier shall conform to ASTM C171, "Sheeting Materials for Curing Concrete".

904.02.11 Miscellaneous Materials

The supply and installation of miscellaneous materials shown on the drawings or mentioned in the Supplementary General Conditions but which have not been listed on the Unit Price Table, are considered incidental to the work and no separate payment will be made.

This shall include, but not necessarily limited to, all miscellaneous concrete accessories, confilm evaporation retardant, abutment weep holes, drip grooves and guide rail modified end shoes.

904.02.12 Membrane Curing Compounds

Membrane curing compounds shall meet the requirements of ASTM C309, and shall only be used with the approval of the Engineer.

904.03 EQUIPMENT

The Contractor shall supply the Engineer before commencement of the project with adequate details of all equipment to be used. The intention is not to limit the Contractor's operation but to ensure adequate planning is undertaken.

The Contractor shall maintain all equipment used for handling, mixing, transporting, depositing, compacting, curing and finishing the concrete in a clean condition and in proper working order.
Pumping equipment may be utilized by the Contractor. Details of the pumping equipment and operation must be approved by the Engineer. The Contractor shall submit to the Engineer, manufacturer’s specifications detailing pumping capacity and pressure at the required elevations. Aluminum pipelines shall not be used. The Contractor shall be prepared in the event of a breakdown in pumping operations. These emergency preparations shall be discussed with and approved by the Engineer prior to the commencement of concrete placement utilizing pumping equipment.

Compaction equipment shall be capable of giving dense concrete in accordance with specification requirements. Internal vibrators shall have a frequency of 160 Hz.

An approved self-propelled mechanical bridge deck finisher shall be used to strike off and finish concrete decks as per specifications. The approved machine shall travel on guides or rails supported so that they are completely clear of the finished surface. The guide or rail supports that extend through the roadway areas of the deck shall be such that they can be removed to at least 50mm below the top of concrete. Two work platforms shall be used for finishing and curing operations.

Batching equipment shall be as defined in Section 904.04.03, "Mixing Concrete".

The equipment required for heating materials for Cold Weather Concreting shall be of adequate capacity and be approved by the Engineer; it shall be available, installed and tested ready for use before it is proposed to place concrete. Heating equipment shall be ready for use between September 1 and April 30 when so required by the Engineer. Alternative methods of keeping concrete temperatures at acceptable levels may be approved. Where the heating equipment is to be used for heating the housing as well as the materials at the same time, the term adequate capacity means that the equipment shall have adequate capacity to heat both materials and housing simultaneously to the required temperature.

Boilers used for heating materials or housing shall meet the inspection requirements and operating conditions laid down by Provincial Acts and Regulations.

904.04 CONCRETE PRODUCTION, DELIVERY AND PLACING

904.04.01 Measurement of Materials

Materials shall be measured by weighing. Other methods shall be used only if specifically authorized, in writing, by the Engineer.

The apparatus provided for weighing the aggregate shall be suitably designed and constructed for this purpose. Each size of aggregate shall be weighed separately with a required accuracy of two per cent.

Cement in standard bags need not be weighed.

The mixing water shall be measured by volume or by weight.

All measuring devices shall be subject to approval of the Engineer.
Concrete Quality

Concrete strength shall be as shown on the drawings unless particular specifications require higher strength.

Substitution of concrete mixes of higher 28 day compressive strength than those specified in the contract plans or specifications will be considered. In instances where such substitutions are approved than the department will provide no extra compensation above the tender price for work items which involve the supply and placement of concrete.

Concrete mixes shall be designed in accordance with CSA Standard CAN/CSA-A23.1 latest edition. Note that ACI standard 211.1 should be used as a guide for determining mix proportions for normal and mass concrete. Verification of the following specified properties through trial batching will be a requirement as a prerequisite to approval of the mix design. In addition, test cylinders may be requested by the Engineer prior to approval of the concrete mix design.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SUPERSTRUCTURE 45MPa (1,4)</th>
<th>SUBSTRUCTURE 40MPa (1,4)</th>
<th>REINFORCED WHARF DECK CONCRETE</th>
<th>PILE CONCRETE</th>
<th>MASS & TREMIE CONCRETE (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATER/CEMENT RATIO</td>
<td>0.35 MAX.</td>
<td>0.37 MAX.</td>
<td>0.39 MAX.</td>
<td>0.45 MAX.</td>
<td>0.55 MAX.</td>
</tr>
<tr>
<td>SLUMP</td>
<td>AS PER APPROVED MIX DESIGN</td>
<td>AS PER APPROVED MIX DESIGN</td>
<td>AS PER APPROVED MIX DESIGN</td>
<td>100 ± 30 mm*</td>
<td>100 ± 30 mm*</td>
</tr>
<tr>
<td>COMpressive STRENGTH AT 28 DAYS</td>
<td>45 MPA</td>
<td>40 MPA</td>
<td>35 MPA</td>
<td>25 MPA</td>
<td>20 MPA</td>
</tr>
<tr>
<td>RAPID CHLORIDE PERMEABILITY(ASTM C1202)</td>
<td><1000 COULOMBS</td>
<td><1000 COULOMBS</td>
<td><1000 COULOMBS</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>AIR CONTENT</td>
<td>6 ± 1%*</td>
<td>6 ± 1%*</td>
<td>6 ± 1%*</td>
<td>4 ± 1%*</td>
<td>4 ± 1%*</td>
</tr>
<tr>
<td>AIR VOID SPACING FACTOR (AVERAGE)</td>
<td>230 µM MAX.</td>
<td>230 µM MAX.</td>
<td>230 µM MAX.</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>SPECIFIC SURFACE (AVERAGE)</td>
<td>25 mm²/mm³ MIN.</td>
<td>25 mm²/mm³ MIN.</td>
<td>25 mm²/mm³ MIN.</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* The above specified tolerances apply to concrete mix production and not to concrete mix design.

NOTES:
1. The cementing materials content for 40 and 45 MPa concrete is 480 kg/m³ maximum.
2. Tremie concrete shall require an additional 10% cement and slump shall be 180+30mm.
3. Concrete for severe exposure conditions (decks, curbs, sidewalks, end blocks, barriers and grade separation columns) which contains superplasticizer as an admixture to produce flowable concrete, shall have an air content 7 ± 1%.
4. The above mix parameters do not include required adjustments for prestressed girder concrete.
5. N/A - Not applicable

The Contractor will be responsible for the mix design and quality control of concrete production.

The department will provide quality assurance with regard to concrete testing.

The contractor will submit mix designs for all concrete specified or approved for use on department projects. All concrete mix design proportioning including the mix quality control operations shall be performed by a Laboratory CCIL or CSA Certified in accordance with CSA Standard A-283 latest edition. All testing shall be as conducted as stated in CAN/CSA-A23.1 and A23.2 latest edition. The proposed mixture design shall be signed by a Professional Engineer registered to practice in Newfoundland and Labrador. The Professional Engineer shall attest to the validity of the material test data. Proposed mix designs and test results are only considered valid for up to two years in advance of the date of the project mix design submission. The Contractor shall provide with the proposed mix design the following information based on actual trial mixes at least two weeks in advance of concrete placement:
- Slump CSA A23.2-5C
- Air Content of Plastic Concrete by Pressure Method CSA A23.2-4C
- Mass Density and Yield CSA A23.2-6C
- Compressive Strength Testing CSA A23.2-9C
- Air Void Analysis on Hardened Concrete tested at 7 days ASTM C457
- Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration tested at 56 days ASTM C1202
- Alkali Reactivity Test Results A23.2-25A

Also to be included with each mix design submission is the following necessary information:

- Project number and title description
- Contractor company name with contact information
- Ready mix supplier
- Certifying laboratory with signing engineer
- Type of concrete, intended use, approximate quantity and method of placement
- Mix slump and air entraining agent range plus all admixtures with dosage rates
- Aggregate test information as per requirements of 904.02.02 Aggregates

No concrete shall be placed until approval of the mix design has been obtained from the Engineer. The Contractor shall submit copies of the concrete mix design 14 days in advance of any concrete placement operation.

Once approved, no adjustments shall be made to the concrete mix design without the approval of the Engineer. If material characteristics change after the original mix design approval a revised mix design shall be submitted for approval.

Acceptance by the Engineer of the Contractor's concrete mix design does not relieve the Contractor of the responsibility for providing concrete which meets the specifications.

High range water reducing agents (superplasticizers) may be used at the Contractor's request, if so indicated when the mix design is submitted. The Contractor must demonstrate competence and experience in their use and specific approval must be obtained. The Contractor shall state his method of concrete placement when submitting his concrete mix design.

Where 40 and 45 MPa concrete is specified on the contract drawings, a trial batch consisting of a minimum of 20 m³ of superstructure concrete shall be placed in the substructure, i.e. abutments and footings, at least 28 days prior to the placement of any 40 or 45 MPa superstructure concrete. The purpose of this exercise is to allow for fine tuning of the mix to achieve proper air and slump, and to obtain an early indication of the expected compressive strength. The additional cost of this trial batch and fine tuning of the mix design shall be considered incidental to the works.

If superplasticizers are used, the maximum concrete slump in a superplasticized condition shall be limited to 230 mm. The mix design shall state the design slump before and after the addition of superplasticizers along with the appropriate tolerances. Note that the slump in the above table may not be applicable when using superplasticizers.

Samples for concrete testing quality assurance purposes will normally be taken from concrete as delivered to the site (at the point of discharge from the delivery equipment). However, depending on the method of placement, random sampling of the concrete as incorporated into the structure may also be performed to verify the above specified properties. This process shall entail the sampling of fresh concrete as close to the point of deposit in the structure as is practicable. Coring of the in-place hardened concrete may also be performed to verify the specified air void system. The Department reserves the right to designate the point of acceptance, with prior notice given to the Contractor.

904.04.03 Mixing Concrete

Dry batching will not normally be permitted!

The use of ready mix concrete is encouraged. Where ready mix concrete is to be used, details of scheduling and
procedure must be approved by the Engineer.

The Contractor will be given permission to add cement on site if it is not feasible to have the concrete deposited in the forms within 120 minutes after charging the mixer at the plant. When cement is being added at the site, the total volume of concrete being batched or mixed shall not exceed 85% of the manufacturer's rated drum capacity. Cement shall be added in four equal increments with mixing to be carried out after the addition of each portion of cement added. All equipment, materials and procedure must be approved by the Engineer.

The mixing of concrete, unless otherwise authorized by the Engineer, shall be done in a batch mixer of an approved type. The mixer shall be equipped with a suitable charging hopper, water storage and water measuring device. It shall be cleaned at frequent intervals when in use and maintained in such a condition that the mixing will be unimpaired.

The mixing of each batch shall continue not less than one minute after all the materials are in the mixer, during which time the mixer shall rotate at a speed from 14 to 20 revolutions per minute, unless otherwise rated by the manufacturer or directed by the Engineer. The Contractor may mix small quantities of concrete by hand when and as directed by the Engineer.

Concrete transported in a truck mixer, agitator, or other transportation device shall be discharged at the job and placed in its final position in the forms within 120 minutes of the introduction of the mixing water to the cement and aggregate, or the cement to the aggregate, except in hot weather or under other conditions contributing to quick stiffening of the concrete. The maximum volume of mixed concrete transported in an agitator shall be in accordance with the specified rating. Time of charging the truck shall be clearly indicated and excess time in the mixer shall be cause for rejection of a load. Each batch slip shall have the time of batching clearly clock stamped onto each such slip.

Aggregates shall be separated into fine and coarse. The coarse aggregates shall be graded for mass concrete from 40mm to 5mm and for reinforced sections from 20mm to 5mm. The equipment for batching on site shall have the capacity to produce at such a rate as to preclude cold joints in the concrete placement. It shall be capable of being charged to the operating capacity of a 16S mixer with one discharge of the batcher. In any event, the equipment is subject to the approval of the Engineer.

The water and approved admixture(s) shall be proportioned separately by weight or by volume (i.e. metering devices(s) to an accuracy of one percent at the mixer). Metering devices which measure the volume of water discharged into the truck shall be in place both at the batch plant and on the truck if water is to be added on site. Alternatively, the water must be manually weighed or measured by volume before being placed into the mixer.

The Contractor shall provide standard certified test weights and/or devices for checking the accuracy of the controls. Checks shall be made just prior to the first concrete placement and at 150 m3 intervals thereafter. If the batching plant is moved, a check shall be made prior to batching any more concrete. The Contractor shall carry out all tests in the presence of the Engineer and shall supply him with results of all tests and make any and all alterations, repairs or replacements required to the equipment before authorization will be given to place concrete.

904.04.04 Placing Concrete

Concrete shall not be placed if the temperature is less than 5oC or greater than 25oC without the written permission of the Engineer.

The pumping of concrete from the delivery vehicle to its place of final deposition will be permitted as approved by the Engineer.

Before concrete is placed, forms, reinforcement and placing procedure shall be approved by the Engineer. The Contractor shall give 24 hours notice (not including Sundays or holidays) of his intention to place concrete. In preparation for the placing of concrete all sawdust, chips, and other construction debris and extraneous matter shall be removed from the interior of the forms. Struts, stays, and braces shall be removed when the concrete placing has reached an elevation rendering their service unnecessary. These temporary members shall be entirely removed from the forms and not buried in the concrete.

Concrete shall be placed so as to avoid segregation of the materials and the displacement of the reinforcement.
The use of long troughs, chutes and pipes for conveying from the mixer to the forms shall be permitted only on written authority of the Engineer. In case an inferior quality of concrete is produced by the use of such conveyers, the Engineer may order discontinuance of their use and the substitutions of a satisfactory method of placing.

Dewatering will not be permitted during the placing of concrete or for a period of at least 24 hours thereafter, unless it is done from a suitable sump separated from the concrete work by a watertight wall or other effective means.

Pumping to unwater a sealed cofferdam shall not commence until the seal has set sufficiently to withstand the hydrostatic pressure.

Concrete shall not be placed with a free fall greater than 1500mm.

When placing operations would involve dropping the concrete more than 1500mm, it shall be deposited through sheet metal or other approved pipes. The pipes shall be kept full of concrete during placing and their lower ends shall be kept buried in the newly placed concrete. After initial set of the concrete the forms shall not be jarred and no strain shall be placed on the ends of reinforcing bars which project.

Concrete, during and immediately after depositing, shall be thoroughly compacted by mechanical vibration.

The vibration shall be internal and the intensity of vibration shall visibly affect concrete over a radius of 500mm.

The Contractor shall provide a sufficient number of vibrators and they shall be manipulated so as to thoroughly work the concrete around the reinforcement, embedded fixtures and into the corners and angles of the forms.

Vibration shall be applied at the point of deposit and in the area of freshly deposited concrete. The vibrators shall be inserted vertically and withdrawn out of the concrete slowly. The vibration shall be of sufficient duration and intensity to thoroughly compact the concrete, until the air bubbles stop breaking on the surface. Vibration shall not be continued at any one point to the extent that localized areas of grout are formed.

Vibration shall not be used to make concrete flow into place. Application of vibrators shall be at points uniformly spaced and not farther apart than twice the radius over which vibration is visible.

Vibration shall not be applied directly or through the reinforcement to concrete which has hardened. Vibration shall be supplemented by such spading as is necessary to ensure smooth surfaces and dense concrete along form surfaces. Concrete shall be placed in horizontal layers not more than 300mm thick except as hereinafter provided. When less than a complete layer is placed in one operation it shall be terminated in a vertical bulkhead. Each layer shall be placed and compacted before the preceding batch has set to protect green concrete and avoid surfaces of separation. Vibrators shall project into preceding layer to avoid construction joint formation.

When the placing of concrete is temporarily discontinued, the concrete, after becoming firm enough to retain its form, shall be cleaned of laitance and other objectionable material to a sufficient depth to expose sound concrete.

In the construction of box culverts more than 1200mm in height, the concrete in the walls shall be placed and allowed to set before the top slab is placed. In this case, appropriate keys shall be left in the sidewall for anchoring the cover slab.

Concrete for beams and girders shall be deposited uniformly for the full length of the beam (or between vertical construction joints authorized by the Engineer) and brought up evenly in horizontal layers. Efforts shall be made to eliminate segregation as may be evident by flow lines. In this regard, concrete must be deposited in place and thoroughly consolidated rather than be permitted to flow in place.

Concrete in beams and slabs shall be placed in one continuous operation.

Beams, girders and haunches shall be placed monolithically.

During wet weather, concrete must not be placed unless suitable means, approved by the Engineer, have been provided to prevent washing of freshly deposited concrete or marring of the exposed surface.
904.04.05 Depositing Concrete Under Water

Concrete shall not be deposited in water except with the approval of the Engineer and under his immediate supervision. Concrete deposited in water shall contain 10% excess cement prepared with a mix design approved as if concrete was not under water. Slump for tremie concrete shall be 180 ± 30mm. To prevent segregation, it shall be carefully placed in a compact mass, in its final position, by means of a tremie tube or other approved method. Still water shall be maintained at the point of deposit and the forms underwater shall be watertight.

The tremie tube shall have a minimum diameter of 250mm, constructed in sections having flanged couplings fitted with gaskets.

The discharge end shall be closed at the start of the work to prevent water entering. The tremie tube shall be filled to the bottom of the hopper and the flow of concrete shall be induced by slightly raising the discharge end, always keeping it in the deposited concrete. The flow shall be continuous until the work is completed.

No concrete shall be spread at any greater distance than 3m from the discharge end of the tremie tube. When large areas are to be covered tremie tubes at maximum 6m centres shall be used and concrete placed simultaneously.

If the tremie operation is unavoidably interrupted below water level, the surface laitance shall be removed by jetting one day after placing and removed by pumping.

904.04.06 Mass Concrete

Mass concrete shall conform to the specifications outlined herein and be placed where indicated on the contract drawings as approved by the Engineer. Where mass concrete exceeds 300 mm thickness at any footing edge, the design authority shall be contacted. Mass concrete shall be placed after all unwatering operations have been made effective in maintaining dry and controlled conditions as approved by the Engineer.

904.04.07 Construction Joints

Construction joints in concrete shall be positioned at the location shown on the drawings or where otherwise approved by the Engineer.

The Contractor shall attach the appropriate horizontal and/or vertical strips to the face(s) of the formwork where all construction joints are planned or occur for reasons beyond the Contractor's control. The concrete shall be worked such that the finished appearance will resemble narrow, neat and straight horizontal and/or vertical line(s) at all construction and cold joints. Forms shall be kept tight throughout the entire concrete placing operation.

At the bottom of curb - top of deck interface along the longitudinal sides of all decks, construction joints shall be neat, straight and properly formed as a 20 mm Vee groove and shall be straight and true to line and grade.

Where construction or cold joints are planned or occur for reasons beyond the Contractor's control, the concrete interface shall be rough, clean and free of laitance, with a full roughness amplitude of 6 mm or more. One exception to this would be at prestress steel box out locations, see Section 906, "Prestressed Concrete Members".

Prior to butting the new concrete against previously hardened concrete the joint face shall be cleaned of all debris and dirt.

In addition, the surface film of laitance and mortar shall be removed from the joint face to present a clean sound concrete face that has the aggregate particles exposed.

904.04.08 Contraction Joints

A contraction joint is a control joint to control volume change mainly (shrinkage). Bonding of the new and existing concrete is not required but provisions to make the joint watertight are necessary.

Joints in concrete members shall be formed in location as shown on the plans.
Contraction joints shall extend to a depth equal to one-quarter of the member thickness. As soon as feasible the joint shall be thoroughly flushed out with compressed air and an approved flexible joint filler compound utilized to fill the joint. The joint filler compound shall be flexible over the extreme temperature conditions in the local area and must be approved by the Engineer.

904.04.09 Concrete Beam Seats and Bearing Surfaces

Concrete beam seats shall be magnesium floated to a level plane varying not more than 2mm from a straight edge placed in any direction across the area. The finished level plane shall not vary more than 3mm from the elevation given by the Engineer in the field.

Concrete surfaces which are used as bearing surfaces are to be finished in accordance with the bearing manufacturer’s recommendations.

904.04.10 Tolerances

All tolerances shall conform to Clause 10 “Tolerances” of CSA Standard CAN/CSA-A23.1-M.

904.04.11 Confilm

Immediately after the straight edge requirements have been met for the deck and curb concrete and the broom finish applied, the fresh concrete shall be coated with an evaporation retardant “Confilm” to preclude rapid evaporation of the bleed water. When all bleed water is gone, the concrete shall be cured as per Section 904.05, “Curing”. The supply and application of “Confilm” is deemed incidental to the placement of the deck concrete and as such, no separate payment will be made by the Department.

904.04.12 Caulking of Joints

Caulking shall be applied to all control and expansion joint locations.

The caulking or sealant and the substrate material must have a temperature greater than 5°C. Under no circumstances should sealant be applied to any surface which contains moisture, condensation or frost. Joint surfaces are to be clean, dry and free of foreign matter before application of primer and sealant.

The work shall be performed by an approved caulking applicator. Otherwise, the contractor must designate a person for the caulking operation and that person should receive training acceptable to the Manufacturer and Engineer.

The Contractor shall supply a written guarantee of all workmanship and materials for a period of two (2) years following the date of final completion.

Sealant shall be a three component Type 1-Dymeric (epoxidized polyurethane terpolymer) sealant as manufactured by Tremco (Canada) Limited or an approved equal, selected to most closely match the concrete colour. Primers are to be those specified by Tremco (Canada) Limited, specifically Primer#1 or an approved equal. Joint backing shall be a closed-cell non gaseous backer rod, such as Softrod specified by Tremco (Canada) Limited or an approved equal.

All work shall be in strict accordance with the Manufacturer’s recommendations.

Payment shall be considered incidental to the works associated with concrete work pay items.

904.05 CURING

904.05.01 Fog Misting of Bridge Decks

Prior to the commencement of curing operations a fog mist shall be applied to bridge decks. Misting shall be conducted through the use of a pressure washer capable of sustaining a minimum 14 MPa pressure. A continuous fog mist shall commence immediately behind the screeding operation until concrete has hardened...
Form 904

March 2011

sufficiently to permit covering with burlap. The fog mist will maintain a high relative humidity above the concrete and prevent surface drying prior to curing operations. Water shall not be allowed to drip, flow or puddle on the concrete surface during fog misting at any time before concrete has reached final set.

PAYMENT

Payment shall be considered incidental to the placement of Concrete in Superstructures.

904.05.02 Moist Curing

Proper curing will be considered 15% of the associated unit price bid for concrete payment purposes.

Concrete shall be continuously kept in a damp moist condition for at least seven days after placing and the temperature of the concrete shall not be less than 10°C, during this period. If ambient temperatures are at or anticipated to be:

(a) Greater than 25°C, then the provision of Section 904.06, "Hot Weather Concreting", shall be followed.

(b) Less than 5°C, then the provision of Section 904.07, "Cold Weather Concreting", shall be followed.

Curing shall be applied to all surfaces.

Curing shall take place as soon as possible after the finishing operation without damaging the surface.

Concrete in the deck portion of all superstructure concrete, including barriers, approach slabs, expansion joint dams, end blocks, curbs and sidewalks must be cured by means of burlap and water.

All burlap must be pre-soaked by immersing it in water for a period of at least 24 hours immediately prior to placing. Two layers of burlap must be applied to the surface of the concrete. Strips must overlap by 150 mm and must be held in place without marring the surface of the concrete.

The bridge decks burlap must be applied immediately after finishing of the concrete surface within 2 meters to 4 meters of the pan or screed of the finishing machine.

Curing with burlap and water must be maintained for a minimum period of 7 days. The burlap must be maintained in a continuously wet condition throughout the curing period by means of a soaker hose. The burlap must be covered with a layer of moisture vapour barrier within 12 hours of placing the concrete, in a manner which will prevent deformation of the surface of the concrete.

Regardless of ambient temperature, moist curing with burlap and water must be provided at all times. During cold weather, burlap must be prevented from freezing.

In addition to the burlap and water method as described above certain other concretes may be cured by either:

(a) Continuous Steam Curing

Continuous steam shall not exceed 80°C and shall follow CSA Standard CAN-A23-4 Precast Concrete-Materials and Construction.

(b) Curing with Filter Fabric and Water

One layer of filter fabric shall be laid on the surface of the concrete. Sheets or strips of filter fabric shall overlap by a minimum of 150 mm and shall be held down, as required, against displacement by wind, etc. The fabric shall be kept wet at all times. Filter fabric shall conform to Section 904.02.09, “Filter Fabric”. Filter fabric or non-woven geotextile may be used for curing on flat horizontal surfaces but not on vertical surfaces. Vertical surfaces, i.e. abutments shall be cured using two saturated layers of burlap only.

904.05.03 Air Drying
Under normal circumstances curing time required for deck concrete is moist curing for seven (7) days in accordance with this specification and a further thirty (30) days for air drying. Also, the specified design strength must be obtained. Until the above conditions are satisfied, the application of waterproofing and the opening of the bridge to traffic will not be permitted.

It is not practical to achieve this, the above curing times may be reduced only at the discretion of the Engineer but in no case will the application of waterproofing and opening of the bridge to traffic be permitted until seven (7) days of wet curing and an additional seven (7) days of air drying have elapsed.

904.05.04 Plastic Shrinkage

Where excessive plastic shrinkage may occur, e.g. in a large expanse of concrete such as a bridge deck, more than one method of curing may be required.

If shrinkage cracks occur the Contractor shall grout any cracks and repair by an approved method at his own expense.

All methods and materials employed in concrete curing must be approved by the Engineer.

904.05.05 Liquid Membrane Curing

At the discretion of the Engineer, liquid membrane curing compounds meeting the requirements of Clause 904.02.11, may be used in place of moist curing on pier columns only. Liquid membrane curing shall not be permitted on other areas including bridge decks.

904.06 HOT WEATHER CONCRETING

When the air temperature is at 25°C or greater or is expected to rise to this limit, according to meteorological forecasts, then special measures shall be taken by the Contractor to protect the concrete. Surface moisture evaporation must not exceed 0.75kg/m²/hr.

Concrete placed in the forms shall be maintained at or below 27°C and the Contractor shall obtain from the Engineer approval for his measures to ensure this.

Curing shall be by moisture and with the exception of pier columns as per Clause 904.05.02, curing compounds will not be permitted.

904.07 COLD WEATHER CONCRETING

904.07.01 General

When the air temperature is at or below +5°C or when, according to meteorological forecasts, it is likely to fall below this limit within the next 24 hours, then the Contractor shall take special precautions to protect the concrete placed. The Contractor shall obtain approval from the Engineer for this method of protection.

Under normal circumstances no concrete for the superstructure (or approach slabs) shall be placed between November 1 and April 1.

The following table shall apply for determining degree of protection requested by the Engineer:

<table>
<thead>
<tr>
<th>PROTECTIVE CLASS</th>
<th>PROTECTIVE MEASURE</th>
<th>OUTSIDE AIR TEMPERATURE FOR LEAST DIMENSION OF SECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LESS THAN 1M</td>
</tr>
<tr>
<td>A</td>
<td>SUITABLE HOUSING PLUS SUPPLEMENTARY HEAT OR ADEQUATE INSULATION</td>
<td>BELOW 0°C</td>
</tr>
<tr>
<td>B</td>
<td>SUITABLE COVERING PLUS ADEQUATE INSULATION</td>
<td>0°C TO 5°C</td>
</tr>
<tr>
<td>C</td>
<td>NORMAL CURING NO TEMPERATURE PROTECTION REQUIRED</td>
<td>5°C TO 25°C</td>
</tr>
</tbody>
</table>

Any concrete damaged by freezing or by inadequate protection or curing shall be removed and replaced by the Contractor at no cost to the Department.
For guidance on adequate insulation, refer to the Canadian Portland Cement Association publication “Design and Control of Concrete Mixtures”, Chapter 11.

904.07.02 Placing

Concrete to be placed during cold weather shall be within the following temperature limits.

<table>
<thead>
<tr>
<th>LEAST DIMENSION OF SECTION</th>
<th>CONCRETE TEMPERATURE MINIMUM °C</th>
<th>°C MAXIMUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>LESS THAN 0.3 M</td>
<td>10</td>
<td>27</td>
</tr>
<tr>
<td>0.3 M TO 1 M</td>
<td>10</td>
<td>27</td>
</tr>
<tr>
<td>1 TO 2 M</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>MORE THAN 2 M</td>
<td>5</td>
<td>20</td>
</tr>
</tbody>
</table>

This temperature can be obtained by heating the water or the aggregate or both; water and aggregate shall then be combined in the mixer first and the temperature of the mixture shall not exceed 38°C when the cement is added.

When the air temperature is below 0°C the water shall be heated to not greater than 66°C. The aggregates shall be uniformly heated in the stockpiles and/or bins by steam, either injected live or circulated in coils, or by using dry heat before the aggregates are placed in the mixer. Whatever system is used, it shall be designed to give uniform heating that will avoid local overheating which may be injurious to the materials.

No frozen lump of aggregate will be allowed in the concrete mix and shall be discarded before batching.

The use of salt, calcium chloride or other chemicals to lower the freezing point or accelerate the set is prohibited.

The ground, formwork, existing concrete and steel against which concrete is to be placed shall be free from ice and snow before the Engineer will authorize placing to commence. The Contractor shall preheat the area in which the concrete is to be placed, with live steam or moist hot air, this shall also remove snow and ice and heat the contact material to prevent the formation of a cold joint.

Concrete shall not be placed on a frozen subgrade or against frozen ground. The Contractor shall protect excavations prepared for footings, etc., with covers prior to opening for placing concrete.

The concrete shall be placed rapidly and evenly, as near to its final position as possible to reduce the risk of segregation, flow lines and cold joints.

The concrete shall be covered, as quickly as possible after placing.

Surface moisture evaporation must be kept below 0.75 kg/m²/h. Concrete surfaces shall be protected by housing. Protective housing must be wind and weather tight and constructed of suitable materials on a substantial framework. The framework must be such as to keep the housing at all points 300mm from the concrete and forms. The housing must have suitable openings to let the concrete be placed and these openings shall be so designed that they may be fully covered and closed as soon as the concrete is placed. The use of “roll back” sheeting or tarpaulins supported on stools is permitted on horizontal surfaces, such as a bridge deck provided the concrete is covered progressively as soon as placed. The housing must be so constructed as to allow a uniform circulation of heat to all parts of the work. This shall include the underside of the bridge deck and beams unless the Engineer has authorized the protection of these areas by fully insulated formwork.

When mineral fibre is used as insulation, a layer of polyethylene having a minimum thickness of 6 mils shall be
placed between the surface of the concrete or formwork and the insulation. This insulation is to be protected from moisture at all times.

904.07.03 Protecting Placed Concrete

For concrete to be placed between September 1 and April 30, the Contractor shall supply a steam jenny, fully operational and fully capable of adequately protecting all concrete to be placed, when specifically requested by the Engineer.

904.07.04 Heating the Protective Housing

The Contractor shall have available, tested and approved, adequate equipment for the heating of the protective housing. Heating will be used to establish and maintain the required curing conditions.

For decks and curbs, sidewalks, parapet walks, the Contractor shall on the day prior to placing concrete, conduct a trial run to verify his equipment, methods and workmanship to meet the specifications.

Live wet steam shall be used for heating unless other methods are permitted in writing by the Engineer. Hot air blowers and the like may be used to supplement the steam heating as long as fine water or steam spray into the stream of hot air is provided. The humidity as measured by a wet and dry bulb thermometer shall at no time be less than 95% and the air temperature shall be not less than 13°C.

The use of salamanders, coke stoves, oil or gas burners and similar spot heaters which have an open flame and intense local heat are prohibited. In the event of any fire of the formwork or housing, the Engineer must be immediately notified.

The system of heating and positioning of steam outlets so as to give the most uniform distribution possible of the heat is subject to the approval of the Engineer. The Contractor shall make suitable arrangements to stoke boilers outside normal working hours where required. A breakdown in heating is regarded as very serious especially in the early life of the concrete.

The concrete must be cured in a moist condition and its temperature shall be at least 10°C for seven days after the day of placing.

Protection shall be withdrawn in such a manner as not to introduce thermal shock stresses in the concrete.

The temperature of the concrete shall be gradually reduced at a rate not exceeding 17°C per day to that of the surrounding air. To achieve this in a heated housing, the heat shall be slowly reduced and then shut off and the whole housing allowed to cool to within 12°C of the air temperature before the housing itself for the formwork is removed. Where work is to proceed within the same housing on the next stage of the work, the formwork may be removed as soon as the prescribed curing period is over. With fully insulated formwork, the forms themselves maybe slackened and some insulation removed if needed. The forms themselves shall not be removed until the temperature of the concrete has fallen to within 12°C of the outside air temperature.

904.08 SURFACE FINISHING

General

All concrete surfaces that will be visible on completion of the work shall conform to surface finish Class 2, with the exception of the deck, curbs and/or sidewalks which shall be Class 6 finish.

The Contractor shall take special care during the planning, forming, concrete placing, curing and stripping phases to ensure defect-free surfaces. Should remedial measures be required, they shall be carried out by personnel expert in this aspect of concrete work. The surfaces shall be uniform in colour and texture when viewed from a distance of 15m and shall be attained as follows.

Class 2 Rubbed Finish

Immediately following the removal of forms, all fins and irregular projections shall be removed from all surfaces except from those which are not to be exposed or are not to be waterproofed. On all surfaces, the cavities produced by form ties and all other holes, honeycombs spots, broken corners or edges and other defects shall be cut back to sound concrete and thoroughly cleaned. No feather edging is permissible. If reinforcing steel is exposed, concrete shall be cut back for at least 50mm around the reinforcement.
After having been kept saturated with water for a period of not less than three hours, the cavities shall be carefully pointed and trued with a mortar of cement and fine aggregate mixed in the proportions used in the grade of the concrete being finished. Mortar used in pointing shall be not more than one hour old. The mortar patches shall be cured as specified under Section 904.05 "Concrete Curing". No mortar shall be placed when the air temperature is forecasted to fall below 5°C within 24 hours. All construction and expansion joints in the completed work shall be left carefully tooled and free of all mortar and concrete. The joint filler shall be left exposed for its full length with clean and true edges. The resulting surfaces shall be true and uniform.

After removal of forms, the rubbing of concrete shall be started as soon as its condition will permit. However, before starting this work the concrete shall be kept thoroughly saturated with water for a minimum period of three hours but sufficient time shall have elapsed before the wetting down to allow the mortar used in the pointing of rod holes and defects to thoroughly set. Surfaces to the finished shall be rubbed with a medium coarse carborundum stone, using a small amount of mortar on its face.

The mortar shall be composed of extra cement and fine sand mixed in proportions such as to match existing concrete verified by a test patch. Rubbing shall be continued until all form marks, projections and irregularities have been removed, all voids filled, and a uniform surface has been obtained. The paste produced by this rubbing shall be left in place at this time.

After all concrete above the surface being treated has been cast, the final finish shall be obtained by rubbing with a fine carborundum stone and water. This rubbing shall be continued until the entire surface is of a smooth texture and uniform colour. After the final rubbing is completed and the surface has dried, it shall be rubbed with burlap to remove loose powder and shall be left free from all unsound patches, paste, powder and objectionable marks.

Class 6 Floated Surface Finish

The provision of an approved self-propelled Bridge Deck Finishing Machine capable of striking off and providing the required surface finish is mandatory for all structures not covered by fill.

For new bridge decks and rehabilitated bridge decks where the total deck length is greater than fifteen (15.0) metres, the deck shall be finished with a GOMACO 450 bridge deck finishing machine with a vibrating screed and movable work bridge or approved equal.

For (a) decks less than fifteen (15.0) metres in length, (b) thin overlay strips wider than two (2.0) metres and (c) wharf decks, finishing shall be achieved with a Razorback 12HD Air Operated Vibrating Allen Screed or approved equal.

All finishing equipment shall be utilized as outlined above, shall be equipped and operated in accordance with the manufacturer's literature for the particular concrete and work being performed.

For thin overlays less than two (2.0) metres wide, spotty or patchy deck repairs and corners of decks, a hand float finish is adequate.

A dry run of the finishing machine covering the entire area requiring finishing shall be made to insure the design deck thicknesses and profiles will be attained. The run shall be completed at least 24 hours prior to commencing the deck concrete placement.

The finishing machine must be accompanied by a working platform with two (2) qualified cement finishers assigned to the platform at all times. The Contractor shall submit letters to the Engineer for his approval stating the qualifications of the finisher. The Contractor shall supply sufficient quantities of double railing to support the finishing machine equal to the overall length of the deck. This will enable the Engineer to check the adjustment of the railing and the finishing machine prior to any concrete being placed.

Proper allowance shall be made for camber of pre-stressed channels or girders. Concrete placement shall be at a rate to provide satisfactory progress with the finishing machine or the cement finisher.

After the deck surface has been floated and any bleed water evaporated, but while the concrete is still plastic, the Contractor shall furnish and use a 3m straight edge swung from handles half the width of the slab.

The straight edge shall be held in successive positions parallel to the road centre line and in contact with the
surface and the whole area gone over from one side of the slab to the other as necessary. Advancement along the deck shall be in successive stages of not more than one-half the length of the straight edge. Any depressions found shall be immediately filled with freshly mixed concrete, stuck off, consolidated and refinished. The straight edge testing and refloating shall continue until the entire surface is found to be free from observable departures from the straight edge and the slab has the required grade and contour, until there are no deviations of more than 8mm under the 3m straight edge.

The concrete deck surface shall be given a broom finish when the concrete has hardened sufficiently. Exposed concrete bridge decks shall be given a coarse broom finish. Treated or waterproofed bridge decks shall be given a fine broom finish. The broom shall be of an approved type. The strikes shall be square across the slab, from edge to edge, with adjacent strokes slightly overlapped and shall be made by drawing the broom without tearing the concrete but so as to produce regular corrugations not over 3mm in depth for the coarse broom finish. The fine broom finish shall have corrugations not exceeding 1mm in depth. The surface as thus finished shall be free from porous spots, irregularities, depressions and small pockets or rough spots such as may be caused by accidental disturbance during the final brooming of particles of coarse aggregate embedded near the surface. The Engineer may decide to delete the broom finish requirements but tolerances previously stated will still apply.

904.09 SAMPLING AND TESTING

Normal field quality control testing will be carried out by the Engineer in accordance with current Department requirements. These will normally be in accordance with CAN/CSA-A23.2 "Methods of Test for Concrete". Normal quality control tests carried out by the Department shall conform to the following requirements.

<table>
<thead>
<tr>
<th>SUPERSTRUCTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIR & SLUMP TESTS</td>
</tr>
<tr>
<td>STRENGTH & TEMPERATURE TESTS</td>
</tr>
<tr>
<td>AVERAGE AIR VOID SPACING FACTOR & SPECIFIC SURFACE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUBSTRUCTURE, REINFORCED WHARF DECK CONCRETE, PILE, MASS AND TREMIE CONCRETE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIR & SLUMP TESTS</td>
</tr>
<tr>
<td>STRENGTH & TEMPERATURE TESTS</td>
</tr>
<tr>
<td>AVERAGE AIR VOID SPACING FACTOR & SPECIFIC SURFACE</td>
</tr>
</tbody>
</table>

A category of concrete shall be defined as concrete pertaining to one specific design strength, e.g. 35 MPa concrete.

Satisfactory control is considered to have been established when tests on five (5) consecutive truck loads or batches of concrete are within specification requirements. If either the measured slump, air content or temperature fall outside the limits specified, a repeat test shall be made. Failure to meet the contract requirements shall result in rejection of the concrete.

Additional strength tests will be required when early indications of strength are required such as before prestressing, girder transport, removal of falsework, backfilling structure, etc.

The Contractor shall co-operate fully with the Engineer in enabling quality control and quality assurance tests to be carried out. Samples for quality testing purposes will normally be taken from concrete as delivered to the site (at the point of discharge from the delivery equipment). However, depending on the method of placement, random sampling of the concrete as incorporated into the structure shall also be performed to verify the above specified properties. This process shall entail the sampling of fresh concrete as close to the point of deposit in the structure as is practicable. Coring of the in-place hardened concrete may also be performed to verify the
specified air void system. The Department reserves the right to designate the point of acceptance, with prior notice given to the Contractor.

Acceptance of the concrete will depend on the results and consistency of all of the above tests results being satisfactory.

904.10 MEASUREMENT FOR PAYMENT

904.10.01 Measurement for Payment for concrete work where the Unit Price Table states the unit to be cubic metres

For those concrete work contract items, except mass and tremie concrete, where the unit of measurement on the Unit Price Table is stated as m³, then measurement for payment will be by the volume of concrete placed, measured in cubic metres rounded to two decimal places, based on the neat lines called for in the plans.

Measurement for payment purposes for mass concrete shall be based upon cross sections measured in cubic metres to the nearest one decimal place. Prior to concrete placing and forming operations, the Engineer shall establish the lateral and vertical limits for mass concrete.

Measurement for payment purposes for tremie concrete shall be made based upon the number of cubic metres of batched concrete rounded to the nearest one decimal place and incorporated into the works as approved by the Engineer. Every precaution must be taken to prevent waste of concrete, i.e. carelessness resulting in the escape of concrete from within the confines of the forms or inaccuracy in placing. In the event of such occurrence(s) an estimate of the wastage will be made by the Engineer and an appropriate deduction from the batch quantity will be made. All additional concrete required to be placed above the estimated quantity, must be approved by the Engineer.

No deductions will be made from the volume of concrete for:

(1) Volume of reinforcement, prestressing steel or prestressing ducts.
(2) Inserts of cross-sectional area of less than 0.1 m².

When it is specified that concrete is to be placed against undisturbed soil or set in rock, and where the excavation is made wider than the neat lines of the footings, the excess amount of concrete will not be measured for payment quantities.

Where the concrete footings are placed lower than that authorized by the Engineer, any excess amount of concrete will not be measured for payment quantities.

Unless otherwise defined by the Contract Documents, the following will be the definitions for the structure and Unit Price Table:

Substructure concrete shall be that concrete used for slope paving, footings, abutments, back walls, bearing seats and pedestals, wing walls and piers. Wingwall concrete shall be all concrete behind the back face of the abutment, i.e. including the cleat excluding curb (superstructure) concrete.

Where integral curbs and wing walls exist, a horizontal surface at the bottom of the curb including the bevelled portion thereof if any and the horizontal surface at the top of the vertical portion of the wingwall shall constitute the dividing line between substructure and superstructure concrete.

Retaining wall concrete shall be all concrete used in retaining walls and footings which are not cast integrally with the abutments.

Superstructure concrete will be all concrete used in columns, sidewalks, barriers, expansion joint dams, beams, diaphragms, decks, curbs, end blocks, including curbs and end blocks integral with the wing walls.

All concrete in rigid frames used in deck, curbs, barriers, sidewalks, end blocks, vertical or inclined legs and wing walls shall be classified as superstructure concrete.
All concrete for rigid frame footings shall be classified as substructure concrete. All approach slab concrete shall be classified as superstructure concrete.

Not included are AASHTO or CPCI girders, double tees, and any other superstructure work paid for separately. Not more than 90% of the units will be certified until such time as the surface finish meets the specifications and is completed to the satisfaction of the Engineer.

904.10.02 Measurement for Payment for concrete work where the Unit Price Table states the unit to be a unit other than cubic metres

For those concrete work contract items where the unit of measurement on the Unit Price Table is stated in some unit other than m³, then the measurement for payment shall be in accordance with that stated in the appropriate specification for the item.

Not more than 90% of the units will be certified until such time as the surface finish meets the specifications and is completed to the satisfaction of the Engineer.

904.11 BASIS OF PAYMENT

904.11.01 Basis of Payment for concrete work where the Unit Price Table states the unit to be cubic metres

For those concrete work items where the unit of measurement in the Unit Price Table is stated as m³, then payment at the contract price shall be full compensation for all materials, labour, equipment, plant and services necessary to complete the concrete work as outlined herein. This applies to "Concrete in Substructure", "Concrete in Retaining Walls", "Concrete in Superstructures", "Reinforced Wharf Deck Concrete", "Concrete in Rigid Frames", "Concrete in Approach Slabs", "Mass Concrete" and "Tremie Concrete".

In particular no separate payment will be made for:

(a) supply of cement, aggregates and other materials, plant and equipment-use required for producing the concrete
(b) Mix design, production, mixing, transportation, placing, consolidation, curing and quality control during production
(c) Formwork and falsework
(d) Precautions to be taken for hot weather
(e) Precautions to be taken for cold weather
(f) Provisions of shipping crates for concrete test specimens

No payment shall be made for any concrete required for normal testing procedures. Where excessive camber in girders is permitted by the Engineer, the extra concrete due to the camber in excess of the specifications will not be paid for.

Concrete not placed in accordance with the provisions of Section 904.07, "Cold Weather Concreting", when the appropriate weather conditions prevail will not be paid for unless and until it can be established to the satisfaction of the Engineer that there has been no harmful effect to the concrete. The onus for establishing this will belong to the Contractor.

904.11.02 Basis of Payment for concrete work where the Unit Price Table states the unit to be a unit other than cubic metres

For those concrete work contract items where the unit of measurement in the Unit Price Table is stated in some unit other than m³, then the basis of payment shall be in accordance with that stated in the appropriate specification for the item.

Concrete not placed in accordance with the provisions of Section 904.07, "Cold Weather Concreting", when the appropriate weather conditions prevail will not be paid for unless and until it can be established to the satisfaction of the Engineer that there has been no harmful effect to the concrete. The onus for establishing this will belong to the Contractor.
Concrete Acceptance and Reduced Payment Criteria on Concrete Located in New Structures

Concrete on a project of a certain class, as defined by its specified strength at 28 days, must have an average tested strength at 28 days equal to or greater than that specified for payment at the bid price.

Concrete of a certain class having an average strength of less than that specified will be accepted into the job at a reduced payment, provided the difference between specified strength and tested strength is no greater than 5 MPa. If the average of tests in a particular predefined portion of concrete is less than that specified by more than 5 MPa then that concrete shall be rejected.

When concrete is rejected, those provisions outlined in CSA-A23.1-94 shall be followed to determine whether or not the concrete may remain in the work. Such work will be done at the Contractors cost. Notwithstanding the above, should the concrete remain in the work it will be subject to a reduction, as outlined below, for having a strength less than that specified.

Concrete of a specific class and otherwise acceptable but having an average strength deficiency as tested of less than 5 MPa compared with that specified, will be accepted but the bid price for all concrete in the predefined portion will be reduced according to the following procedure:

For concrete work where the Unit Price Table states the unit to be in cubic metres, the adjusted concrete price shall be calculated as follows:

\[\text{Adjusted Concrete Unit Price} = \frac{\text{Tested Strength}}{\text{Specified Strength}} \times \text{Bid Concrete Unit Price} \]

Division of the structure into predefined portions will be done by the Engineer when the concrete placement sequence is outlined by the Contractor at the pre-job meeting. A predefined portion shall generally be established as that concrete placed within one operation.

There will be no bonus payment under the contract when the average strength is in excess of the specified strength.

Concrete Acceptance and Reduced Payment Criteria on Concrete Located in Rehabilitated Structures

Concrete on a rehabilitation project in a certain repair class, as defined by its specified strength at 28 days, must have an average tested strength at 28 days equal to or greater than that specified for payment at the bid price.

Concrete of a certain repair class having an average strength of less than that specified will be accepted into the job at a reduced payment, provided the difference between specified strength and tested strength is no greater than 5 MPa. If the average of tests in a particular predefined portion of concrete is less than that specified by more than 5 MPa then that concrete shall be rejected.

When concrete is rejected, those provisions outlined in CSA-A23.1-94 shall be followed to determine whether or not the concrete may remain in the work. Such work will be done at the Contractors cost. Notwithstanding the above, should the concrete remain in the work it will be subject to a reduction, as outlined below, for having a strength less than that specified.

Concrete of a specific class of repair and otherwise acceptable but having an average strength deficiency as tested of less than 5 MPa compared with that specified, will be accepted but the bid price for all concrete in the predefined portion will be reduced according to the following procedure:

For concrete work where the Unit Price Table states the unit to be square metres or cubic metres, the adjusted price shall be calculated as follows:

\[\text{Adjusted Concrete Price} = \left(\frac{\text{Tested Strength}}{\text{Specified Strength}} \right) \times \text{Bid Concrete Unit Price} \]

Division of the structure into predefined portions will be done by the Engineer when the concrete placement sequence is outlined by the Contractor at the pre-job meeting. A predefined portion shall generally be established as that concrete placed within one operation.
as that concrete placed within one operation.

There will be no bonus payment under the contract when the average strength is in excess of the specified strength.
SECTION 906
PRESTRESSED CONCRETE MEMBERS

INDEX

906.01 SCOPE

906.02 GENERAL
 906.02.01 Approvals And Casting
 906.02.02 Prestressing Method
 906.02.03 Inspection And Testing
 906.02.04 Member Top Flanges
 906.02.05 False work

906.03 MATERIALS
 906.03.01 Concrete
 906.03.02 Prestressing Steel
 906.03.03 Ducts
 906.03.04 Anchorage Assemblies
 906.03.05 Round Void Forms

906.04 DIMENSIONAL TOLERANCES

906.05 PLACING CONCRETE, STRESSING & GROUTING TENDONS
 906.05.01 Placing
 906.05.02 Prestressing Technician
 906.05.03 Stressing
 906.05.04 Bonding And Grouting

906.06 HANDLING AND INSTALLATION OF PRESTRESSED MEMBERS

906.07 UNASSIGNED

906.08 UNASSIGNED

906.09 MEASUREMENT FOR PAYMENT
 906.09.01 Prestressed Concrete Members
 906.09.01.01 Supply of Prestressing Steel And Accessories
 906.09.02 Prestressed Concrete In Post- Tensioned Slab Superstructures
 906.09.02.01 Concrete
 906.09.02.02 Supply of Prestressing Steel And Accessories
 906.09.02.03 Concrete Surface Finish

906.10 BASIS OF PAYMENT
 906.10.01 Prestressed Concrete Members And Post-Tensioned Slab
 906.10.02 Supply of Prestressing Steel And Accessories
906.01 SCOPE

The Contractor shall furnish all labour, materials, equipment, plant and services specified, indicated or required to manufacture, transport, store and install the prestressed concrete and/or prestressed steel components in accordance with the plans and specifications.

906.02 GENERAL

Welding will not be permitted within 3.0 metres of any tendon without adequate protection of the prestressing steel from welding sparks. Under no circumstances shall prestressing steel be used to ground welding equipment.

906.02.01 Approvals and Casting

The Contractor shall clearly indicate in his bid his intention with regard to casting the prestressed concrete members on site or at an approved plant. Prior to construction, the Contractor shall submit to the Engineer for approval the name of the plant from which it is intended to order the members. Only members supplied from an approved plant will be accepted.

906.02.02 Prestressing Method

The method of prestressing to be used shall be either pre-tensioning or post-tensioning as detailed on the drawings unless otherwise approved.

Prior to casting any concrete to be prestressed, the Contractor shall submit to the Engineer for approval six (6) complete sets of metric drawings and one (1) set of metric design calculations. These details shall outline the method and sequence of stressing and shall include complete specifications and details of the prestressing steel and anchoring devices, e.g. anchorage blockout dimensions and angles, anchoring stresses, elongation calculations, type of enclosures, and all other data pertaining to the prestressing steel in the members, pressure grouting materials and equipment, size and spacing of diaphragm and end block reinforcement, where applicable.

The prestress supplier shall determine through design or experience the prestress anchorage bearing plate/casting as well as the spiral steel directly behind and adjacent to the same.

906.02.03 Inspection And Testing

At all times the Engineer shall have the right to inspect and approve all methods, plant and materials involved. This shall include the right to momentarily stop jacking in order to measure the elongation and jacking pressure from initial to final load on as many cables as deemed appropriate by the Engineer.

906.02.04 Member Top Flanges

Members whose top flanges become the bottom form for the deck slab shall have the flange designed to safely accommodate all temporary construction loads.

906.02.05 False work

Sound, adjustable false work in accordance with Section 907, "Form work And Falsework", shall be required to compensate for any settlement such that the structure, particularly the soffit, is constructed true to line and grade. The prestressed concrete is not self supporting until stressing, anchoring, grouting and proper curing have been carried out. Except as noted on the contract drawings and as outlined in the Specifications, false work may be
removed after these operations have been completed. The prestressing ducts, strands and anchorages must be accurately and rigidly fixed in position before any concrete is placed.

906.03 MATERIALS

906.03.01 Concrete

All concrete work shall conform to the requirements of the Section 904, "Concrete Structures", unless otherwise stated herein.

The minimum ultimate compressive strength of the concrete shall be as shown on the plans and at the time of tensioning shall be verified by the Engineer from the results of the field cured test cylinders.

Care must be taken to ensure that the test cylinders are compacted and cured under conditions similar to the conditions acting on the concrete in place. At least three specimens shall be tested from each batch prior to tensioning the cables and at least three specimens at 28 days.

No concrete shall be deposited in the forms until the placing of reinforcing steel, enclosures, anchorages and prestressing steel has been inspected and approved by the Engineer.

An inspection and testing company may be appointed by the Engineer to inspect and control quality of materials. If so, separate payment will be arranged for by the Department. The Contractor shall provide, without charge, all materials required for test purposes and give all necessary co-operation.

906.03.02 Prestressing Steel

All prestressing steel shall be protected against damage, rust and other corrosion and shall be free of all dirt, oil, grease and other deleterious substances when finally grouted in the deck. Splicing of prestressing steel bars only shall be permitted to manufacturers' specifications. Splicing of strands or wire is not permitted.

All prestressing steel from each manufactured reel of wire, strand or mill heat of bar to be shipped to the site, shall be assigned an individual lot number and shall be tagged in such a manner that each such lot can be accurately identified at the job site. All unidentified prestressing steel received at the site will be rejected.

The Contractor shall furnish one sample, 1500 mm long from each manufactured reel of wire, strand or mill heat of bar prestressing steel for testing purposes. The Engineer will select the samples of prestressing steel from the job site and all materials for testing shall be furnished by the Contractor at his own expense.

The Contractor shall have no claim for additional compensation in the event his work is delayed awaiting approval of the materials.

The approval of any material by the Engineer shall not preclude subsequent rejection if the material is damaged in transit or later damaged or found to be defective. Storage of the material on site shall be in accordance with Prestressing steel shall be high tensile strength 7-wire strand or bar as shown on the contract drawings, fabricated, sampled and tested in accordance with the requirements of ASTM A 416/A 416M-02 and ASTM A 421/A 421M-02 and to the satisfaction of the Engineer. Longer term storage of prestress steel and components, i.e. storage over the winter, shall be in accordance with ASTM A 416/A 416M-02 and ASTM A 421/A 421M-02 and the environment shall not be wet, humid or subject to the accumulation of moisture.

Two copies of the mill certificate and two copies of the stress-strain curves representative of the actual lots to be used shall be submitted to the Engineer with samples.

Prestressing steel shall be high tensile strength 7-wire strand or bar as shown on the contract drawings, fabricated, sampled and tested in accordance with the requirements of 416/A 416M-02 and A 421/A 421M-02.

Tendons shall consist of parallel wires or strands composed of the required number of high tensile, cold-drawn, low-relaxation (stabilized) strands. Positive end anchorage shall be provided on each end of the tendon after threading through the terminal hardware. The tendon shall be enclosed in mortar-tight flexible metal conduit.
The pre-assembled connection between the conduit and the end bearing assemblies shall be adequate to ensure a mortar tight enclosure from terminal to terminal. The anchor shall provide for grout passage into the tendon. The supplier of the tendons shall furnish grout fittings for attachment to the terminal hardware.

High tensile strength steel shall be from steel made by the open hearth, electric furnace or basic oxygen process to produce the desired high tensile strength. Strand shall have a nominal diameter of 15.24 mm, minimum ultimate tensile strength of 260.6 kN and a nominal end area of 140.0 mm² per strand, or as otherwise indicated on the contract drawings.

Steel grade shall be 1860 MPa unless otherwise specified on the contract drawings. Oil tempered steel shall not be employed for use in prestressed concrete construction.

The complete stress-strain curve for the steel shall be obtained for each heat or lot of steel used in the entire project and shall be used as data for stressing of the steel of that particular heat or lot. Care shall be taken that the steel so defined is correctly identified.

The Contractor shall furnish one entire tendon complete with anchorages, one complete coupling device and all hardware for testing and evaluation purposes, if so indicated in the Contract Documents. If the tendon and/or associated hardware has not been previously used in Newfoundland, the Engineer may request a sample for evaluation and testing purposes. Any components which in the opinion of the Engineer, fall below the quality of the sample provided shall not be used in the works.

906.03.03 Ducts

Ducts for prestressing steel shall be made of approved bright metal rigid or semi-rigid corrugated steel tubing with mechanical joint connections of the diameter as shown on the drawings. Rigid ducts shall have a minimum wall thickness of 0.60 mm and be capable of being bent to a minimum inside radius of 9 metres without distress. Semi-rigid ducts shall have a minimum wall thickness of 0.25 mm and be capable of being bent to a minimum inside radius of 3.5 metres without distress. The wobble friction coefficient (k) shall not exceed 0.0023 per metre and 0.0033 per metre for rigid and semi-rigid ducts respectively. The curvature friction coefficient (µ) shall not exceed 0.20 for both duct types. Rigid ducts shall be used for longitudinal tendons and semi-rigid ducts used for transverse tendons unless otherwise specified in the contract documents.

Ducts shall be watertight and of sufficient strength to withstand all forces imposed upon them during placing of concrete without denting, sagging or leaking. All ducts and anchorage assemblies shall be provided with any necessary air vents and pipes for the injection of grout after prestressing. Grouting ducts and vents shall be located at all high points and at both ends of all longitudinal tendons. For transverse tendons, grouting ducts and vents shall be located at both ends of all tendons and at all high points when the vertical distance between the lowest and highest point in the duct exceeds 400 mm.

906.03.04 Anchorage Assemblies

The anchorages shall be of an approved type as indicated on the contract drawings for the size of tendons shown on the drawings complete with all required spiral reinforcement.

Anchoring hardware shall meet the minimum requirements set forth in CAN/CSA-A23.1-M09. Moreover, the anchorage components, i.e. the bearing plate, wedges, anchor head and/or casting to develop at least 100% of the ultimate tendon capacity but the prestressing steel as anchored is permitted to fail at 95% of the ultimate tendon capacity.

All reinforcement, duct work, cones and/or anchorages shall be fastened firmly so that no movement can occur when concrete is placed. Anchorages shall be held tight to the end forms so that no laitance can leak down the face of the cone or bearing plates. Enclosures shall be protected against the entrance of foreign matter prior to grouting particularly in cold weather.

The anchorages shall be placed in the position shown on the contract drawings. The axis of the anchorage must coincide with the axis of the cable passing through it. Details of end anchorages, i.e. block out dimensions and angles shall be determined by the prestress supplier in coordination with the Engineer.
906.03.05 Round Void Forms

When required the type of round void form used shall be in accordance with the following table:

<table>
<thead>
<tr>
<th>OUTSIDE DIAMETER OF VOID</th>
<th>TYPE OF ROUND VOID FORM</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVER 930 MM</td>
<td>1.2 MM CORRUGATED METAL PIPE</td>
</tr>
<tr>
<td>630 MM - 930 MM</td>
<td>1.0 MM CORRUGATED METAL PIPE</td>
</tr>
<tr>
<td>UNDER 630 MM</td>
<td>1.0 MM CORRUGATED METAL PIPE OR SONOVoid TUBES, TYPE D, 100% DUROBOARD OR APPROVED EQUAL</td>
</tr>
</tbody>
</table>

Metal void forms shall have outside diameter (top of corrugations to top of corrugation) equal to the diameter of the voids shown on the drawings.

Void tubes made of fibrous material shall be protected against damage during storage and handling and shall be protected from moisture and water at all times. Adequate ventilation shall be provided to prevent damage due to humidity. The void tubes shall not be stored on the site for more than seven days before installation.

The void tubes shall be designed to withstand the forces imposed on them during concreting and until the concrete has set up, without deformation such as bulging, sagging or collapse.

Damaged tubes shall not be used.

All void tubes must be accurately placed and rigidly fixed in position before any concrete is placed. The Contractor shall pay particular attention to the buoyancy of the voids and adequate measures shall be taken to counteract the same. No concrete shall be placed until the installation of the tubes has been inspected and approved by the Engineer.

906.04 Dimensional Tolerances

The following dimensional tolerances will be allowed:

<table>
<thead>
<tr>
<th>TOLERANCE</th>
<th>TOLERANCE LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LENGTH</td>
<td>± 10 MM</td>
</tr>
<tr>
<td>CROSS SECTION</td>
<td>± 3 MM FROM EACH DIM. (NOT CUMULATIVE)</td>
</tr>
<tr>
<td>ALIGNMENT</td>
<td>± 3 MM MAX. IN ANY 3 M LENGTH</td>
</tr>
<tr>
<td>CAMBER DIFERENTIAL BETWEEN ADJACENT PRESTRESSED MEMBERS</td>
<td>20 MM MAX.</td>
</tr>
</tbody>
</table>

In addition, camber in the prestressed members immediately after stressing or de-tensioning shall not vary more than 50% of the calculated value. Camber due to member dead load only, at the time of placing the deck slab, shall not be more than 20 mm greater than the initial camber.

Deck slab surface under full dead load shall be to the grades indicated on the drawings. The deck slab thickness shall be constant between the top flanges of adjacent members. In order to meet these criteria the Contractor shall haunch the deck slab over the member or protrude the member a maximum of 20 mm into the deck slab or both, as indicated on the drawings.

For prestressed slab superstructures the deck slab surface and soffit shall be to the grades indicated on the drawings immediately after stressing, unless otherwise indicated in the contract documents.

906.05 Placing Concrete, Stressing and Grouting Tendons

The minimum concrete strength at stressing shall be 30 MPa unless otherwise specified on the contract drawings.

906.05.01 Placing
Concrete must not be deposited in the forms until the Engineer has inspected the placing of the reinforcement, ducts, anchorages, prestressing steel and has given his approval thereof.

Bar reinforcing steel and prestressing steel shall be placed accurately at the locations shown on the drawings or approved by the Engineer. The distance from the forms shall be maintained by plastic bar chairs, spacers, hangers or hold down devices. Within a 5.0 metre longitudinal distance from support locations i.e. piers and abutments, a tolerance of $\pm 6\text{mm}$ will be permitted in the placing of prestressing ducts. At all other locations a tolerance of $\pm 12\text{mm}$ will be permitted.

Post-tensioning ducts must be held securely at intervals of 500 mm or less against vertical or horizontal displacement from true alignment during the placing of concrete.

Holes shall be provided for anchor dowels and for diaphragm dowels which pass through the member, openings for connection rods, recesses for grout and holes for railing bolts in the members shall be provided in accordance with the details shown on the drawings.

Where diaphragm dowels do not pass through the member, the dowels shall be anchored in the member by embedment in the concrete or by means of approved threaded inserts.

Where openings for diaphragm dowels are provided, these dowels shall be grouted in place after the installation of the member in the structure.

Where continuous prestressed concrete slab type construction is required, the deck shall be cast in one continuous concrete placing operation commencing at the lower end of the structure.

The concrete must be vibrated internally or externally or both as required to consolidate the concrete. The vibrating shall be done with care and in such a manner that reinforcing steel, ducts and prestressing steel will not be displaced. Vibrators shall operate at a minimum frequency of 160 Hz for the internal type and 60 Hz for the external type.

The Contractor shall pay particular attention to concrete placement details, external vibration shall be used when casting CPCI girders.

All curing methods shall be subject to the Engineer's approval. Curing shall be in accordance with Section 904.05, "Curing", of the Specifications Book.

906.05.02 Prestressing Technician

The Contractor shall provide at his own expense a technician familiar with the type of prestressing involved, approved by the Engineer, to supervise all prestressing work. This technician shall be present at the completion of the steel installation and just prior to concreting operations, at stressing and grouting operations.

The prestressing supplier shall formally certify in writing that the stressing technician being employed on the works has sufficient knowledge and experience to undertake and successfully complete the prestressing, grouting and associated work.

906.05.03 Stressing

All prestressing steel shall be stressed by means of hydraulic jacks which shall be equipped with accurately calibrated hydraulic pressure gauges, damped from vibration, with a dial not less than 150 mm in diameter, to permit the stress to be computed at any time. A certified calibration curve shall accompany each jack, showing the relationship between gauge readings and stress in the ram for both ascending and descending movements of the ram. In general monostrand jacks shall not be used for stressing multi-strand tendons unless specifically approved by the Designer. A monostrand jack shall be present on site during stressing operations. No stressing will be permitted without the presence of a monostrand jack on site.

A load cell attached to the jack will be accepted, as an alternative to the above, as a means of obtaining the force in the tendon provided the accuracy of the load cell is attested to by an authority acceptable to the Engineer.
The stressing operation shall be conducted in a manner recommended by the manufacturer of prestressing material and only in the presence of the Engineer or designated representative.

The supervisor in charge of the tensioning shall be provided with the required extension of the tendons and the jack pressure. The extension shall be carried out at an even rate, jack pressure and extension shall coincide with the required extension and pressure at the time of anchoring, due allowance being made for anchorage slippage at both ends of the tendons. The permissible variation in specified prestress shall not be more than 95% to 100% of the theoretical jacking force or pressure for both longitudinal and transverse tendons. Moreover, the permissible variation in specified elongation shall not be more than ± 5% of the theoretical elongation for longitudinal tendons. For transverse tendons the permissible variation in specified elongation shall not be more than ± 5% of the theoretical elongation or ± 10 mm whichever is greater.

The stress in the tendons shall be measured by means of the extension of the tendons and shall be continuously checked by means of the pressure gauge on the jack. The accuracy of the jack pressure gauge shall be checked periodically. The zero error in the jack pressure shall be determined by plotting a few straight pressure readings against jack extension and extending the straight line back to determine the zero intercept.

The stressing shall be carried out as shown on the contract drawings. The tensioning shall not be commenced until the tests on the concrete cylinders, manufactured and cured under the same conditions as the prestressed member, indicate that the concrete of the member has attained the required compressive strength as shown on the contract drawings.

After the concrete is placed, no tensioning will be permitted until it is demonstrated, to the satisfaction of the Engineer, that the prestressing steel is free and unbounded in the enclosure.

Any tendon in which the accuracy of the extension is doubted shall be de-stressed and restressed in the presence of the Engineer.

Records of elongation, calibrated jack force readings and slip shall be kept by the Engineer. Until such approval is obtained in writing, no tendons shall be grouted.

The prestressed steel shall be anchored at a stress that will result in the ultimate retention of working forces or stresses of not less than those shown on the plans, but in no case shall the steel be tensioned above 80% of the ultimate strength. Losses in stress due to creep, plastic flow, elastic flow and shrinkage of concrete plus creep of steel and sequence stressing, shall be computed in accordance with CSA-S6-06 latest edition.

Prestressed strands which have been stressed and meet project criteria shall be cut off with a saw; a torch is not acceptable. The Contractor shall leave 25-50 mm of strand protruding beyond the visible end of the wedge.

906.05.04 Bonding And Grouting

The Contractor shall sandblast all concrete surfaces in anchorage boxout areas and fill the boxout with concrete of a quality similar to that used in the member. For anchorages without the tendon end cap, anchorage recesses or boxouts are to be sandblasted and filled with concrete before grouting operations commence.

All post-tensioned prestressing steel shall be bonded to the concrete by pressure grouting the ducts or openings. All stressing shall be completed before grouting begins. All areas around post-tensioned cables, strands, tendons or rods shall be completely filled with high early strength non-shrink grout.

The grouting procedure shall be approved by the Engineer.

Generally this work shall be done as soon as the prestressing steel has been stressed and approved and in no case shall any tensioned prestressing steel be left ungrouted for more than seven (7) days after prestressing.

In the case of post-tensioned slabs which contain both longitudinal and transverse prestressing steel, the maximum time permitted between the beginning of the stressing sequence and the grouting of the last cable shall not exceed two weeks.
Stressing and grouting sequences of longitudinal and transverse tendons shall be as outlined in the contract documents. The maximum time permitted between the beginning of stressing and grouting of the last cable shall not exceed two weeks.

All ducts or openings shall be clean and free of all foreign materials that would impair bonding of the grout. Each duct or opening shall be thoroughly blown out with compressed air immediately prior to grouting. Where it is found necessary, in the opinion of the Engineer, the duct or opening shall be flushed out with water, prior to use of compressed air. The concrete shall have a temperature of at least 5°C at the time of grouting and shall be maintained at this temperature or higher for a period of at least 48 hours. If necessary this may include preheating the structure and maintaining protection for a period of three days after the grout is placed. The temperature of the grout at the time of injection shall be not less than 16°C nor more than 27°C.

All grouts used for grouting of post-tensioning cables shall be pre-packaged products and intended for that purpose. The grout shall be mixed and placed as per the manufacturer's instructions and under the supervision of the Engineer.

Grout shall have a maximum water: cement ratio of not more than 0.36, not contain any trace amounts of chlorides, contain at least 6% of silica fume by weight, contain an approved superplasticizer and an approved expansive agent. Masterflow 816 Cable and Anchor grout manufactured by BASF and In-Pakt PT Grout manufactured by KING are two grouts which meet the above criteria.

The compressive strength of the grout shall be at least 40 MPa in four (4) days. Strength tests shall be performed on 50 mm cubes, stored and tested in accordance with ASTM Specification C109.

When allowed to stand for 15 minutes, the grout shall not bleed or segregate. At the time of initial set, the grout shall exhibit an expansion of 8% (± 2%) of its original volume.

The Contractor shall be responsible for quality control of grout production and placing. Quality assurance of the grout from a testing viewpoint shall be provided by the Department.

Grouting equipment shall be capable of grouting to a pressure of at least 1.5 MPa with a 19 mm minimum inside diameter grout hose, maximum pressure 1.7 MPa.

Alternatively, the grouting equipment shall be specifically designed for the job and approved by the Engineer.

Grout shall be mixed in an approved mechanical mixer, that provides for straining and re-agitating the grout before it is used. Time between mixing and pumping the grout shall not exceed 40 minutes.

Retempering the grout will be prohibited.

The grout shall completely fill the duct or opening and shall be allowed to flow continuously and freely for 5 seconds at the outlet end of the duct or opening. In case the continuity of grouting is interrupted, the duct or opening shall be immediately cleaned out. A dependable high pressure air and water supply shall be on hand during grouting.

After grout has set, all exposed vents and hoses, in finished concrete surfaces are to be removed 50mm from the finished surface. The resulting void or cavity must have all debris removed and be thoroughly cleaned. The void or cavity should be filled with SET 45, manufactured by Master Builders or an approved equal. The Contractor shall follow the Manufacturer’s recommendations and specifications in the mixing and placing of SET 45.

906.06 HANDLING AND INSTALLATION OF PRESTRESSED MEMBERS

At least seven (7) days before starting work, the Engineer shall be fully informed as to the method of handling, installation and the amount and kind of equipment proposed for use. The Contractor shall comply with the provisions of the Highway Traffic Act and make all necessary arrangements with the authorities for permission to transport.

The Contractor shall exercise extreme care in handling, storing, moving and erecting precast prestressed concrete members to avoid twisting, racking or other distortion that would result in cracking or damage to the members. The Contractor shall handle, transport and erect precast prestressed members in an upright position.
and keep the points of support during lifting, storing, transportation and erection within 600 mm of the points of support in the final structure. The Contractor shall not permit the reactions of the lifting devices to be inclined to the vertical at an angle greater than thirty degrees. Holes provided for lifting shall be filled with mortar when members have been placed.

The Contractor must decide upon the method by which he plans to lift the prestressed girders and submit design calculations signed and stamped by a Professional Engineer licensed to practice in the Province of Newfoundland.

The Contractor is responsible for the stability of the prestressed girders during placing and until the diaphragms are in place regardless of the loading conditions.

Prestressed concrete girders shall not be moved or transported until the grout has attained 30 MPa. False work shall not be removed from continuous prestressed concrete structures until the grout has attained 30 MPa. Loads in addition to member self-weight shall not be placed on the prestressed concrete members until the grout has attained 30 MPa. Grout samples shall be taken, field cured and tested to establish the appropriate time to move or transport girders, remove false work or apply loads to prestressed concrete structures. Grout samples shall also be obtained and tested for acceptance purposes.

906.09 MEASUREMENT FOR PAYMENT

906.09.01 Prestressed Concrete Members

The quantity of prestressed members supplied and erected for which payment shall be made shall be the total number of members required as shown on the plans.

906.09.01.01 Supply of Prestressing Steel and Accessories

Prestressing tendons including anchorages will be measured as a lump sum for the total number required by the contract. Payment for the Supply of Prestressing Steel and Accessories will not be made where the prestress steel and/or components are held in longer term storage, i.e. over the winter.

906.09.02 Prestressed Concrete In Post-Tensioned Slab Superstructures

906.09.02.01 Concrete

Measurement for payment will be by cubic metres of concrete placed based on neat lines shown on the plans. No deductions will be made from the volume of concrete for reinforcing or prestressing steel, anchorages or inserts. Deductions for any design voids will be made. The quantity shall include the volume of concrete in curbs, sidewalks, medians, parapets, including those on the wingwalls or as otherwise shown on the plans.

906.09.02.02 Supply of Prestressing Steel and Accessories

The quantity of prestressing tendons including anchorages for which payment shall be made shall be the total number of tendons required as shown on the plans. This will be considered as a lump sum and includes both transverse and longitudinal tendons as indicated on the contract drawings.

906.09.02.03 Concrete Surface Finish

Measurement for payment for surface finish shall be in accordance with Section 904, “Concrete Structures”.

906.10 BASIS OF PAYMENT

906.10.01 Prestressed Concrete Members and Post-Tensioned Slabs

Payment at the contract price shall be full compensation for all materials, labour, equipment, plant and services necessary to complete the prestressed concrete work in accordance with the plans and as described herein.

In particular, no separate payment will be made for:
a) Supply of cement, aggregates and other materials, plant or equipment for producing the concrete.
b) Supply and placement of grout.
c) Form work and false work.
d) Supply and installation of void tubes including all drain tubes, air vents, bracing, non-corrosive chair supports, splices and end closures.
e) Sandblasting the construction joints.
f) Supply and apply approved bonding adhesive.
g) Supply and installation for reinforcing steel except that in post-tensioned slabs.
h) Transporting and storing prestressed concrete members.
i) Any post construction jacking of the superstructure.

Payment for post-tensioned slab concrete will be under Section 904, “Concrete In Superstructures”.

Payment for prestressed concrete members, such as AASHTO or CPCI Girders and double tees, will be under "Prestressed Girders" (a) supplied, (b) installed as appropriate.

906.10.02 Supply of Prestressing Steel and Accessories

Payment at the contract unit price for "Supply Of Prestressing Steel And Accessories" shall be full compensation for all materials, labour, services, plant and equipment necessary for the supply, delivery, installation and stressing of the tendons including all anchorages, bursting and spalling or end block steel and grouting as required in accordance with the contract drawings and this specification.

For post-tensioned slab structures, the materials, fabrication and placing, cost of bursting and spalling or end block steel shall be paid for under Section 905, "Concrete Reinforcement".

906.10.03 Concrete Surface Finish

Payment for concrete surface finish shall be in accordance with Section 904, "Concrete Structures".

906.10.04 Rejection

Excessive honeycombing, distortion, warping, cracking, improper grouting or other evidence of inferior workmanship or failure to meet the requirements of these specifications shall be cause for rejection of any member.

Minor surface cavities or irregularities which are satisfactorily repaired shall not constitute cause for rejection. Repairs shall not be made until the Engineer has inspected the extent of the irregularities and has determined whether or not the concrete will be rejected.

Final acceptance of members will not be made until they have been installed in the structure. Members that have been tentatively accepted at the manufacturing plant but are damaged in transit shall be replaced by the Contractor at his own expense.

Erection by a non approved method may be cause for rejection.
FORM 1000

Hydraulic Tamper

<table>
<thead>
<tr>
<th>Kilograms</th>
<th>Rate per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 - 2500</td>
<td>$8.41</td>
</tr>
<tr>
<td>2501 - 5000</td>
<td>11.14</td>
</tr>
<tr>
<td>5001 - 7500</td>
<td>19.56</td>
</tr>
</tbody>
</table>

8-4 Mini Excavators - Tracked

<table>
<thead>
<tr>
<th>Operating Weight (kg)</th>
<th>Rate per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 1999</td>
<td>$26.15</td>
</tr>
<tr>
<td>2000 to 2999</td>
<td>$36.44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating Weight (kg)</th>
<th>Rate per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000 to 3999</td>
<td>$46.25</td>
</tr>
<tr>
<td>4000 and Over</td>
<td>$54.00</td>
</tr>
</tbody>
</table>

SECTION 9

MOTOR GRADERS

<table>
<thead>
<tr>
<th>Net Engine HP</th>
<th>Rate per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 to 79</td>
<td>$42.15</td>
</tr>
<tr>
<td>80 - 99</td>
<td>$47.37</td>
</tr>
<tr>
<td>100 - 125</td>
<td>$63.00</td>
</tr>
<tr>
<td>126 - 150</td>
<td>$66.00</td>
</tr>
<tr>
<td>151 - 180</td>
<td>$78.34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Net Engine HP</th>
<th>Rate per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>181 - 210</td>
<td>$87.66</td>
</tr>
<tr>
<td>211 - 245</td>
<td>$90.00</td>
</tr>
<tr>
<td>246 - 269</td>
<td>$93.67</td>
</tr>
<tr>
<td>270 and Up</td>
<td>$100.63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Net Engine HP</th>
<th>Rate per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 59</td>
<td>$50.00</td>
</tr>
<tr>
<td>60 - 79</td>
<td>$55.25</td>
</tr>
<tr>
<td>80 - 99</td>
<td>$57.00</td>
</tr>
<tr>
<td>100 - 125</td>
<td>$67.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Net Engine HP</th>
<th>Rate per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>126 - 150</td>
<td>$76.25</td>
</tr>
<tr>
<td>151 - 180</td>
<td>$84.50</td>
</tr>
<tr>
<td>181 - 210</td>
<td>$90.75</td>
</tr>
<tr>
<td>211 - 245</td>
<td>$101.25</td>
</tr>
</tbody>
</table>

With Scarifier

<table>
<thead>
<tr>
<th>Kilograms</th>
<th>Rate per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 10999</td>
<td>$4.53</td>
</tr>
<tr>
<td>11 000 - 12 999</td>
<td>$7.50</td>
</tr>
</tbody>
</table>

With Vee Plow Add $5.60 Per Hour - With Wing Add $4.40 Per Hour

SECTION 10

RUBBER TIRED FRONT END LOADER (FOUR WHEEL DRIVE)

<table>
<thead>
<tr>
<th>Minimum Operating Weight kgs</th>
<th>S.A.E. Bucket Sizes (m³)</th>
<th>Rate Per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 6570</td>
<td>Up to 1.14</td>
<td>$48.25</td>
</tr>
<tr>
<td>6570 to 8069</td>
<td>1.15 - 1.52</td>
<td>$52.25</td>
</tr>
<tr>
<td>8070 to 9519</td>
<td>1.53 - 1.90</td>
<td>$54.75</td>
</tr>
<tr>
<td>9520 to 10879</td>
<td>1.91 - 2.28</td>
<td>$66.75</td>
</tr>
<tr>
<td>10880 to 13483</td>
<td>2.29 - 2.67</td>
<td>$86.75</td>
</tr>
<tr>
<td>13484 to 14959</td>
<td>2.68 - 3.05</td>
<td>$90.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minimum Operating Weight kgs</th>
<th>S.A.E. Bucket Sizes (m³)</th>
<th>Rate Per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>14960 to 18589</td>
<td>3.06 - 3.43</td>
<td>$103.80</td>
</tr>
<tr>
<td>18590 to 23119</td>
<td>3.44 - 3.81</td>
<td>$117.15</td>
</tr>
<tr>
<td>23120 to 24929</td>
<td>3.82 - 4.19</td>
<td>$137.35</td>
</tr>
<tr>
<td>24930 to 26290</td>
<td>4.20 - 4.58</td>
<td>$159.71</td>
</tr>
<tr>
<td>More than 26290</td>
<td>4.59 -</td>
<td>$184.95</td>
</tr>
</tbody>
</table>

Attachments - wing add $4.40 per hour
Attachments – shouldering machine add $35.25 per hour

NOTE: “Operating weights will be the final authority on rates to be charged. Additional weight caused by the usage of any form of counter weight devices will not change the rate classification.”
STANDARD WIDTH R.O.W. 60m (2 LANES).
STANDARD WIDTH CUTTING 60m,
STANDARD WIDTH GRUBBING 40m.

HYDROSEEDING, WHERE APPLICABLE, TO EXTEND
FROM MID-POINT OF SHOULDER Rounding.

RAU 90

TYPICAL CROSS SECTION FOR
RAU 90 FINAL CONSTRUCTION

NOTES:
SHOULDER STAKE 6.75m FOR SHOULDERING
MACHINE TO ACHIEVE REQUIRED Rounding.

IF SCARIFYING IS REQUIRED WIDTH OF
SCARIFYING SHALL BE WIDTH OF PAVEMENT PLUS
300mm ON BOTH SIDES.

IF CLIMBING LANE IS REQUIRED ADD 3.75m TO
BOTH CROSS SECTIONS.
STANDARD WIDTH R.O.W. 60m (2 LANES).
STANDARD WIDTH CUTTING 60m.
STANDARD WIDTH GRUBBING 40m.

HYDROSEEDING, WHERE APPLICABLE, TO EXTEND FROM MID-POINT OF SHOULDER ROUNGING.

RAU 100

NOTES:
SHOULDER STAKE 6.75m FOR SHOULDERING MACHINE TO ACHIEVE REQUIRED ROUNGING.

IF SCARIFYING IS REQUIRED WIDTH OF SCARIFYING SHALL BE WIDTH OF PAVEMENT PLUS 300mm ON BOTH SIDES.

IF CLIMBING LANE IS REQUIRED ADD 3.75m TO BOTH CROSS SECTIONS.

TYPICAL CROSS SECTION FOR RAU 100 FINAL CONSTRUCTION

TYPICAL CROSS SECTION FOR RAU 100 SUB-GRADE CONSTRUCTION
TYPICAL CROSS SECTION FOR
RAD 90 FINAL CONSTRUCTION (HALF SECTION)

TYPICAL CROSS SECTION FOR
RAD 90 SUB-GRADE CONSTRUCTION

NOTES:
SHOULDER STAKE 5.75m LT. 7.25m RT. FOR
SHOULDERING MACHINE TO ACHIEVE REQUIRED
ROUNDING.
IF SCARIFYING IS REQUIRED WIDTH OF
SCARIFYING SHALL BE WIDTH OF PAVEMENT PLUS
300mm ON BOTH SIDES.

IN ROCK CUTS REMOVE ROCK &
REPLACE WITH APPROVED SUITABLE MATERIAL.
ENSURE DRAINAGE OF ALL DEPRESSIONS IN
ROCK CUTS.
100mm OF TOP COURSE MATERIAL, 25mm MINUS,
TO BE APPLIED IF NECESSARY. SHOULDER STAKES
FOR 25mm MINUS 4.25m LT. AND RT. OF CENTER
LINE.
TYPICAL CROSS SECTION FOR
RAD 100 FINAL CONSTRUCTION (HALF SECTION)

NOTES:
SHOULDER STAKE 5.75m LT. 7.25m RT. FOR
SHOULDERING MACHINE TO ACHIEVE
REQUIRED Rounding.

IF SCARIFYING IS REQUIRED WIDTH OF
SCARIFYING SHALL BE WIDTH OF PAVEMENT PLUS
300mm ON BOTH SIDES.

TYPICAL CROSS SECTION FOR
RAD 100 SUB-GRADE CONSTRUCTION
<table>
<thead>
<tr>
<th>Stake Distances (Meters from Control Line)</th>
<th>Light Traffic</th>
<th>Heavy Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granular "B"</td>
<td>6.50</td>
<td>2.75</td>
</tr>
<tr>
<td>Granular "A"</td>
<td>5.50</td>
<td>2.00</td>
</tr>
<tr>
<td>Shoulders</td>
<td>5.75</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Typical Cross Section for Ramp Final Construction

Typical Cross Section for Ramp Sub-Grade Construction

Note: In rock cuts remove rock and replace with approved suitable material.
DIVISION 12
STANDARD DRAWINGS
INDEX

<table>
<thead>
<tr>
<th>Section</th>
<th>Number of Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>Index 3</td>
</tr>
<tr>
<td>1201</td>
<td>Field Office 1</td>
</tr>
<tr>
<td>1202</td>
<td>Portable Scale House For Beam Type Scales 1</td>
</tr>
<tr>
<td>1203</td>
<td>Field Laboratory 1</td>
</tr>
<tr>
<td>1204</td>
<td>Portable Scale House for Electronic Type Scales 1</td>
</tr>
<tr>
<td>1205</td>
<td>Guidelines for Ditching 1</td>
</tr>
<tr>
<td>1206</td>
<td>Guidelines for Benching of Earth Slopes 1</td>
</tr>
<tr>
<td>1208</td>
<td>Guidelines for Grubbing 1</td>
</tr>
<tr>
<td>1209</td>
<td>Guidelines for Bog Removal 1</td>
</tr>
<tr>
<td>1210</td>
<td>Gabions 1</td>
</tr>
<tr>
<td>1211</td>
<td>Traffic Counter Box 1</td>
</tr>
<tr>
<td>1213</td>
<td>Typical Chainlink Fence End Features 1</td>
</tr>
<tr>
<td>1214</td>
<td>Typical Chainlink Fence Gates 1</td>
</tr>
<tr>
<td>1215</td>
<td>Typical Crack Sealing Detail 1</td>
</tr>
<tr>
<td>1216</td>
<td>Safety Rail Detail 1</td>
</tr>
<tr>
<td>1217</td>
<td>Rigid Gate Detail 1</td>
</tr>
<tr>
<td>1218</td>
<td>Post and Chain Gate Detail 1</td>
</tr>
<tr>
<td>1219</td>
<td>Typical Saddle Branch 1</td>
</tr>
<tr>
<td>1220</td>
<td>Typical Concrete Collar at Concrete Culvert Extension 1</td>
</tr>
<tr>
<td>1221</td>
<td>Guiderail Installation Detail for Protection of Median Structures 1</td>
</tr>
<tr>
<td>1222</td>
<td>Slotted Weir Baffle Details 1</td>
</tr>
<tr>
<td>1223</td>
<td>Floating Silt Curtain/Turbidity Barrier 1</td>
</tr>
<tr>
<td>1225</td>
<td>End Treatment Screen for Corrugated Steel Pipe 1</td>
</tr>
<tr>
<td>1226</td>
<td>Typical Culvert Excavation Pay Limit For Fills Deeper Than 5.0 meters 1</td>
</tr>
<tr>
<td>1227</td>
<td>Height of Fill Table for Dual Wall Corrugated Polyethylene Pipe 1</td>
</tr>
<tr>
<td>1228</td>
<td>Height of Fill Table for Closed Profile Wall Corrugated Polyethylene Pipe 1</td>
</tr>
<tr>
<td>1234a</td>
<td>HDPE Flexible Pipe Embedment and Backfill Earth Excavation Detail 1</td>
</tr>
<tr>
<td>1234b</td>
<td>HDPE Flexible Pipe Embedment and Backfill Rock Excavation Detail 1</td>
</tr>
<tr>
<td>1234c</td>
<td>HDPE Flexible Pipe Embedment in Embankment Detail 1</td>
</tr>
<tr>
<td>1230</td>
<td>Rip-Rap Treatment for Storm Sewer Outlet 1</td>
</tr>
<tr>
<td>1231</td>
<td>Typical Structural Plate Round Pipe Bedding and Backfill Details 1</td>
</tr>
<tr>
<td>1232</td>
<td>Typical Structural Plate Pipe Arch Bedding and Backfill Details 1</td>
</tr>
<tr>
<td>1233</td>
<td>Typical Treatment for Hard Rock, Culvert, Pipe, or Sewer Foundations 1</td>
</tr>
<tr>
<td>1235</td>
<td>Typical Storm Sewer Bedding and Backfill Details 1</td>
</tr>
<tr>
<td>1236</td>
<td>Typical Culvert Bedding and Backfill Details 1</td>
</tr>
<tr>
<td>1237</td>
<td>Typical Temporary & Permanent buffer Zones at Stream Crossings 1</td>
</tr>
<tr>
<td>1238</td>
<td>Silt Fence 1</td>
</tr>
<tr>
<td>Section</td>
<td>Number of Pages</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1239</td>
<td>Check Dam Sediment Traps 1</td>
</tr>
<tr>
<td>1240</td>
<td>Catch Basin Pup 1</td>
</tr>
<tr>
<td>1241</td>
<td>Shallow Sump Non-inspection Catch Basin with Frame and Grate 1</td>
</tr>
<tr>
<td>1242</td>
<td>Deep Sump Non-Inspection Catch Basin with Frame and Grate 1</td>
</tr>
<tr>
<td>1245</td>
<td>Single Inlet Standard Inspection Catch Basin 1</td>
</tr>
<tr>
<td>1247</td>
<td>Single Inlet Large Inspection Catch Basin 1</td>
</tr>
<tr>
<td>1250</td>
<td>Twin Inlet Catch Basin 1</td>
</tr>
<tr>
<td>1255</td>
<td>600 x 600 Ditch Inlet Catch Basin 1</td>
</tr>
<tr>
<td>1256</td>
<td>1000 x 1000 Ditch Inlet Catch Basin 1</td>
</tr>
<tr>
<td>1256a</td>
<td>Modified 1000 x 1000 Ditch Inlet Catch Basin 1</td>
</tr>
<tr>
<td>1257</td>
<td>1200 x 1200 Ditch Inlet Catch Basin 1</td>
</tr>
<tr>
<td>1260</td>
<td>Typical Ditch Inlet Grating Detail 1</td>
</tr>
<tr>
<td>1263</td>
<td>Standard Frame and Grate for Catch Basin 1</td>
</tr>
<tr>
<td>1264</td>
<td>Type V Frame and Grate for Catch Basins 1</td>
</tr>
<tr>
<td>1266</td>
<td>Curb and Gutter Casting 1</td>
</tr>
<tr>
<td>1269</td>
<td>Round Manhole Frame and Grate 1</td>
</tr>
<tr>
<td>1270</td>
<td>Manhole Frame and Mortar Detail 1</td>
</tr>
<tr>
<td>1272</td>
<td>Asphalt Sidewalk 1</td>
</tr>
<tr>
<td>1273</td>
<td>Asphalt Gutter 1</td>
</tr>
<tr>
<td>1274</td>
<td>Asphalt Curb 1</td>
</tr>
<tr>
<td>1275</td>
<td>Concrete Curbs Types C, D, G, and H 1</td>
</tr>
<tr>
<td>1276</td>
<td>Typical Drop Curb with Sidewalk Layout 1</td>
</tr>
<tr>
<td>1277</td>
<td>Typical Curb and Gutter Tapered End Treatment 1</td>
</tr>
<tr>
<td>1278</td>
<td>Paraplegic Ramp 1</td>
</tr>
<tr>
<td>1279</td>
<td>Typical Guide Rail Installation Types 1</td>
</tr>
<tr>
<td>1280</td>
<td>Guide Rail Standard Installation 1</td>
</tr>
<tr>
<td>1281</td>
<td>Signal Reflectors on Guide Rail Post 1</td>
</tr>
<tr>
<td>1282</td>
<td>Guide Rail with Additional Posts 1</td>
</tr>
<tr>
<td>1283</td>
<td>Concrete Encased Duct Banks 1</td>
</tr>
<tr>
<td>1284</td>
<td>Electrical Junction Box 1</td>
</tr>
<tr>
<td>1285</td>
<td>Wooden Guide Post 1</td>
</tr>
<tr>
<td>1286</td>
<td>Foundation for Post Top Traffic Light 1</td>
</tr>
<tr>
<td>1287</td>
<td>Foundation for Cantilevered Traffic Light 1</td>
</tr>
<tr>
<td>1288a</td>
<td>Foundation for Traffic Controller 1</td>
</tr>
<tr>
<td>1288b</td>
<td>Traffic Control Prefab Junction Box 1</td>
</tr>
<tr>
<td>1288c</td>
<td>Type 1 Installation of Preformed Inductive Loop Placement in New Road 1</td>
</tr>
<tr>
<td>1288d</td>
<td>Type 2 Installation of Preformed Inductive Loop Placement in Existing Road 1</td>
</tr>
<tr>
<td>1288e</td>
<td>Asphalt Cut Inductive Loop 1</td>
</tr>
<tr>
<td>1289</td>
<td>Cast in Place Concrete Median Barrier 1</td>
</tr>
<tr>
<td>1290</td>
<td>Sign Post Installation Details Type "A" 1</td>
</tr>
<tr>
<td>1291</td>
<td>Sign Post Installation Details Type "B" 1</td>
</tr>
<tr>
<td>1292</td>
<td>Sign Post Installation Details Type "C" 1</td>
</tr>
<tr>
<td>1293</td>
<td>Sign Post Installation Details Type "D" 1</td>
</tr>
<tr>
<td>1294</td>
<td>Sign Post Installation Details Type "E" 1</td>
</tr>
<tr>
<td>1294a</td>
<td>Sign Post Installation Details Type "H" 1</td>
</tr>
<tr>
<td>1295</td>
<td>Sign Post Installation Details Type "F" 1</td>
</tr>
<tr>
<td>Section</td>
<td>Number of Pages</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>1296</td>
<td>1</td>
</tr>
<tr>
<td>1296a</td>
<td>1</td>
</tr>
<tr>
<td>1297</td>
<td>1</td>
</tr>
<tr>
<td>1298</td>
<td>1</td>
</tr>
<tr>
<td>1299</td>
<td>1</td>
</tr>
<tr>
<td>1299a</td>
<td>1</td>
</tr>
</tbody>
</table>
TYPICAL CHAIN LINK FENCE END FEATURES

1. ALL POSTS, RAIL AND BRACES TO BE SCHEDULE 40 CONTINUOUS WELD PIPE.
2. ALL TIE WIRE TO BE GALVANIZED STEEL.
3. CHAIN LINK FABRIC TO BE INDUSTRIAL GRADE GALVANIZED STEEL.
4. CONCRETE FOOTINGS TO BE 15MPa.
5. END POSTS TO BE PLACED AT THE ENDS OF A STRETCH OF FENCE AND AT GATES.
6. CORNER POSTS TO BE PLACED AT CORNERS AND CHANGES IN DIRECTION GREATER THAN 10°.
7. STRAINING POSTS TO BE PLACED AT CHANGES IN GRADE GREATER THAN 30°.
TYPICAL CHAIN LINK FENCE
WITH GATES

1. All posts, rail and braces to be Schedule 40 continuous weld pipe.
2. All tie wire to be galvanized steel.
3. Chain link fabric to be industrial grade.
4. Galvanized posts to be 20 MPA.
5. End posts to be placed at the ends of a stretch of fence and at corners.
6. Corner posts to be placed at corners.
7. Straining posts to be placed at changes in grade greater than 30°.
NEW CORRUGATED PIPE

CONCRETE COLLAR

EXISTING CONCRETE PIPE

GROUND

SECTIONAL END ELEVATION ON A : A

CONCRETE COLLAR

NEW CORRUGATED PIPE

EXISTING CONCRETE PIPE

RECESS CORRUGATED PIPE 100 IN CONCRETE PIPE WHERE POSSIBLE

GROUND

SECTIONAL SIDE ELEVATION ALONG CENTER LINE VIEW ON B : B

NOTES:
ALL CONCRETE TO BE 35 MPa @ 28 DAYS, SLUMP 60, MAXIMUM PARTICLE SIZE 20.
EXISTING CULVERT SIZES AND TYPES MAY VARY.
ALL BACKFILLING AND BEDDING TO BE COMPACTED TO 95% PROCTOR DENSITY.
<table>
<thead>
<tr>
<th>PIPE DIA mm</th>
<th>PIPE AREA m²</th>
<th>TRENCH WIDTH</th>
<th>MAXIMUM HEIGHT OF FILL</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>0.02</td>
<td>1.00</td>
<td>N/A 210kPa 320kPa</td>
</tr>
<tr>
<td>200</td>
<td>0.03</td>
<td>1.00</td>
<td>N/A 9 9</td>
</tr>
<tr>
<td>250</td>
<td>0.05</td>
<td>1.05</td>
<td>9 9</td>
</tr>
<tr>
<td>300</td>
<td>0.07</td>
<td>1.10</td>
<td>9 9</td>
</tr>
<tr>
<td>375</td>
<td>0.13</td>
<td>1.20</td>
<td>9 9</td>
</tr>
<tr>
<td>450</td>
<td>0.16</td>
<td>1.25</td>
<td>9 9</td>
</tr>
<tr>
<td>525</td>
<td>0.22</td>
<td>1.30</td>
<td>9 9</td>
</tr>
<tr>
<td>600</td>
<td>0.28</td>
<td>1.40</td>
<td>9 9</td>
</tr>
<tr>
<td>750</td>
<td>0.44</td>
<td>1.55</td>
<td>9 9</td>
</tr>
<tr>
<td>900</td>
<td>0.64</td>
<td>1.77</td>
<td>9 9</td>
</tr>
</tbody>
</table>

LEGEND:

N/A - NOT AVAILABLE

NOTES:

A MINIMUM HEIGHT OF FILL OVER TOP OF PIPE SHALL BE 800mm OR ONE PIPE DIAMETER, WHICHEVER IS GREATER.

B THE TABLE IS BASED ON BACKFILL DENSITY OF 1922kg/m³.

C HEIGHT OF FILL GREATER THAN 9.0m SHALL BE CALCULATED FROM FIRST PRINCIPLES.

D THE TABLE PRESUMES GROUNDWATER IS AT OR BELOW THE SPRINGLINE OF THE PIPE.

E ALL DIMENSIONS ARE IN METERS UNLESS OTHERWISE SHOWN.
Maximum Height of Fill

<table>
<thead>
<tr>
<th>Pipe Dia (mm)</th>
<th>Pipe Area (m²)</th>
<th>Trench Width</th>
<th>Maximum Height of Fill</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>RSC 160</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≤Trench Width</td>
</tr>
<tr>
<td>840</td>
<td>0.55</td>
<td>1.50</td>
<td>10.4</td>
</tr>
<tr>
<td>900</td>
<td>0.64</td>
<td>1.59</td>
<td>8.7</td>
</tr>
<tr>
<td>1020</td>
<td>0.82</td>
<td>1.74</td>
<td>7.9</td>
</tr>
<tr>
<td>1070</td>
<td>0.90</td>
<td>1.81</td>
<td>7.9</td>
</tr>
<tr>
<td>1220</td>
<td>1.17</td>
<td>2.01</td>
<td>7.9</td>
</tr>
<tr>
<td>1370</td>
<td>1.47</td>
<td>2.22</td>
<td>7.9</td>
</tr>
<tr>
<td>1520</td>
<td>1.81</td>
<td>2.44</td>
<td>7.9</td>
</tr>
<tr>
<td>1680</td>
<td>2.22</td>
<td>2.65</td>
<td>7.3</td>
</tr>
<tr>
<td>1830</td>
<td>2.63</td>
<td>2.86</td>
<td>7.3</td>
</tr>
<tr>
<td>1980</td>
<td>3.08</td>
<td>3.05</td>
<td>7.3</td>
</tr>
<tr>
<td>2130</td>
<td>3.56</td>
<td>3.26</td>
<td>7.0</td>
</tr>
<tr>
<td>2290</td>
<td>4.12</td>
<td>3.50</td>
<td>6.5</td>
</tr>
<tr>
<td>2440</td>
<td>4.68</td>
<td>3.71</td>
<td>6.3</td>
</tr>
</tbody>
</table>

NOTES:

A. The table applies to closed profile wall polyethylene pipe manufactured and tested according to CSA B182.8 and AASHTO M294-11.

B. The table presumes groundwater is below the pipe.

C. Installation is according to requirements of Section 421 of Specifications.

D. Height of fill and pipe sizes greater than shown or other design conditions shall be calculated from first principles.

E. Minimum height of fill over the pipe shall be 800mm or one pipe diameter, whichever is greater.

F. Trench width is based on the higher pipe stiffness and is according to ASTM D2321.

G. All dimensions are in meters unless otherwise shown.
HDPE FLEXIBLE PIPE EMBEDMENT IN EMBANKMENT, GROUND OR ROCK

NOTE:
- **D** = INSIDE DIAMETER

LEGEND:
- PIPE INVERT ABOVE ORIGINAL GROUND
- PIPE INVERT AT OR BELOW ORIGINAL GROUND

CLEARANCE TABLE

<table>
<thead>
<tr>
<th>Pipe Inside Diameter (mm)</th>
<th>Clearance (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>900 or less</td>
<td>300</td>
</tr>
<tr>
<td>Over 900</td>
<td>500</td>
</tr>
</tbody>
</table>

NOTES:
1. HEIGHT OF FILL IS MEASURED FROM THE FINISHED SURFACE TO TOP OF PIPE.
2. THE PIPE BED SHALL BE COMPACTED AND SHAPED TO RECEIVE THE BOTTOM OF THE PIPE.
3. EMBEDMENT MATERIAL SHALL BE WRAPPED IN NON-WOVEN GEOTEXTILE WHEN SPECIFIED.
4. GRANULAR MATERIAL PLACED IN THE HAUNCH AREA SHALL BE COMPACTED PRIOR TO PLACING AND COMPACTING THE REMAINDER OF THE EMBEDMENT MATERIAL.
5. ALL DIMENSIONS ARE IN METERS UNLESS OTHERWISE SHOWN.

FINISHED SURFACE
- ROCK FILL FOR PIPE CULVERT FROST TREATMENT
- ROCK FILL SURFACE TO BE CHINKED PRIOR TO PLACING GEOTEXTILE AND BEDDING
- BEDDING GRADE

PIPE EMBEDMENT
- WITH ROCK FILL UNDER AND OVER THE PIPE

SUBGRADE
- CLEARANCE SEE TABLE, TYP
TOP VIEW

SECTION A-A

1. APPROVED SQUARE OR ROUND PRE-CAST UNITS MAY BE USED ON APPROVAL BY THE ENGINEER.
2. PORUS BACKFILL TO BE PLACED MINIMUM 300 ON ALL SIDES.
3. CONCRETE STRENGTH 35MPa AT 28 DAYS.

OUTLET PIPE CONNECT TO MANHOLE

BRICK

500 WEEP HOLE

20 FRAME ADJUSTMENT

MAXIMUM DEPTH 6500

230

600

230

150

STANDARD PREFAB STEEL FRAME AND GRATE (OR AS SPECIFIED)

A

A

1080

600

230

1080

230

230

600
1. APPROVED SQUARE OR ROUND PRE-CAST UNITS MAY BE USED ON APPROVAL BY THE ENGINEER.
2. POROUS BACK FILL TO BE PLACED MINIMUM 300 ON ALL SIDES.
3. CONCRETE STRENGTH 35MPa AT 28 DAYS.
5. MAXIMUM DEPTH TO BE REDUCED IF SURROUNDING TOPOGRAPHY IS NOT LEVEL.
1. APPROVED SQUARE OR ROUND PRE-CAST UNITS MAY BE USED ON APPROVAL BY THE ENGINEER.
2. PORUS BACK FILL TO BE PLACED MINIMUM 300 ON ALL SIDES.
3. CONCRETE STRENGTH 35MPa AT 28 DAYS.
5. MAXIMUM DEPTH TO BE REDUCED IF SURROUNDING TOPOGRAPHY IS NOT LEVEL.
SECTION A-A

1. APPROVED SQUARE OR ROUND PRE-CAST UNITS MAY BE USED ON APPROVAL BY THE ENGINEER.
2. POROUS BACK FILL TO BE PLACED MINIMUM 300 ON ALL SIDES.
3. CONCRETE STRENGTH 35MPa AT 28 DAYS.
5. MAXIMUM DEPTH TO BE REDUCED IF SURROUNDING TOPOGRAPHY IS NOT LEVEL.
6. LADDER RUNGS TO BE 20M HI-BOND BARS GALVANIZED OR EQUAL.

SECTION B-B

STANDARD PREFAB STEEL FRAME AND GRATE (OR AS SPECIFIED)

20 FRAME ADJUSTMENT

500 WEEF HOLES

MAXIMUM DEPTH 4500

2000

600

1200

230

300

SEE NOTE 6

300

300

300
1. APPROVED SQUARE OR ROUND PRE-CAST UNITS MAY BE USED ON APPROVAL BY THE ENGINEER.
2. POROUS BACK FILL TO BE PLACED MINIMUM 300 ON ALL SIDES.
3. CONCRETE STRENGTH 35MPa AT 28 DAYS.
5. MAXIMUM DEPTH TO BE REDUCED IF SURROUNDING TOPOGRAPHY IS NOT LEVEL.
6. LADDER RUNGS TO BE 20M HI-BOND BARS GALVANIZED OR EQUAL.

SECTION A-A

SECTION B-B

STANDARD PREFAB STEEL FRAME AND GRATE (OR AS SPECIFIED)
SECTION A-A

1. APPROVED SQUARE OR ROUND PRE-CAST UNITS MAY BE USED ON APPROVAL BY THE ENGINEER.
2. POROUS BACK FILL TO BE PLACED MINIMUM 300 ON ALL SIDES.
3. CONCRETE STRENGTH 35MPa AT 28 DAYS.
4. 3-15M HI-BOND BARS BENT AS PER DETAIL, TIES TO BE 15M HI-BOND BARS, 1000 LONG.
5. MAXIMUM DEPTH TO BE REDUCED IF TOPOGRAPHY IS NOT LEVEL.
7. LADDER RUNGS TO BE 20M HI-BOND BARS, GALVANIZED OR EQUAL.

SECTION B-B

TWIN INLET STANDARD
INSPECTION CATCHBASIN

MARCH 2012

1250 -1
1. POROUS BACK FILL TO BE PLACED A MINIMUM OF 300 ON ALL SIDES.
2. CONCRETE STRENGTH 35MPa AT 28 DAYS.
3. MAXIMUM DEPTH TO BE REDUCED IF TOPOGRAPHY IS NOT LEVEL.
5. WHERE INLET IS PLACED ACROSS DITCH AND IS ACCESSIBLE TO VEHICULAR TRAFFIC, GRATING IS TO BE 6:1 OR FLATTER.
6. APPROVED SQUARE OR ROUND PRE-CAST UNITS MAY BE USED ON APPROVAL OF THE ENGINEER.
1. POROUS BACK FILL TO BE PLACED A MINIMUM OF 300 ON ALL SIDES.
2. CONCRETE STRENGTH 35MPa AT 28 DAYS.
3. MAXIMUM DEPTH TO BE REDUCED IF TOPOGRAPHY IS NOT LEVEL.
5. WHERE INLET IS PLACED ACROSS DITCH AND IS ACCESSIBLE TO VEHICULAR TRAFFIC, GRATING IS TO BE 6:1 OR FLATTER, APPROVED SQUARE OR ROUND PRE-CAST UNITS MAY BE USED.
6. ON APPROVAL OF THE ENGINEER.
1. Porous back fill to be placed a minimum of 300 on all sides.
2. Concrete strength 35MPa at 28 days.
3. Maximum depth to be reduced if topography is not level.
4. Weep holes shall be placed so the bottom of the weeper on the inside and the top of the weeper on the outside are level.
5. Where inlet is placed across ditch and is accessible to vehicular traffic, grating is to be 6:1 or flatter.
6. Approved square or round pre-cast units may be used on approval of the engineer.
1. POROUS BACK FILL TO BE PLACED A MINIMUM OF 300 ON ALL SIDES.
2. CONCRETE STRENGTH 35MPa AT 28 DAYS.
3. MAXIMUM DEPTH TO BE REDUCED IF TOPOGRAPHY IS NOT LEVEL.
5. WHERE INLET IS PLACED ACROSS DITCH AND IS ACCESSIBLE TO VEHICULAR TRAFFIC, GRATING IS TO BE 6:1 OR FLATTER.
6. APPROVED SQUARE OR ROUND PRE-CAST UNITS MAY BE USED ON APPROVAL OF THE ENGINEER.
1. ALL CONDUITS AND FITTINGS TO BE RIGID PVC.
2. THE TOP ELEVATION OF THE CONCRETE ENCASEMENT SHALL BE A MINIMUM DEPTH OF 1000. IN ROCK THE TOP OF THE DUCT BANK MAY BE PLACED AT SUB GRADE OR AS OTHERWISE DIRECTED BY THE ENGINEER.
3. CONCRETE SHALL CONFORM TO THE DEPARTMENT OF TRANSPORTATION AND WORKS SPECIFICATION BOOK, DIVISION 904, "CONCRETE STRUCTURES" AND SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 40MPa.
4. THE USE OF TELEPHONE DUCT WILL NOT BE PERMITTED.
NOTES:
1. JUNCTION BOX COVER TO BE FINISHED FLUSH WITH FINISHED GRADE OR SIDEWALK.

RIGID P.V.C. DUCT AS REQUIRED

CUT 3-11 X 38 SLOTS IN FIBRE TUBE FOR VERTICAL FRAME ADJUSTMENT.
ANCHOR FRAME IN CONCRETE WITH 3-100 X 38 LONG GALVANIZED BOLTS.
GROUND LUG FOR #6 AWG STRANDED COPPER WIRE TO BE ATTACHED TO ONE BOLT.

PLAN
SCALE N.T.S.

460 CAST IRON FRAME AND COVER ALMAT METAL LTD.
CAT. No. DD-1428 OR EQUAL.
COVER TO BE RETAINED BY A 13Ø STAINLESS STEEL CAP SCREW.

SECTION A-A
SCALE N.T.S.

630 O.D. FIBRE TUBING (OPEN AT BOTTOM)

CONCRETE 40 MPa
1. 75 RIGID PVC CONDUIT SHALL BE CONNECTED TO 75 DUCT WITH PVC ADAPTOR.
2. SLEEVES SHALL BE PLUGGED AT BOTH ENDS WITH PLASTIC PLUGS UNTIL REQUIRED FOR USE.
3. 25 RIGID CONDUIT IN POLE BASE AS PER DUCT PLAN OR AS DIRECTED BY THE ENGINEER.
4. CONCRETE SHALL BE 40MPa.

ANCHOR BOLT TEMPLATE

METAL POLE

CLEARANCE 40 MAX/35 MIN.

ANCHOR BOLT AS PER MANUFACTURES REQUIREMENT. SUPPLIED BY CONTRACTOR

FOUNDATION DETAIL

Scale NTS
1. NOT SHOWN IN DIAGRAM IS 50 RIGID CONDUIT IN POLE BASE WHICH IS CONNECTED TO 75 DUCT BY PVC ADAPTER. NUMBER AND LOCATION AS DETERMINED IN THE FIELD.

2. FINISHED GRADE OF FOUNDATION TOP AS DIRECTED BY THE ENGINEER.

3. ANCHOR RODS ARE TO BE SUPPLIED BY THE CONTRACTOR PER MANUFACTURERS REQUIREMENTS.

4. 25 RIGID CONDUIT IN POLE BASE AS PER DUCT

5. PLAN OR AS DIRECTED BY THE ENGINEER. CONCRETE SHALL BE 40MPa.

75 PVC CONDUIT

ANCHOR BOLT AS PER MANUFACTURES REQUIREMENT. SUPPLIED BY CONTRACTOR

15M @ 200 c-c

TO SUIT POLE BASE
NOTES:
1. CONCRETE 40 MPa
2. ALL EXPOSED EDGES TO BE CHAMFERED 25.

PLAN VIEW

SECTION A-A

SECTION B-B

FOUNDATION FOR TRAFFIC CONTROLLER

MARCH 2012
TYPE "A" SIGNPOST INSTALLATIONS ARE DESIGNATED IN THE FORM, TYPE A - X WHERE X IS THE HEIGHT IN MILLIMETRES, OF THE SIGN BOARD TO BE PLACED ON THE POST.

FOR EXAMPLE, TYPE A - 900, MEANS A TYPE "A" INSTALLATION IN WHICH THE SIGN TO BE INSTALLED ON THE POST IS 900mm IN HEIGHT. THE MINIMUM POST LENGTH REQUIRED FOR THIS SIGN WOULD THEN BE 900mm + 2000mm + 1250mm OR 4150mm.

NOTE

1. MAXIMUM SIGN AREA IS 1.1m².

2. TOP OF SIGN BOARD TO BE FLUSH WITH TOP OF POST.

3. 38 x 89mm HORIZONTAL CROSS BRACING(S) SHALL BE INSTALLED BEHIND EACH SIGNBOARD AND NOTCHED TO A DEPTH OF 38mm INTO THE POST, SUCH THAT THE SIGNBOARD WILL BE FLUSH MOUNTED TO THE POST.

3. SIGN BOARDS ARE TO BE ATTACHED TO THE SIGN POST WITH TWO 80 x 10Ø GALVANIZED LAG BOLTS WITH GALVANIZED WASHERS.

4. SIGN BOARDS ARE TO BE ATTACHED TO CROSS BRACING WITH TWO 38 x 10Ø GALVANIZED LAG BOLTS WITH GALVANIZED WASHER.

5. FOR RECTANGULAR SIGN BOARDS, USE 2 PIECES OF 38 x 89mm PRESSURE TREATED CROSS BRACING INSTALLED HORIZONTALLY BETWEEN THE BACK OF THE SIGN BOARD AND THE POST, 100mm IN FROM EACH VERTICAL SIDE.

6. FOR DIAMOND SHAPE SIGN BOARDS, USE 1 PIECE OF 38 x 89mm PRESSURE TREATED CROSS BRACING INSTALLED HORIZONTALLY BETWEEN THE BACK OF THE SIGN BOARD AND THE POST, 100mm IN FROM THE HORIZONTAL DIAGONAL CORNERS.
TYPE "B" SIGNPOST INSTALLATIONS ARE DESIGNATED IN THE FORM, TYPE B - X WHERE X IS THE HEIGHT IN MILLIMETRES, OF THE SIGN BOARD TO BE PLACED ON THE POST.

FOR EXAMPLE, TYPE B - 1200, MEANS A TYPE "B" INSTALLATION IN WHICH THE SIGN TO BE INSTALLED ON THE POST IS 1200mm IN HEIGHT. THE MINIMUM POST LENGTH REQUIRED FOR THIS SIGN WOULD THEN BE 1200mm + 2000mm + 1250mm OR 4450mm.

NOTE
1. MAXIMUM SIGN AREA IS > 1.1m².
2. TOP OF SIGN BOARD TO BE FLUSH WITH TOP OF POST.
3. 38 x 89mm HORIZONTAL CROSS BRACING(S) SHALL BE INSTALLED BEHIND EACH SIGNBOARD AND NOTCHED TO A DEPTH OF 38mm INTO THE POST, SUCH THAT THE SIGNBOARD WILL BE FLUSH MOUNTED TO THE POST.
4. SIGN BOARDS ARE TO BE ATTACHED TO THE SIGN POST WITH TWO 80 X 10Ø GALVANIZED LAG BOLTS WITH GALVANIZED WASHERS.
5. SIGN BOARDS ARE TO BE ATTACHED TO CROSS BRACING WITH TWO 38 x 10Ø GALVANIZED LAG BOLTS WITH GALVANIZED WASHER.
6. FOR RECTANGULAR SIGN BOARDS, USE 2 PIECES OF 38 x 89mm PRESSURE TREATED CROSS BRACING INSTALLED HORIZONTALLY BETWEEN THE BACK OF THE SIGN BOARD AND THE POST, 100mm IN FROM EACH VERTICAL SIDE.
7. FOR DIAMOND SHAPE SIGN BOARDS, USE 1 PIECE OF 38 x 89mm PRESSURE TREATED CROSS BRACING INSTALLED HORIZONTALLY BETWEEN THE BACK OF THE SIGN BOARD AND THE POST, 100mm IN FROM THE HORIZONTAL DIAGONAL CORNERS.